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Abstract

Detecting robust keypoints from an image is an integral
part of many computer vision problems, and the charac-
teristic orientation and scale of keypoints play an impor-
tant role for keypoint description and matching. Existing
learning-based methods for keypoint detection rely on stan-
dard translation-equivariant CNNs but often fail to detect
reliable keypoints against geometric variations. To learn
to detect robust oriented keypoints, we introduce a self-
supervised learning framework using rotation-equivariant
CNNs. We propose a dense orientation alignment loss by
an image pair generated by synthetic transformations for
training a histogram-based orientation map. Our method
outperforms the previous methods on an image matching
benchmark and a camera pose estimation benchmark.

1. Introduction

Detecting robust keypoints is an integral part of many
computer vision tasks, such as image matching [21], visual
localization [28, 54, 55], SLAM [13, 14, 39], and 3D recon-
struction [1, 19, 57, 76]. The robust keypoints, in princi-
ple, are consistently localizable, being invariant to photo-
metric/geometric variations of an image induced by view-
point/illumination changes, and a keypoint is typically as-
signed with its characteristic orientation/scale as a geomet-
ric feature, which plays an important role for keypoint de-
scription [14, 15, 27, 37, 41, 45, 51, 62, 63, 70] or match-
ing [6,53,71,73], as shown in Fig. 1. As rotation frequently
occurs for patterns of interests in real-world images, the
keypoints and their geometric features are required to be
consistent w.r.t rotation of the image in particular.

The early methods have detected keypoints with their
charateristic orientation/scale using a hand-crafted filter
on a shallow gradient-based feature map. For example,
SIFT [27] detects the keypoints by finding local extrema in
difference-of-Gaussian (DoG) features on a scale space and
obtains a dominant orientation from gradient histograms.
While such a technique has proven effective for shallow

(a) Key.Net (b) ours
Figure 1. Visualization of the predicted matches to compare the
existing keypoint detector Key.Net [3] (left) with our oriented key-
point detector (right). We draw the correct matches (green) and the
incorrect matches (red) using the ground-truth homography. We
extract 300 keypoints and use HardNet [37] descriptor for match-
ing. The arrows of the keypoints in the right denote the estimated
orientations which are used for filtering outliers.

gradient-based feature maps, it cannot be applied to deep
feature maps from standard networks, where rotation or
scaling induces unpredictable variations of features. Recent
methods [3, 41, 58, 70], thus, rely on learning from data.
They typically train a convolutional neural network (CNN)
for keypoint detection and/or description by regressing ori-
entation and scale. Some [3,41] adopt self-supervised learn-
ing through synthetic transformation, while others [58, 70]
train the networks through strong supervision by homog-
raphy or SfM. All these approaches, however, often fail to
detect reliable keypoints against geometric variations; they
learn invariance or equivariance by relying on training with
data augmentation, which does not provide a sufficient level
for keypoint detection.

In this work, we propose a self-supervised equivariant
learning method for oriented keypoint detection. Recent
studies [10,11,29,68,69,75] introduce different equivariant
neural networks that embed an explicit structure for equiv-
ariant learning by design. The group-equivariant CNNs
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on a cyclic group have the advantages of explicitly encod-
ing the enriched orientation information and reducing the
number of model parameters through weight sharing com-
pared to the conventional CNNs. We propose an orienta-
tion alignment loss to estimate a characteristic orientation
to the keypoint using a histogram-based representation. The
histogram-based representation provides richer information
than the regression methods [41, 70, 72] by predicting mul-
tiple candidates for the orientations. To train the invariant
keypoint detector, we utilize a window-based loss [3] to sat-
isfy the geometric consistency with anchor points diverse
across the image. We generate the synthetic image pairs
by a random in-plane rotation to create diverse examples
and reduce the annotation cost. In addition, we generate a
scale-space representation in the networks and use multi-
scale inference to consider scale-invariance approximately.

We evaluate the rotation-invariant keypoint detection and
the rotation-equivariant orientation estimation compared
under synthetic rotations with the existing models [27, 41,
51]. We validate the effectiveness of our keypoint detec-
tor compared to the handcrafted methods [27, 51] and the
learning-based methods [3, 14, 15, 45] in an image match-
ing benchmark [2] using a repeatability score and match-
ing accuracy. The estimated orientations improve the image
matching accuracy with an outlier filtering in HPatches [2].
Furthermore, we show the transferability to a more complex
task by evaluating 6 DoF pose estimation in IMC2021 [21].
We demonstrate ablation experiments and visualizations to
verify the effectiveness of our model.

The contributions of our paper are three-fold:
• We propose a self-supervised framework for learning

to detect rotation-invariant keypoints using a rotation-
equivariant representation.

• We propose a dense orientation alignment loss by
aligning a pair of histogram tensors to train the charac-
teristic orientations.

• We demonstrate the effectiveness of our oriented key-
point detector with extensive evaluations compared to
existing keypoint detection methods on standard image
matching benchmarks.

2. Related work
Keypoint detection for image matching. Traditional key-
point detectors rely on carefully designed handcrafted fil-
ters. Harris [18] and Hessian [5] use first and second order
image derivatives to find corners or blobs in images. Those
detectors are extended by handling multi-scale and affine
transformations [32, 34]. SIFT [27] detect keypoints by
finding local extrema from the DoG features, and SURF [4]
further boost up speed by using the Haar filters. ORB [51]
propose a oriented FAST [50] detector. Recently, learning-
based methods [14, 15, 40, 41, 45, 56, 58, 61, 65, 66, 70]

use a CNN-based response map to train a keypoint detec-
tor. Key.Net [3] utilize the benefit of both representation
of the handcrafted and the learning-based to improve the
performance in terms of repeatability. Also, some meth-
ods [8, 24, 35, 36, 47, 48, 64] find correspondences in a cor-
relation tensor using a pair of dense features without a
separate keypoint detector, but constructing the correlation
tensor requires high memory consumption, so it compro-
mises the pixel accuracy of correspondences. Contrary to
the learning methods that use a conventional translation-
equivariant CNN, we utilize a rotation-equivariant CNN to
obtain consistent 2D keypoints. Our model can significantly
reduce the number of model parameters by weight sharing
in group convolution.

Local orientation estimation. SIFT [27] use a his-
togram of image gradients to estimate the local orienta-
tion. ORB [51] propose an efficient way to measure corner
orientation using intensity centroid [49]. Learning-based
methods learn the orientation implicitly through a descrip-
tor similarity loss [16, 38, 58, 72] or explicitly through an
orientation regression loss [41, 70], and they use the orien-
tation as one of the affine parameters in patch sampling us-
ing STNs [20]. While [41, 70] learns sparse orientations of
keypoints using the regression loss that minimizes the dis-
tance of angles, our model learns dense orientations of all
positions using the histogram alignment loss that matches
the shifted orientation histograms. Compared to regression
of [41, 70], our histogram output naturally facilitates the
prediction of multiple orientations and the loss of histogram
alignment with the rotation-equivariant representations al-
lows more robust learning. A previous work [23] proposes
the histogram alignment loss at the local patch-level, but we
extend it to all the regions of an image. The orientations are
verified through an outlier filtering for image matching.

Equivariant representation learning. [30, 31, 59] propose
an equivariant representation based on restricted Boltzmann
machines (RBM) through tensor factorization. Since CNNs
became popular, [10] proposes group equivariant convolu-
tional networks using discrete isometric groups. [29, 75]
propose resampling filters using interpolation to encode ex-
plicit orientations. [68,69] use harmonics as filters to extract
equivariant features from more diverse groups and contin-
uous domains. [67] extend this group to the general E(2)
groups, and [60] propose scale-equivariant steerable net-
works. From an application point of view, [17] propose
rotation-equivariant networks to solve the rotated object de-
tection on the aerial images. [44] apply the equivariant CNN
for registration of multimodal images. [43] disentangle the
invariance group of illumination and viewpoint for train-
ing local descriptors. The most similar work, GIFT [26],
use equivariant networks to obtain dense local descriptors,
but [26] constructs the group representation with augmented
images, whereas we construct the representation through
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steerable kernels [67] without rotating images at runtime.

3. Rotation-equivariant keypoint detection
3.1. Overview

The goal of our work is to learn to detect oriented key-
points from images. The classical keypoint detectors rely-
ing on handcrafted features satisfy the rotation/translation
equivariance, but the handcrafted methods are sensitive to
illumination changes or color distortions. On the con-
trary, recent learning-based keypoint detectors use standard
CNNs to encode local geometry and high-level semantics
through convolutional layers. The convolution operation is
inherently translation-equivariant, not rotation-equivariant.
Therefore, we use a rotation-equivariant convolution [67]
without handcrafted features to take advantages of both ap-
proaches. The rotation-equivariant CNN features contribute
to extract rotation-invariant keypoints with the orientations.

Figure 2 shows the proposed method which consists of
rotation-equivariant layers and is followed by two branches,
the keypoint detection and the orientation estimation. The
keypoint detection branch generates a rotation-invariant
keypoint score map through group pooling and the orienta-
tion estimation branch generates a rotation-preserving ori-
entation map through channel pooling. A window-based
keypoint detection loss [3] and the proposed dense orienta-
tion alignment loss are used to learn the oriented keypoints
in a self-supervised manner. Furthermore, the multi-scale
image pyramid encourages the network to have robustness
to scale changes.

3.2. Preliminaries

Equivariance. A feature extractor Φ is said to be equiv-
ariant to a geometric transformation Tg if transforming an
input x ∈ X by the transformation Tg and then passing it
through the feature extractor Φ gives the same result as first
mapping x through Φ and then transforming the feature map
by T ′

g [67]. Formally, the equivariance can be expressed for
transformation group G and Φ : X → Y as

Φ[Tg(x)] = T ′
g[Φ(x)], (1)

where Tg and T ′
g represent transformations on each space

as a predefined group action g ∈ G. In this case, the func-
tion Φ operates a “structure-preserving” mapping from one
representation to another. For example, convolutional op-
eration is designed to be translation-equivariant. If Tt is a
translation group (R2,+), and f is theK-dimension feature
mapping sent to Z2 → RK , the translation equivariance can
be expressed as follows:

[Ttf ] ∗ ψ(x) = [Tt[f ∗ ψ]](x), (2)

where ψ denotes convolution filter weights Z2 → RK , and
∗ indicates the convolution operation.

Group-equivariant convolution. Recent studies [10–12,
67, 68] have developed convolutional neural networks that
are equivariant to symmetry groups of translation, rotation
and reflection. Let H be a rotation group. The group G can
be defined by G ∼= (R2,+) ⋊H as the semidirect product
of the translation group (R2,+) with the rotation group H .
Then, the rotation-equivariant convolution on group G can
be defined as:

[Tgf ] ∗ ψ(g) = [Tg[f ∗ ψ]](g), (3)

by replacing t ∈ (R2,+) with g ∈ G in Eq. 2. This opera-
tion can apply to an input tensor to produce a translation and
rotation-equivariant output. Note that the cyclic group GN

represents an interval of 2π
N representing discrete rotations.

A rotation-equivariant network can be constructed by
stacking rotation-equivariant layers similar to standard
CNNs. This network becomes equivariant to both trans-
lation and rotation in the same way with the translation-
equivariant convolutional networks. Formally, let Φ =
{Li|i ∈ {1, 2, 3, ...,M}}, which consists of M rotation-
equivariant layers under group G. For one layer Li ∈ Φ,
the transformation Tg is defined as

Li[Tg(g)] = Tg[Li(g)], (4)

which indicates that the output is preserved after Li about
Tg . Extending this, if we apply Tg to input I and then pass
it through the network ϕ, the transformation Tg is preserved
for the whole network.

[ΠM
i=1Li](TgI) = Tg[Π

M
i=1Li](I). (5)

3.3. Oriented keypoint detection networks

In this subsection, we describe the process of creating
representations for the rotation-invariant keypoint detection
and the rotation-equivariant orientation estimation.
Rotation-equivariant feature extraction. For feature ex-
traction, we use the rotation-equivariant convolutional lay-
ers using [67]. For computational efficiency in a lim-
ited computational resource, we consider a discrete rotation
group only. The layer acts on (R2,+) ⋊ GN and is equiv-
ariant for all translations and N discrete rotations. At the
first layer L1, the scalar field of the input image is lifted to
the vector field of the group representation by defining field
types in a predefined group [67]. Given an input image, M
stacked layers produce an output feature map via

H = [ΠM
i=1Li](I), (6)

where H ∈ R|G|×C×H×W is a rotation-equivariant repre-
sentation output, and C is the number of channels assigned
for each group action. In our experiments, we use 3 layers
(M = 3). The output H ∈ R|G|×C×H×W is a group of fea-
ture maps, which representsC-channel feature maps for |G|
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Figure 2. Overall architecture. The rotation-equivariant convolutional layer takes an input image and processes it at multiple scales. The
multi-scale rotation-equivariant representation Hs pass two separate branches that predict a keypoint map K and an orientation map O.

orientations, and Hi denotes a feature map for i-th orienta-
tion in G. This rotation-equivariant network enables an ex-
tensive sharing of kernel weights for different orientations,
i.e., rotation transformations, and thus increasing sample ef-
ficiency in learning, particularly a rotation-involving task.
Rotation-invariant keypoint detection. Robust keypoints
need to be invariant to rotation transformations; the key-
pointness, i.e., keypoint score, for a specific position on an
image should not be affected by rotating the image. To ob-
tain such a rotation-invariant map for keypoint scores, we
collapse the group G of H ∈ R|G|×C×H×W by group
pooling, reducing it to a rotation-invariant representation
P ∈ RC×H×W . Specifically, we use max pooling over
orientations: P = maxg Hg,:,:,:. Given multi-scale outputs
{Ps}s∈S , the final score map K ∈ RH×W is obtained us-
ing standard convolution ρ over a concatenation of Ps:

K = ρ(
⋃
s∈S

(ζ(Ps))), (7)

where ρ is a convolution operation,
⋃

means concatena-
tion of the elements, and ζ denotes a bilinear interpolation
function. The interpolation function resizes the input map
to a target size, and the convolution transforms a rotation-
invariant feature map to a rotation-invariant score map.
Rotation-equivariant orientation estimation. To estimate
a characteristic orientation for a candidate keypoint, we
leverage the orientation group of rotation-equivariant ten-
sor H and translate it to the orientation histogram tensor Q.
Specifically, we collapse the channel dimension C for each
orientation by channel pooling and produce a |G|-channel
feature map Q ∈ R|G|×H×W , where each position can be
seen as being assigned an orientation histogram of |G| bins.
We use the implementation with 1 × 1 group convolution
with a single filter to collapse the channels of each orienta-
tion:

Q = η(H:,c), (8)

where η : R|G|×C → R|G| maps H to a discrete histogram
distribution of |G| bins. Note that the channel pooling can

be any other operations, e.g., max pooling, average pool-
ing, and so on. The resultant output can be interpreted as
a map of characteristic orientations for corresponding po-
sitions. The output pixel-level rotation-equivariant repre-
sentation Q is used to learn the keypoint orientation as a
histogram-based dense probability map. Given multi-scale
outputs {Qs}s∈S , the final orientation probability tensor
O ∈ R|G|×H×W is obtained by summing the outputs over
the multiple scales.

O = σ(
⊕
s∈S

(ζ(Qs))), (9)

where σ ∈ R|G| → [0, 1]|G| is a softmax function, and
⊕

is element-wise summation operation.

3.4. Training

In this subsection, we describe two loss functions for the
keypoint detection and the orientation estimation. First, the
loss for the orientation estimation will be described.
Dense orientation alignment loss. We train the histogram
tensor O to represent the orientations of each pixel. Our
method takes both advantages of the histogram-based [27,
51] and the learning-based [41, 70, 72] approaches. The
dense orientation tensor O ∈ R|G|×H×W encodes relative
orientations for each feature point. We transform the his-
togram of the feature points in Oa and the spatial dimension
of Ob to learn a characteristic orientation by an explicit su-
pervision as illustrated in Figure 3.

Image pair Ia, Ib, and the known ground-truth rotation
Tg are assumed as the input of the networks. First, we ro-
tate Ob with T−1

g for spatial alignment. Next, a histogram
alignment is performed by shifting the histograms of each
position in Oa using T ′

g in vector space. Note that the his-
tograms in each pixel of O are in a cyclic group G. Fi-
nally, the aligned representations T ′

g(O
a) and T−1

g (Ob) are
trained with the following cross-entropy loss for all pixels:

Lori = −
W∑
i=1

H∑
j=1

M ·
|G|∑
k=1

T ′
g(O

a)k log(T
−1
g (Ob))k, (10)
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where M = 1 ∧ T−1
g (1) is a mask for removing out-of-

bound regions, and 1 ∈ 1H×W . We omit the spatial index
i, j of the tensors Oa, Ob and M in Eq. 10 for simplicity.
Window-based keypoint detection loss. We utilize a
keypoint detection loss using a multi-scale index pro-
posal [3]. In general, a good keypoint is localized in a con-
sistent location invariant to geometric or photometric im-
age transformations. The window-based keypoint detection
loss [3] takes both advantages of selecting anchor-based
keypoints [14, 66, 74] and using homography without con-
straining their locations [25, 41].

The keypoint score map K ∈ RH×W is transformed
by non-maximum suppression through exponential scaling
based on a window. A window m(i) in the score map K
is derived by the softmax over the spatial window of size
N ×N around an image coordinate (u, v):

m(i)
u,v =

ew
(i)
u,v∑c(i)+N

j=c(i)
∑c(i)+N

k=c(i) e
w

(i)
j,k

, (11)

where a window w(i) is a nonoverlapping i-th N ×N grid
in the score map K and c(i) is the top-left coordinates of the
window w(i). Then the maximum value in m(i) becomes
the dominant location in the window, and a weighted av-
erage by multiplying the index in the window w(i) is per-
formed as follows:

[x(i), y(i)]⊤ = [ū(i), v̄(i)]⊤ =
∑

[u,v]∈w(i)

m(i)
u,v · [u, v]⊤,

(12)
where [x(i), y(i)]⊤ is a soft-selected coordinate in an im-
age. Eqs.11-12 aim to suppress noisy predictions in select-
ing real-value coordinates of the keypoints and to make the
layer differentiable, same to the soft-argmax used in [70].

The index proposal loss compares the soft-selected in-
dex with a hard-selected coordinate [x̂(i), ŷ(i)] obtained by
argmax in w(i) using the ground-truth geometric transfor-
mation Tg:

LIP(Ia, Ib, Tg, N) =∑
i

α(i)||[x(i), y(i)]a
⊤
− T−1

g [x̂(i), ŷ(i)]b
⊤
||2,

and α(i) = Ra[x(i), y(i)]a +Rb[x̂(i), ŷ(i)]b,

(13)

where α(i) is a weighting term based on the score maps,
and Ra and Rb are the response map of Ia and Ib with
coordinates related by T−1

g . Finally, the keypoint detection
loss uses multiple sizes of the window and adds switching
term of the input source and target:

Lkpts(Ia, Ib, Tg) =
∑
l

λl(LIP(Ia, Ib, Tg, Nl)

+ LIP(Ib, Ia, T−1
g , Nl)),

(14)
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Figure 3. Illustration of dense orientation alignment loss. The
dense orientation histogram Ob is spatially aligned using T−1

g .
The equivariant histogram vectors of the feature points in Oa are
shifted using T ′

g . The out-of-plane regions are excluded when
computing the loss.

where l is the index of a window level, Nl is the window
size in l, λl is a balancing parameter at a window level.

We use the final loss function L as follows:

L = βLori + Lkpts, (15)

where β is a balancing parameter of the loss functions.
Since image variations, in general, are not limited to dis-
crete rotation but also include other geometric/photometric
variations, e.g., continuous rotation, scaling, and illumina-
tion changes, Lori and Lkpts are used to consider such vari-
ations in training. Both of the losses are thus non-zero de-
spite our equivariant representation of the cyclic group GN .

4. Experiments
This section shows comparative experiments to demon-

strate the effectiveness of our model. We describe the
implementation details and the experimental benchmarks
(Sec. 4.1). We experiment with the keypoints and the
orientations under synthetic rotations (Sec. 4.2), and then
show the results of keypoint matching on HPatches [2] and
IMC2021 [21] (Sec. 4.3). We experiment the variations of
our model and show the qualitative results (Sec. 4.4).

4.1. Experimental setting

Implementation details. We use the E(2)-CNN frame-
work [67] for the implementation of rotation-equivariant
convolution with PyTorch [42, 46]. We use 36 for the or-
der of cyclic group G, with 2 for the channel dimension
C. We use 3 equivariant layers, each of which consists of a
conv-bn-relumodule. Each convolution layer has 5×5
kernel with padding of 2 without bias, and model parame-
ters are randomly initialized. We use a batch size of 16. We
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train with Adam optimizer with a learning rate of 0.001.
The leaning rate decay is 0.5 every 10 epochs for a total of
20 epochs. Early stopping is required to avoid overfitting,
so we use the repeatability score of the validation set. The
keypoint loss uses the window sizes Nl ∈ [8, 16, 24, 32, 40]
with λl ∈ [256, 64, 16, 4, 1] same as [3], and the loss bal-
ancing parameter β is 100. We use the NMS size 15× 15 at
test time, same to Key.Net [3].
Inference. For robustness to the scale change, we make
eight scale pyramids by the scaling of

√
2 at inference

time. We extract ⌊ 22−s∗p∑5
n=−2 2n

⌋ keypoints at scale s ∈ S =

{0, 1, .., 7} when we extract a total of p keypoints. We
assign the scale value

√
2
s−2

for the keypoints extracted
in scale s. We use simple argmax to obtain an orienta-
tion value from the histogram, which performs well enough
compared to a soft prediction for deriving real value.
Training dataset. We generate a synthetic dataset for the
self-supervised training. Our model needs a ground-truth
relative orientation for the training. We generate random
image pairs with in-plane rotation [-180, 180], which is suf-
ficient for the planar homography [2] or the 3D viewpoint
changes [21]. To improve the robustness at illumination
changes, we modify the contrast, brightness, and hue value
in HSV space. We exclude the images with insufficient
edges through Sobel filters [22] as a pre-processing. The
synthetic dataset has 9,100 image pairs of size 192 × 192
split into 9,000 as a training set and 100 as a validation set.
We use ILSVRC2012 [52] as source data.
Evaluation benchmark. We use two test datasets for com-
parative evaluation. HPatches [2] is for evaluating keypoint
detection and matching. IMC2021 [21] is for evaluating the
6 DoF pose estimation accuracy.
HPatches consists of 116 scenes with 59 viewpoint varia-
tion and 57 illumination variation [2]. Each scene consists
of 5 image pairs with ground-truth planar homography, for
a total of 696 image pairs. We compare our model with
the existing models using 1,000 keypoints for evaluation.
We use the repeatability score, the number of matches, and
mean matching accuracy (MMA) as evaluation metrics pro-
posed to [15, 33]. Repeatability1 is the ratio between the
number of repeatable keypoints and the total number of de-
tections by 3 pixel threshold. MMA is the average percent-
age of correct matches per image pair. We measure the cor-
rect matches by thresholding 3 and 5 pixels for MMA.
IMC2021 is a large-scale challenge dataset of wide-
baseline matching [21]. IMC2021 consists of an uncon-
strained urban scene with large illumination and viewpoint
variations. In this experiment, we compare our method with
the existing keypoint detection methods in an image match-

1We compute repeatability by measuring the distance between 2D point
centers following Appendix A of [14], because several comparison meth-
ods [14, 15] do not rely on patch extraction.
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Figure 4. Results of repeatability to evaluate the rotation-invariant
keypoint detection under synthetic rotations with Gaussian noise.
For a better view, we smooth the chart by a moving average.
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Figure 5. Results of orientation estimation accuracy under syn-
thetic rotations with Gaussian noise. We use 15◦ threshold for
measuring the accuracy.

ing pipeline [7, 9, 37]. We experiment on the stereo track
using the validation sets of Phototourism and PragueParks.
This benchmark takes the predicted matches as an input and
measures the 6 DoF pose estimation accuracy. We mea-
sure the mean average accuracy (mAA) of pose estimation
at 5◦and 10◦and the number of inliers.

4.2. Experiments under synthetic rotations

Inspired by Section 4.4 of [51], we conduct two experi-
ments with synthetic images using in-plane rotation from 0◦

to 359◦ at 1◦ intervals using ten images of size 224 × 224
that are not used for training and validation. We compare
two handcrafted methods [27, 51] and two learning meth-
ods [41, 70] among the representative keypoint detectors
that yield the orientations. Figure 4 shows the results of
rotation-invariant keypoint detection in terms of repeata-
bility. Our method consistently obtains better repeatabil-
ity than the existing methods [27, 41, 51, 70]. Note that the
learning method LF-Net [41] falls off dramatically after 10
degrees while the handcrafted, SIFT [27] and ORB [51], are
robust to rotations. Figure 5 shows the results of rotation-
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All variations
Det. Desc. Rep. MMA pred.

match.@3px @5px
SIFT [27] SIFT [27] 41.9 49.4 52.4 404.2
SIFT [27] HardNet [37] 41.9 57.1 62.3 437.8
SIFT [27] SOSNet [63] 41.9 57.9 63.0 430.8
SIFT [27] HyNet [62] 41.9 57.3 62.5 438.9
ORB [51] ORB [51] 57.4 46.6 50.0 362.0

D2-Net [15] D2-Net [15] 19.8 35.2 48.6 371.8
LF-Net [41] LF-Net [41] 43.8 52.0 56.9 330.2
R2D2 [45] R2D2 [45] 45.5 64.6 74.8 358.9
SPoint [14] SPoint [14] 47.0 63.9 70.3 466.3
SPoint [14] GIFT [26] 47.0 68.8 76.0 496.7
Key.Net [3] HardNet [37] 55.9 72.5 79.4 474.4
Key.Net [3] SOSNet [63] 55.9 72.7 79.6 464.7
Key.Net [3] HyNet [62] 55.9 72.0 78.9 475.3

ours HardNet [37] 57.6 73.1 79.6 505.8
ours SOSNet [63] 57.6 73.4 80.0 499.5
ours HyNet [62] 57.6 72.9 79.5 503.3
ours GIFT [26] 57.6 75.2 81.5 415.6

Table 1. Results on HPatches. We use 1,000 keypoints in this
experiment. ‘Det.’ denotes keypoint detection method, ‘Desc.’
denotes descriptor extraction method, ‘Rep.’ denotes the repeata-
bility score, and ‘pred. match.’ is the average number of predicted
matches. Numbers in bold indicate the best scores.

equivariant orientation estimation in terms of orientation es-
timation accuracy. We align Ob to Oa using T−1

g and then
measure the accuracy at the whole region of images except
the boundary regions as in Figure 6. We obtain the orien-
tation values of SIFT [27] by generating keypoints in all
positions. Even though our method predicts the orienta-
tion discretely by the histogram, it is more effective than the
regression-based learning methods, OriNet [72], LIFT [70],
and LF-Net [41]. Especially, the accuracies of our model
are consistently over 80% at a threshold of 15 degrees.

4.3. Keypoint matching

Results on HPatches. Table 1 shows the results of keypoint
detection and matching in HPatches [2]. We exclude our
orientation in this experiment. We compare the handcrafted
detectors [27, 51] and a learned detector [3] as baselines
with patch-based descriptors [37, 62, 63]. We additionally
compare the joint detection and description methods [14,15,
41,45] and the integration of the rotation-invariant dense de-
scriptors [26]. We use the mutual nearest neighbor match-
ing algorithm for all cases in this experiment. Our model
achieves the best repeatability score compared to the ex-
isting keypoint detection methods [3, 14, 15, 27, 41, 45, 51],
which means our detector is robust to the viewpoint and il-
lumination changes. Our model consistently obtains more
predicted matches and better MMA scores compared to the
state-of-the-art keypoint detector Key.Net [3] at all cases
with the patch descriptors [37,62,63]. Our model with GIFT
descriptor [26] achieves better MMAs compared to the Su-

Det. K Stereo track.
Num. Inl. mAA(5◦) mAA(10◦)

DoG+AN [27, 38] 1,024 43.8 0.210 0.277
Key.Net [3] 1,024 126.5 0.397 0.512

ours 1,024 135.6 0.441 0.549
DoG+AN [27, 38] 2,048 105.9 0.385 0.477

Key.Net [3] 2,048 245.4 0.473 0.588
ours 2,048 269.3 0.521 0.632

DoG+AN [27, 38] 8,000 539.0 0.605 0.718
Key.Net [3] 8,000 563.0 0.522 0.635

ours 8,000 992.9 0.601 0.710

Table 2. Mean average accuracy (mAA; 5◦, 10◦) of 6-DoF pose
estimation and the average number of inlier matches (Num. Inl.)
on IMC2021 validation set [21]. Column ‘K’ denotes the number
of keypoints. Numbers in bold indicate the best scores.

perPoint [14] detector of the cases with SuperPoint descrip-
tor [14] and GIFT [26]. In particular, our model with the
rotation-invariant descriptors [26] achieves the best MMAs,
which shows that the rotation-invariant representation con-
tributes to improving the accuracy of correspondences.
Results on the IMC2021. Table 2 shows the results of 6
DoF pose estimation in IMC2021 [21] for evaluating on a
complex task of general scenes2. For this experiment, we
use the rest of the image matching pipeline using HardNet
descriptor [37], and DEGENSAC geometric verification [9]
with AdaLAM [7] for all cases. For the AdaLAM [7] stage,
we use our estimated orientation values and the scale val-
ues from the scale-space inference. We compare to two
baselines, DoG+AN [27, 38] and Key.Net [3]. The re-
sult shows that our model consistently improves the cam-
era pose estimation accuracy (mAAs) and the number of
inliers compared to the Key.Net [3]. Although the mAAs
of our model in 8,000 keypoints are slightly lower than
DoG+AN [27, 38], the number of inliers is almost double
which denotes the quality of 3D reconstruction. In par-
ticular, our model with 1,024 keypoints significantly im-
proves the mAAs and the number of inliers compared to
DoG+AN [27, 38], which shows that our model estimates
more accurate camera poses with less computation. Our
model consistently outperforms the baseline Key.Net [3] for
all metrics.

4.4. Additional results

Effect of the oriented keypoint. Table 3 shows the re-
sults in HPatches [2] by an outlier filtering algorithm3 us-
ing the estimated orientations compared to [27, 41, 51].
Among the predicted matches, we filter the outlier matches
through global consensus of the orientation values assigned
in matched keypoints. We first compute the difference of
estimated orientation for tentative matches and then derive

2We use the provided source code from IMC2021 for evaluation.
3More detailed descriptions of the outlier filtering algorithm are in sup-

plementary material.
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Det.+Des. Ori. fltr. MMA match.@3px @5px
ORB [51] ORB [51] 46.6 50.0 362.0
ORB [51] ORB [51] ✓ 42.6 45.8 196.1
ORB [51] ours ✓ 61.7 66.0 228.3
SIFT [27] SIFT [27] 49.4 52.4 404.2
SIFT [27] SIFT [27] ✓ 52.6 55.8 251.6
SIFT [27] ours ✓ 63.7 67.4 236.5

LF-Net [41] LF-Net [41] 52.0 56.9 330.2
LF-Net [41] LF-Net [41] ✓ 49.9 54.3 197.0
LF-Net [41] ours ✓ 63.2 69.2 236.2

ours+HN [37] ours 73.1 79.6 505.8
ours+HN [37] ours ✓ 76.7 82.3 440.1

Table 3. Results for the comparison using the estimated orienta-
tions by an outlier filtering in HPatches [2]. We use 1,000 key-
points. ‘Det.+Des.’ denotes the keypoint detector and descriptor,
‘Ori.’ denotes the orientation estimation method, and ‘fltr.’ de-
notes whether or not to use the outlier filtering.

MMA
# param.w/o out. filter. out. filter.

@3px @5px @3px @5px
G36 73.1 79.6 76.7 82.3 3.3K
G18 66.2 75.0 72.7 80.8 6.5K
G9 62.4 70.7 72.0 79.1 13.0K
G8 63.2 73.7 69.5 79.0 14.7K
G4 62.3 70.7 68.2 75.8 29.1K
- 64.5 74.0 64.5 74.0 116K

Table 4. Experiment according to the order of group in
HPatches [2]. The subscript of G denotes the order of group.
‘out. filter.’ denotes the results with outlier filtering. The last
row denotes the results without the group representation and using
conventional CNNs.

the most frequent difference between the pair images. We
exclude matches far from the most frequent difference as
the outlier. For the comparison, we replace the orientations
of the comparison methods with our orientation. The re-
sults with our orientations yield higher MMAs and more
predicted matches than all the results with the orientations
of the baselines [27, 41, 51]. The results of our model
with HardNet [37] achieve the best performance both in
cases with outlier filtering and cases without filtering, so our
method generates more consistent orientations to the view-
point and illumination changes than the orientations derived
by the image gradients [27, 51] and the regression [41].
Change the order of group. Table 4 shows the results of
MMAs with the number of parameters according to the or-
der of group |G|. We make the same computation of all
models by changing the number of channels C. Therefore,
the model size increases by N times whenever the order of
group decreases by N times. For example, the third row in
Table 4 with the order of group 9 has the number of chan-
nels 8. In the table, the results with a cyclic group G36

are the best with the smallest model size. The last row,

Input LF-Net OursSIFT

Figure 6. Visualization of the color-coded orientation maps. Up-
per is the source image, and the bottom is the target image. For the
better view, we apply T−1

g to the target image as a spatial align-
ment. We map the orientation range from [0, 359) to [0, 255) to
visualize the orientations by hue of HSV color representation.

which replaces the rotation-equivariant layers with conven-
tional convolutional layers, has a large number of param-
eters because there is no weight sharing. As the order of
group increases, the number of parameters can be signif-
icantly reduced without losing performance. In addition,
the model with the conventional convolutional layers fails
to train the orientation, so the outlier filtering has no effect,
which shows the group-equivariant CNNs are essential for
the equivariant orientation learning.
Qualitative results. Figure 6 shows qualitative compar-
isons of the orientation map with a handcrafted method [27]
and a learning method [41] using an example of Sec. 4.2.
Our model predicts the changing orientations more consis-
tently across the images compared to [27,41], which proves
the peak of our orientation histogram for an pixel consis-
tently changes as the region is rotated. Additional experi-
ments and more analysis are in the supplementary material.

5. Conclusion

This paper presents a self-supervised oriented keypoint
detection method using rotation-equivariant CNNs. The
rotation-equivariant representation with pooling in separate
dimensions generates robust features for oriented keypoint
detection. The proposed dense orientation alignment loss
trains the histograms consistently changing to rotation. Ex-
tensive experiments show the effectiveness of the proposed
oriented keypoints compared to the existing methods in
standard image matching benchmarks. In the future, this
study can be extended to the general transformation groups,
e.g., affine/non-rigid, or to learning the rotation-equivariant
descriptors and joint equivariant learning of the detection
and description. We leave this for the future.
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Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood con-
sensus networks. In NeurIPS, pages 1656–1667, 2018. 2

[49] Paul L Rosin. Measuring corner properties. Computer Vision
and Image Understanding, 73(2):291–307, 1999. 2

[50] Edward Rosten and Tom Drummond. Machine learning for
high-speed corner detection. In European conference on
computer vision, pages 430–443. Springer, 2006. 2

[51] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In 2011
International conference on computer vision, pages 2564–
2571. Ieee, 2011. 1, 2, 4, 6, 7, 8

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 6

[53] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 1

[54] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving
image-based localization by active correspondence search.
In European conference on computer vision, pages 752–765.
Springer, 2012. 1

[55] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmark-
ing 6dof outdoor visual localization in changing conditions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8601–8610, 2018. 1

[56] Nikolay Savinov, Akihito Seki, Lubor Ladicky, Torsten Sat-
tler, and Marc Pollefeys. Quad-networks: unsupervised

4856



learning to rank for interest point detection. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1822–1830, 2017. 2

[57] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104–4113, 2016. 1

[58] Xuelun Shen, Cheng Wang, Xin Li, Zenglei Yu, Jonathan
Li, Chenglu Wen, Ming Cheng, and Zijian He. Rf-net: An
end-to-end image matching network based on receptive field.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8132–8140, 2019. 1, 2

[59] Kihyuk Sohn and Honglak Lee. Learning invariant represen-
tations with local transformations. In ICML, 2012. 2

[60] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders.
Scale-equivariant steerable networks. In International Con-
ference on Learning Representations, 2020. 2

[61] Suwichaya Suwanwimolkul, Satoshi Komorita, and
Kazuyuki Tasaka. Learning of low-level feature keypoints
for accurate and robust detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2262–2271, 2021. 2

[62] Yurun Tian, Axel Barroso Laguna, Tony Ng, Vassileios Bal-
ntas, and Krystian Mikolajczyk. Hynet: Learning local de-
scriptor with hybrid similarity measure and triplet loss. Ad-
vances in Neural Information Processing Systems, 33, 2020.
1, 7

[63] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,
and Vassileios Balntas. Sosnet: Second order similarity reg-
ularization for local descriptor learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11016–11025, 2019. 1, 7

[64] Prune Truong, Martin Danelljan, and Radu Timofte. Glu-
net: Global-local universal network for dense flow and corre-
spondences. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6258–6268,
2020. 2

[65] Michal Jan Tyszkiewicz, Pascal Fua, and Eduard Trulls.
Disk: learning local features with policy gradient. Advances
in Neural Information Processing Systems, 33, 2020. 2

[66] Yannick Verdie, Kwang Yi, Pascal Fua, and Vincent Lepetit.
Tilde: A temporally invariant learned detector. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5279–5288, 2015. 2, 5

[67] Maurice Weiler and Gabriele Cesa. General e (2)-equivariant
steerable cnns. Advances in Neural Information Processing
Systems, 32:14334–14345, 2019. 2, 3, 5

[68] Maurice Weiler, Fred A Hamprecht, and Martin Storath.
Learning steerable filters for rotation equivariant cnns. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018. 1, 2, 3

[69] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-
betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5028–5037, 2017. 1, 2

[70] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal
Fua. Lift: Learned invariant feature transform. In European

conference on computer vision, pages 467–483. Springer,
2016. 1, 2, 4, 5, 6, 7

[71] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2666–2674,
2018. 1

[72] Kwang Moo Yi, Yannick Verdie, Pascal Fua, and Vincent
Lepetit. Learning to assign orientations to feature points. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 107–116, 2016. 2, 4, 7

[73] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hongen
Liao. Learning two-view correspondences and geometry us-
ing order-aware network. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5845–
5854, 2019. 1

[74] Xu Zhang, Felix X Yu, Svebor Karaman, and Shih-Fu
Chang. Learning discriminative and transformation covari-
ant local feature detectors. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6818–6826, 2017. 5

[75] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao.
Oriented response networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 519–528, 2017. 1, 2

[76] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian
Fang, Ping Tan, and Long Quan. Very large-scale global
sfm by distributed motion averaging. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4568–4577, 2018. 1

4857


