Self-Supervised Equivariant Learning for Oriented Keypoint Detection

Jongmin Lee Byungjin Kim Minsu Cho
Pohang University of Science and Technology (POSTECH), South Korea
http://cvlab.postech.ac.kr/research/REKD

Abstract

Detecting robust keypoints from an image is an integral part of many computer vision problems, and the characteristic orientation and scale of keypoints play an important role for keypoint description and matching. Existing learning-based methods for keypoint detection rely on standard translation-equivariant CNNs but often fail to detect reliable keypoints against geometric variations. To learn to detect robust oriented keypoints, we introduce a self-supervised learning framework using rotation-equivariant CNNs. We propose a dense orientation alignment loss by an image pair generated by synthetic transformations for training a histogram-based orientation map. Our method outperforms the previous methods on an image matching benchmark and a camera pose estimation benchmark.

1. Introduction

Detecting robust keypoints is an integral part of many computer vision tasks, such as image matching [21], visual localization [28, 54, 55], SLAM [13, 14, 39], and 3D reconstruction [1, 19, 57, 76]. The robust keypoints, in principle, are consistently localizable, being invariant to photometric/geometric variations of an image induced by viewpoint/illumination changes, and a keypoint is typically assigned with its characteristic orientation/scale as a geometric feature, which plays an important role for keypoint description [14, 15, 27, 37, 41, 45, 51, 62, 63, 70] or matching [6, 53, 71, 73], as shown in Fig. 1. As rotation frequently occurs for patterns of interests in real-world images, the keypoints and their geometric features are required to be consistent w.r.t rotation of the image in particular.

The early methods have detected keypoints with their characteristic orientation/scale using a hand-crafted filter on a shallow gradient-based feature map. For example, SIFT [27] detects the keypoints by finding local extrema in difference-of-Gaussian (DoG) features on a scale space and obtains a dominant orientation from gradient histograms. While such a technique has proven effective for shallow gradient-based feature maps, it cannot be applied to deep feature maps from standard networks, where rotation or scaling induces unpredictable variations of features. Recent methods [3, 41, 58, 70], thus, rely on learning from data. They typically train a convolutional neural network (CNN) for keypoint detection and/or description by regressing orientation and scale. Some [3, 41] adopt self-supervised learning through synthetic transformation, while others [58, 70] train the networks through strong supervision by homography or SfM. All these approaches, however, often fail to detect reliable keypoints against geometric variations; they learn invariance or equivariance by relying on training with data augmentation, which does not provide a sufficient level for keypoint detection.

In this work, we propose a self-supervised equivariant learning method for oriented keypoint detection. Recent studies [10, 11, 29, 68, 69, 75] introduce different equivariant neural networks that embed an explicit structure for equivariant learning by design. The group-equivariant CNNs
on a cyclic group have the advantages of explicitly encoding the enriched orientation information and reducing the number of model parameters through weight sharing compared to the conventional CNNs. We propose an orientation alignment loss to estimate a characteristic orientation to the keypoint using a histogram-based representation. The histogram-based representation provides richer information than the regression methods [41, 70, 72] by predicting multiple candidates for the orientations. To train the invariant keypoint detector, we utilize a window-based loss [3] to satisfy the geometric consistency with anchor points diverse across the image. We generate the synthetic image pairs by a random in-plane rotation to create diverse examples and reduce the annotation cost. In addition, we generate a scale-space representation in the networks and use multi-scale inference to consider scale-invariance approximately.

We evaluate the rotation-invariant keypoint detection and the rotation-equivariant orientation estimation compared under synthetic rotations with the existing models [27, 41, 51]. We validate the effectiveness of our keypoint detector compared to the handcrafted methods [27, 51] and the learning-based methods [3, 14, 15, 45] in an image matching benchmark [2] using a repeatability score and matching accuracy. The estimated orientations improve the image matching accuracy with an outlier filtering in HPatches [2]. Furthermore, we show the transferability to a more complex task by evaluating 6 DoF pose estimation in IMC2021 [21]. We demonstrate ablation experiments and visualizations to verify the effectiveness of our model.

The contributions of our paper are three-fold:

• We propose a self-supervised framework for learning to detect rotation-invariant keypoints using a rotation-equivariant representation.

• We propose a dense orientation alignment loss by aligning a pair of histogram tensors to train the characteristic orientations.

• We demonstrate the effectiveness of our oriented keypoint detector with extensive evaluations compared to existing keypoint detection methods on standard image matching benchmarks.

2. Related work

Keypoint detection for image matching. Traditional keypoint detectors rely on carefully designed handcrafted filters. Harris [18] and Hessian [5] use first and second order image derivatives to find corners or blobs in images. Those detectors are extended by handling multi-scale and affine transformations [32, 34]. SIFT [27] detect keypoints by finding local extrema from the DoG features, and SURF [4] further boost up speed by using the Haar filters. ORB [51] propose a oriented FAST [50] detector. Recently, learning-based methods [14, 15, 40, 41, 45, 56, 58, 61, 65, 66, 70] use a CNN-based response map to train a keypoint detector. Key.Net [3] utilize the benefit of both representation of the handcrafted and the learning-based to improve the performance in terms of repeatability. Also, some methods [8, 24, 35, 36, 47, 48, 64] find correspondences in a correlation tensor using a pair of dense features without a separate keypoint detector, but constructing the correlation tensor requires high memory consumption, so it compromises the pixel accuracy of correspondences. Contrary to the learning methods that use a conventional translation-equivariant CNN, we utilize a rotation-equivariant CNN to obtain consistent 2D keypoints. Our model can significantly reduce the number of model parameters by weight sharing in group convolution.

Local orientation estimation. SIFT [27] use a histogram of image gradients to estimate the local orientation. ORB [51] propose an efficient way to measure corner orientation using intensity centroid [49]. Learning-based methods learn the orientation implicitly through a descriptor similarity loss [16, 38, 58, 72] or explicitly through an orientation regression loss [41, 70], and they use the orientation as one of the affine parameters in patch sampling using STNs [20]. While [41, 70] learns sparse orientations of keypoints using the regression loss that minimizes the distance of angles, our model learns dense orientations of all positions using the histogram alignment loss that matches the shifted orientation histograms. Compared to regression of [41, 70], our histogram output naturally facilitates the prediction of multiple orientations and the loss of histogram alignment with the rotation-equivariant representations allows more robust learning. A previous work [23] proposes the histogram alignment loss at the local patch-level, but we extend it to all the regions of an image. The orientations are verified through an outlier filtering for image matching.

Equivariant representation learning. [30, 31, 59] propose an equivariant representation based on restricted Boltzmann machines (RBM) through tensor factorization. Since CNNs became popular, [10] proposes group equivariant convolutional networks using discrete isometric groups. [29, 75] propose resampling filters using interpolation to encode explicit orientations. [68, 69] use harmonics as filters to extract equivariant features from more diverse groups and continuous domains. [67] extend this group to the general E(2) groups, and [60] propose scale-equivariant steerable networks. From an application point of view, [17] propose rotation-equivariant networks to solve the rotated object detection on the aerial images. [44] apply the equivariant CNN for registration of multimodal images. [43] disentangle the invariance group of illumination and viewpoint for training local descriptors. The most similar work, GIFT [26], use equivariant networks to obtain dense local descriptors, but [26] constructs the group representation with augmented images, whereas we construct the representation through
steerable kernels [67] without rotating images at runtime.

3. Rotation-equivariant keypoint detection

3.1. Overview

The goal of our work is to learn to detect oriented keypoints from images. The classical keypoint detectors relying on handcrafted features satisfy the rotation/translation equivariance, but the handcrafted methods are sensitive to illumination changes or color distortions. On the contrary, recent learning-based keypoint detectors use standard CNNs to encode local geometry and high-level semantics through convolutional layers. The convolution operation is inherently translation-equivariant, not rotation-equivariant. Therefore, we use a rotation-equivariant convolution [67] without handcrafted features to take advantages of both approaches. The rotation-equivariant CNN features contribute to extract rotation-invariant keypoints with the orientations.

Figure 2 shows the proposed method which consists of rotation-equivariant layers and is followed by two branches, the keypoint detection and the orientation estimation. The keypoint detection branch generates a rotation-invariant keypoint score map through group pooling and the orientation estimation branch generates a rotation-preserving orientation map through channel pooling. A window-based keypoint detection loss [3] and the proposed dense orientation alignment loss are used to learn the oriented keypoints from images. The classical keypoint detectors rely on handcrafted features to take advantages of both approaches. The rotation-equivariant CNN features contribute to extract rotation-invariant keypoints with the orientations.

3.2. Preliminaries

Equivalence. A feature extractor Φ is said to be equivariant to a geometric transformation T_g if transforming an input $x \in X$ by the transformation T_g and then passing it through the feature extractor Φ gives the same result as first mapping x through Φ and then transforming the feature map by T_g [67]. Formally, the equivariance can be expressed for transformation group G and $\Phi : X \rightarrow Y$ as

$$\Phi[T_g(x)] = T_g[\Phi(x)],$$

where T_g and T_g' represent transformations on each space as a predefined group action $g \in G$. In this case, the function Φ operates a "structure-preserving" mapping from one representation to another. For example, convolutional operation is designed to be translation-equivariant. If T_i is a translation group $(\mathbb{R}^2, +)$, and f is the K-dimension feature mapping sent to $\mathbb{Z}^2 \rightarrow \mathbb{R}^K$, the translation equivariance can be expressed as follows:

$$[T_i f] * \psi(x) = [T_i [f * \psi]](x),$$

where ψ denotes convolution filter weights $\mathbb{Z}^2 \rightarrow \mathbb{R}^K$, and * indicates the convolution operation.

Group-equivariant convolution. Recent studies [10–12, 67, 68] have developed convolutional neural networks that are equivariant to symmetry groups of translation, rotation and reflection. Let H be a rotation group. The group G can be defined by $G \cong (\mathbb{R}^2, +) \rtimes H$ as the semidirect product of the translation group $(\mathbb{R}^2, +)$ with the rotation group H. Then, the rotation-equivariant convolution on group G can be defined as:

$$[T_g f] * \psi(g) = [T_g [f * \psi]](g),$$

by replacing $t \in (\mathbb{R}^2, +)$ with $g \in G$ in Eq. 2. This operation can apply to an input tensor to produce a translation and rotation-equivariant output. Note that the cyclic group G_N represents an interval of $\frac{2\pi}{N}$ representing discrete rotations.

A rotation-equivariant network can be constructed by stacking rotation-equivariant layers similar to standard CNNs. This network becomes equivariant to both translation and rotation in the same way with the translation-equivariant convolutional networks. Formally, let $\Phi = \{L_i | i \in \{1, 2, 3, ..., M\} \}$, which consists of M rotation-equivariant layers under group G. For one layer $L_i \in \Phi$, the transformation T_g is defined as

$$L_i[T_g(g)] = T_g[L_i(g)],$$

which indicates that the output is preserved after L_i about T_g. Extending this, if we apply T_g to input I and then pass it through the network ϕ, the transformation T_g is preserved for the whole network.

$$[\prod_{i=1}^{M} L_i](T_g I) = T_g[\prod_{i=1}^{M} L_i](I).$$

3.3. Oriented keypoint detection networks

In this subsection, we describe the process of creating representations for the rotation-invariant keypoint detection and the rotation-equivariant orientation estimation. Rotation-equivariant feature extraction. For feature extraction, we use the rotation-equivariant convolutional layers using [67]. For computational efficiency in a limited computational resource, we consider a discrete rotation group only. The layer acts on $(\mathbb{R}^2, +) \rtimes G_N$ and is equivariant for all translations and N discrete rotations. At the first layer L_1, the scalar field of the input image is lifted to the vector field of the group representation by defining field types in a predefined group [67]. Given an input image, M stacked layers produce an output feature map via

$$H = [\prod_{i=1}^{M} L_i](I),$$

where $H \in \mathbb{R}^{G} \times C \times H \times W$ is a rotation-equivariant representation output, and C is the number of channels assigned for each group action. In our experiments, we use 3 layers ($M = 3$). The output $H \in \mathbb{R}^{G} \times C \times H \times W$ is a group of feature maps, which represents C-channel feature maps for $|G|$.
orientations, and H_s denotes a feature map for i-th orientation in G. This rotation-equivariant network enables an extensive sharing of kernel weights for different orientations, i.e., rotation transformations, and thus increasing sample efficiency in learning, particularly a rotation-involving task.

Rotation-invariant keypoint detection. Robust keypoints need to be invariant to rotation transformations; the keypointness, i.e., keypoint score, for a specific position on an image should not be affected by rotating the image. To obtain such a rotation-invariant map for keypoint scores, we collapse the group G of $H \in \mathbb{R}^{G \times C \times H \times W}$ by group pooling, reducing it to a rotation-invariant representation $P \in \mathbb{R}^{C \times H \times W}$. Specifically, we use max pooling over orientations: $P = \max_g H_g$. Given multi-scale outputs $\{P_s\}_{s \in S}$, the final score map $K \in \mathbb{R}^{H \times W}$ is obtained using standard convolution ρ over a concatenation of P_s:

$$K = \rho(\bigcup_{s \in S} (\zeta(P_s))),$$

(7)

where ρ is a convolution operation, \bigcup means concatenation of the elements, and ζ denotes a bilinear interpolation function. The interpolation function resizes the input map to a target size, and the convolution transforms a rotation-invariant feature map to a rotation-invariant score map.

Rotation-equivariant orientation estimation. To estimate a characteristic orientation for a candidate keypoint, we leverage the orientation group of rotation-equivariant tensor H and translate it to the orientation histogram tensor Q. Specifically, we collapse the channel dimension C for each orientation by channel pooling and produce a $|G|$-channel feature map $Q \in \mathbb{R}^{G \times H \times W}$, where each position can be seen as being assigned an orientation histogram of $|G|$ bins. We use the implementation with 1 x 1 group convolution with a single filter to collapse the channels of each orientation:

$$Q = \eta(H_{s,c}),$$

(8)

where $\eta : \mathbb{R}^{G \times C} \rightarrow \mathbb{R}^{G}$ maps H to a discrete histogram distribution of $|G|$ bins. Note that the channel pooling can be any other operations, e.g., max pooling, average pooling, and so on. The resultant output can be interpreted as a map of characteristic orientations for corresponding positions. The output pixel-level rotation-equivariant representation Q is used to learn the keypoint orientation as a histogram-based dense probability map. Given multi-scale outputs $\{Q_s\}_{s \in S}$, the final orientation probability tensor $O \in \mathbb{R}^{G \times H \times W}$ is obtained by summing the outputs over the multiple scales.

$$O = \sigma(\bigoplus_{s \in S} (\zeta(Q_s))),$$

(9)

where $\sigma \in \mathbb{R}^{G} \rightarrow [0,1]^{G}$ is a softmax function, and \bigoplus is element-wise summation operation.

3.4. Training

In this subsection, we describe two loss functions for the keypoint detection and the orientation estimation. First, the loss for the orientation estimation will be described.

Dense orientation alignment loss. We train the histogram tensor O to represent the orientations of each pixel. Our method takes both advantages of the histogram-based [27, 51] and the learning-based [41, 70, 72] approaches. The dense orientation tensor $O \in \mathbb{R}^{G \times H \times W}$ encodes relative orientations for each feature point. We transform the histogram of the feature points in O^b and the spatial dimension of O^b to learn a characteristic orientation by an explicit supervision as illustrated in Figure 3.

Image pair I^a, I^b, and the known ground-truth rotation T_g are assumed as the input of the networks. First, we rotate O^b with T_g^{-1} for spatial alignment. Next, a histogram alignment is performed by shifting the histograms of each position in O^b using T_g in vector space. Note that the histograms in each pixel of O are in a cyclic group G. Finally, the aligned representations $T_g^a(O^a)$ and $T_g^{-1}(O^b)$ are trained with the following cross-entropy loss for all pixels:

$$\mathcal{L}_{ori} = -\sum_{i=1}^{W} \sum_{j=1}^{H} \sum_{k=1}^{|G|} M_i^{j} \sum_{k=1}^{|G|} T_g^a(O^a)_k \log(T_g^{-1}(O^b)_k),$$

(10)
where $\mathbf{M} = \mathbf{1} \land T_g^{-1}(\mathbf{1})$ is a mask for removing out-of-bound regions, and $\mathbf{1} \in \mathbb{R}^{H \times W}$. We omit the spatial index i,j of the tensors $\mathbf{O}^a, \mathbf{O}^b$ and \mathbf{M} in Eq. 10 for simplicity.

Window-based keypoint detection loss. We utilize a keypoint detection loss using a multi-scale index proposal [3]. In general, a good keypoint is localized in a consistent location invariant to geometric or photometric image transformations. The window-based keypoint detection loss [3] takes both advantages of selecting anchor-based keypoints [14, 66, 74] and using homography without constraining their locations [25, 41].

The keypoint score map $\mathbf{K} \in \mathbb{R}^{H \times W}$ is transformed by non-maximum suppression through exponential scaling based on a window. A window $m_i^{(i)}$ in the score map \mathbf{K} is derived by the softmax over the spatial window of size $N \times N$ around an image coordinate (u,v):

$$m_{u,v}^{(i)} = \frac{e^{w_{u,v}^{(i)}}}{\sum_{j,v} e^{w_{j,v}^{(i)}}}, \quad (11)$$

where a window $w_{u,v}^{(i)}$ is a nonoverlapping i-th $N \times N$ grid in the score map \mathbf{K} and $c^{(i)}$ is the top-left coordinates of the window $w_{u,v}^{(i)}$. Then the maximum value in $m_i^{(i)}$ becomes the dominant location in the window, and a weighted average by multiplying the index in the window $w_{u,v}^{(i)}$ is performed as follows:

$$[x^{(i)},y^{(i)}]^T = \frac{1}{|w_{u,v}^{(i)}|} \sum_{(u,v) \in w_{u,v}^{(i)}} m_{u,v}^{(i)} \cdot [u,v]^T, \quad (12)$$

where $[x^{(i)},y^{(i)}]^T$ is a soft-selected coordinate in an image. Eqs.11-12 aim to suppress noisy predictions in selecting real-value coordinates of the keypoints and to make the layer differentiable, same to the soft-argmax used in [70].

The index proposal loss compares the soft-selected coordinate $\hat{x}^{(i)}, \hat{y}^{(i)}$ obtained by $\arg\max_{i} m_i^{(i)}$ using the ground-truth geometric transformation T_g:

$$\ell^{IP}(I^a, I^b, T_g, N) = \sum_i \alpha^{(i)} ||[x^{(i)},y^{(i)}] - T_g^{-1}([\hat{x}^{(i)},\hat{y}^{(i)}])||^2, \quad (13)$$

and $\alpha^{(i)} = \mathcal{R}^a[x^{(i)},y^{(i)}] + \mathcal{R}^b[x^{(i)},y^{(i)}]$, where $\alpha^{(i)}$ is a weighting term based on the score maps, and \mathcal{R}^a and \mathcal{R}^b are the response map of I^a and I^b with coordinates related by T_g^{-1}. Finally, the keypoint detection loss uses multiple sizes of the window and adds switching term of the input source and target:

$$\ell^{kpts}(I^a, I^b, T_g) = \sum_l \lambda_l (\ell^{IP}(I^a, I^b, T_g, N_l))$$

where l is the index of a window level, N_l is the window size in l, λ_l is a balancing parameter at a window level.

We use the final loss function \mathcal{L} as follows:

$$\mathcal{L} = \beta \mathcal{L}^{ori} + \ell^{kpts}, \quad (15)$$

where β is a balancing parameter of the loss functions. Since image variations, in general, are not limited to discrete rotation but also include other geometric/photometric variations, e.g., continuous rotation, scaling, and illumination changes, \mathcal{L}^{ori} and ℓ^{kpts} are used to consider such variations in training. Both of the losses are thus non-zero despite our equivariant representation of the cyclic group G_N.

4. Experiments

This section shows comparative experiments to demonstrate the effectiveness of our model. We describe the implementation details and the experimental benchmarks (Sec. 4.1). We experiment with the keypoints and the orientations under synthetic rotations (Sec. 4.2), and then show the results of keypoint matching on HPatches [2] and IMC2021 [21] (Sec. 4.3). We experiment the variations of our model and show the qualitative results (Sec. 4.4).

4.1. Experimental setting

Implementation details. We use the E(2)-CNN framework [67] for the implementation of rotation-equivariant convolution with PyTorch [42, 46]. We use 36 for the order of cyclic group G, with 2 for the channel dimension C. We use 3 equivariant layers, each of which consists of a conv-bn-relu module. Each convolution layer has 5×5 kernel with padding of 2 without bias, and model parameters are randomly initialized. We use a batch size of 16. We
train with Adam optimizer with a learning rate of 0.001. The learning rate decay is 0.5 every 10 epochs for a total of 20 epochs. Early stopping is required to avoid overfitting, so we use the repeatability score of the validation set. The keypoint loss uses the window sizes $N_1 \in [8, 16, 24, 32, 40]$ with $\lambda_1 \in [256, 64, 16, 4, 1]$ same as [3], and the loss balancing parameter β is 100. We use the NMS size 15×15 at test time, same to Key.Net [3].

Inference. For robustness to the scale change, we make eight scale pyramids by the scaling of $\sqrt{2}$ at inference time. We extract $\lfloor \frac{2^{s - s_p}}{2^n} \rfloor$ keypoints at scale $s \in S = \{0, 1, ..., 7\}$ when we extract a total of p keypoints. We assign the scale value $\sqrt{2}^{s - 2}$ for the keypoints extracted in scale s. We use simple $\arg \max$ to obtain an orientation value from the histogram, which performs well enough compared to a soft prediction for deriving real value.

Training dataset. We generate a synthetic dataset for the self-supervised training. Our model needs a ground-truth relative orientation for the training. We generate random image pairs with in-plane rotation [-180, 180], which is sufficient for the planar homography [2] or the 3D viewpoint changes [21]. To improve the robustness at illumination changes, we modify the contrast, brightness, and hue value in HSV space. We exclude the images with insufficient edges through Sobel filters [22] as a pre-processing. The synthetic dataset has 9,100 image pairs of size 192×192 split into 9,000 as a training set and 100 as a validation set. We use ILSVRC2012 [52] as source data.

HPatches consists of 116 scenes with 59 viewpoint variation and 57 illumination variation [2]. Each scene consists of 5 image pairs with ground-truth planar homography, for a total of 696 image pairs. We compare our model with the existing models using 1,000 keypoints for evaluation. We use the repeatability score, the number of matches, and mean matching accuracy (MMA) as evaluation metrics proposed to [15, 33]. Repeatability1 is the ratio between the number of repeatable keypoints and the total number of detections by 3 pixel threshold. MMA is the average percentage of correct matches per image pair. We measure the correct matches by thresholding 3 and 5 pixels for MMA.

IMC2021 is a large-scale challenge dataset of wide-baseline matching [21]. IMC2021 consists of an unconstrained urban scene with large illumination and viewpoint variations. In this experiment, we compare our method with the existing keypoint detection methods in an image matching pipeline [7, 9, 37]. We experiment on the stereo track using the validation sets of Phototourism and PragueParks. This benchmark takes the predicted matches as an input and measures the 6 DoF pose estimation accuracy. We measure the mean average accuracy (mAA) of pose estimation at 5$^\circ$ and 10$^\circ$ and the number of inliers.

4.2. Experiments under synthetic rotations

Inspired by Section 4.4 of [51], we conduct two experiments with synthetic images using in-plane rotation from 0$^\circ$ to 350$^\circ$ at 1$^\circ$ intervals using ten images of size 224×224 that are not used for training and validation. We compare two handcrafted methods [27, 51] and two learning methods [41, 70] among the representative keypoint detectors that yield the orientations. Figure 4 shows the results of rotation-invariant keypoint detection in terms of repeatability. Our method consistently obtains better repeatability than the existing methods [27, 41, 51, 70]. Note that the learning method LF-Net [41] falls off dramatically after 10 degrees while the handcrafted, SIFT [27] and ORB [51], are robust to rotations. Figure 5 shows the results of rotation-

1We compute repeatability by measuring the distance between 2D point centers following Appendix A of [14], because several comparison methods [14, 15] do not rely on patch extraction.
equivariant orientation estimation in terms of orientation estimation accuracy. We align O^0 to O^4 using T_{j}^{-1} and then measure the accuracy at the whole region of images except the boundary regions as in Figure 6. We obtain the orientation values of SIFT [27] by generating keypoints in all boundary regions as in Figure 6. We obtain the orientation values assigned discretely by the histogram, it is more effective than the regression-based learning methods, OriNet [72], LIFT [70], and LF-Net [41]. Especially, the accuracies of our model are consistently over 80% at a threshold of 15 degrees.

4.3. Keypoint matching

Results on HPatches. Table 1 shows the results of keypoint detection and matching in HPatches [2]. We exclude our orientation in this experiment. We compare the handcrafted detectors [27, 51] and a learned detector [3] as baselines with patch-based descriptors [37, 62, 63]. We additionally compare the joint detection and description methods [14, 15, 41, 45] and the integration of the rotation-invariant dense descriptors [26]. We use the mutual nearest neighbor matching algorithm for all cases in this experiment. Our model achieves the best repeatability score compared to the existing keypoint detection methods [3, 14, 15, 27, 41, 45, 51], which means our detector is robust to the viewpoint and illumination changes. Our model consistently obtains more predicted matches and better MMA scores compared to the state-of-the-art keypoint detector Key.Net [3] at all cases with the patch descriptors [37, 62, 63]. Our model with GIFT descriptor [26] achieves better MMAEs compared to the Su-
The most frequent difference between the pair images. We exclude matches far from the most frequent difference as the outlier. For the comparison, we replace the orientations of the comparison methods with our orientation. The results with our orientations yield higher MMAs and more predicted matches than all the results with the orientations of the baselines [27, 41, 51]. The results of our model with HardNet [37] achieve the best performance both in cases with outlier filtering and cases without filtering, so our method generates more consistent orientations to the viewpoint and illumination changes than the orientations derived by the image gradients [27, 51] and the regression [41].

Change the order of group. Table 4 shows the results of MMAs with the number of parameters according to the order of group $|G|$. We make the same computation of all models by changing the number of channels C. Therefore, the model size increases by N whenever the order of group decreases by N times. For example, the third row in Table 4 with the order of group 9 has the number of channels 8. In the table, the results with a cyclic group G_{36} are the best with the smallest model size. The last row, which replaces the rotation-equivariant layers with conventional convolutional layers, has a large number of parameters because there is no weight sharing. As the order of group increases, the number of parameters can be significantly reduced without losing performance. In addition, the model with the conventional convolutional layers fails to train the orientation, so the outlier filtering has no effect, which shows the group-equivariant CNNs are essential for the equivariant orientation learning.

Qualitative results. Figure 6 shows qualitative comparisons of the orientation map with a handcrafted method [27] and a learning method [41] using an example of Sec. 4.2. Our model predicts the changing orientations more consistently across the images compared to [27, 41], which proves the peak of our orientation histogram for a pixel consistently changes as the region is rotated. Additional experiments and more analysis are in the supplementary material.

5. Conclusion

This paper presents a self-supervised oriented keypoint detection method using rotation-equivariant CNNs. The rotation-equivariant representation with pooling in separate dimensions generates robust features for oriented keypoint detection. The proposed dense orientation alignment loss trains the histograms consistently changing to rotation. Extensive experiments show the effectiveness of the proposed oriented keypoints compared to the existing methods in standard image matching benchmarks. In the future, this study can be extended to the general transformation groups, e.g., affine/non-rigid, or to learning the rotation-equivariant descriptors and joint equivariant learning of the detection and description. We leave this for the future.

Acknowledgement. This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-TF2103-02.
References

[29] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant vector field networks. In Pro-

[40] Hyewoon Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale image retrieval with attentive deep local features. In *Proceedings of the IEEE international conference on computer vision*, pages 3456–3465, 2017. 2

