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Abstract

Weakly-supervised semantic segmentation (WSSS) has
recently gained much attention for its promise to train seg-
mentation models only with image-level labels. Existing
WSSS methods commonly argue that the sparse coverage
of CAM incurs the performance bottleneck of WSSS. This
paper provides analytical and empirical evidence that the
actual bottleneck may not be sparse coverage but a global
thresholding scheme applied after CAM. Then, we show that
this issue can be mitigated by satisfying two conditions; 1)
reducing the imbalance in the foreground activation and 2)
increasing the gap between the foreground and the back-
ground activation. Based on these findings, we propose
a novel activation manipulation network with a per-pixel
classification loss and a label conditioning module. Per-
pixel classification naturally induces two-level activation in
activation maps, which can penalize the most discrimina-
tive parts, promote the less discriminative parts, and de-
activate the background regions. Label conditioning im-
poses that the output label of pseudo-masks should be any
of true image-level labels; it penalizes the wrong activation
assigned to non-target classes. Based on extensive analy-
sis and evaluations, we demonstrate that each component
helps produce accurate pseudo-masks, achieving the ro-
bustness against the choice of the global threshold. Finally,
our model achieves state-of-the-art records on both PAS-
CAL VOC 2012 and MS COCO 2014 datasets. The code is
available at https://github.com/gaviotas/AMN.

1. Introduction

Weakly-supervised semantic segmentation (WSSS) re-
quires only weak supervision (e.g., image-level labels [35,
], scribbles [3 1], bounding boxes [19]) as opposed to the
fully supervised model, which involves costly pixel-level
annotations. In this work, we address WSSS using image-
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Figure 1. Motivating examples show that the optimal threshold per
image (Topt) from the same dog class is quite different from each
other. (a) The distribution of the optimal threshold on PASCAL
VOC 2012 train set, (b) the activation maps, (c) the thresholded
masks using a global threshold 7y;0pq1 = 0.15.

All.

level labels because of its low labeling cost. The overall
pipeline of WSSS consists of two stages. The pseudo-mask
is first generated from an image classifier, and then it is used
as supervision to train a segmentation network.

The prevalent technique for generating pseudo-masks is
class activation mapping (CAM) [45]. It uses the interme-
diate classifier’s activation to compute the class activation
map corresponding to its image-level label. The common
practice of WSSS is to apply a global threshold to the acti-
vation map (i.e., assigning the object class if the activation
is greater than the threshold) for obtaining the pseudo-mask.
Existing methods point out that the pseudo-mask obtained
from CAM only captures the most discriminative parts of
the object, incurring the performance bottleneck. There-
fore, most existing studies have expanded object coverage
by manipulating the image [29, 39] or feature map [18, 26].

However, we argue that the performance bottleneck of

4330



WSSS comes from a global threshold applied after CAM;
the sparse object coverage does not explain all. This thresh-
old partitions each activation map into the foreground (ob-
ject class) and background. Then, the pseudo-mask is gen-
erated by combining all foreground regions. Here, the
choice of threshold critically affects the performance of
WSSS. 1) We further observe that a global threshold cannot
provide an optimal threshold per image. Figure 1(a) visu-
alizes the distribution of optimal threshold on the PASCAL
VOC 2012 train set (For analysis, we obtain the best thresh-
old per image using its ground-truth segmentation map).
It shows that the optimal threshold per image quite differs
from each other, and the global threshold is often far from
the optimal one. ii) Besides, a global threshold for CAM
does not always lead to sparse coverage. Figure 1(b) and (c)
show several CAM examples and the corresponding masks
generated by a global threshold, respectively; the third row
shows that CAM and the thresholded mask overly capture
the target object. These results clearly motivate us to rethink
that the performance bottleneck of WSSS is closely related
to the usage of a global threshold.

To tackle this problem, we first investigate why this prob-
lem happens. By tracing the procedure of CAM, we real-
ize that global average pooling (GAP) applied to the last
layer invokes this issue; the global threshold largely differs
from the optimal threshold per image. The first stage of the
WSSS framework trains the image classifier, whose score
is computed via GAP. While GAP facilitates deriving the
activation map, it averages the feature maps into a single
classification score. The same value can be from totally dif-
ferent activations. For example, the same score can be from
1) high activations only in the most discriminative region
(low optimal threshold to cover more regions), 2) moder-
ate activations distributed over the entire object, or 3) small
activations covering even outside the object (high optimal
threshold to cover small regions).

Due to its averaging nature, GAP hinders achieving the
accurate pseudo-mask via a global threshold. As a naive
solution, one might consider introducing a different thresh-
old per image. However, this is prohibitive because finding
a per-image threshold requires pixel-level annotation, vio-
lating the principle of weakly-supervised learning. Instead
of controlling a threshold per image, our key idea is to ma-
nipulate the activation in a way that the resultant pseudo-
mask is of high quality regardless of threshold values. To
achieve robust performance, we can increase the activation
gap between the foreground region and the background re-
gion; the thresholded masks are the same if the threshold
value is within the gap. However, it can induce the model
to capture the most discriminative parts only, resulting in
consistent but poor quality.

To achieve high quality consistently, it is important to
reduce the activation imbalance within the foreground and

keep the large activation gap between the foreground and
background simultaneously. We can achieve the two fac-
tors by assigning the two-level activation for the entire fore-
ground pixels and background pixels (e.g., 1 and 0). In this
way, the high activation in the most discriminative parts is
penalized, but the low activation in the less discriminative
parts is promoted. Meanwhile, the background activation
can be deactivated. Naturally, this strategy can guarantee
a large gap, enabling us to achieve the robust performance
even with a global threshold.

Specifically, we introduce a robust and accurate activa-
tion manipulation network (AMN), which takes an image
with its image-level label as the input and provides the high-
quality pseudo-mask as the output. For that, we formu-
late a training objective using i) per-pixel classification with
an effective constraint using ii) label conditioning. Since
per-pixel classification does not rely on GAP, it bypasses
the issue of having totally different activation maps for the
same classification score. More importantly, it directly en-
forces the same large activation for the foreground (e.g., 1)
and the same small activation for the background (e.g., 0).
Here, it leads to reducing the activation imbalance inside
the foreground and having a large gap between the fore-
ground and background. Since we do not have pixel-level
supervision to formulate per-pixel classification problems,
the noisy pseudo-mask from CAM with conditional ran-
dom field (CRF) [23] serves as the initial target for training
AMN.

Moreover, we propose label conditioning to reduce the
activation of non-target classes. The idea of label condi-
tioning is to reformulate the label prediction problem by
finding the best prediction out of the given K classes (K
is the number of classes given by the ground-truth image-
level label per image) and background, instead of N + 1
classes (i.e., a total of N foreground classes and a back-
ground class). K is always much less than N and thereby
the range of possible answers is clearly reduced. It makes
the problem better-posed. More importantly, the activa-
tion of non-target classes is strictly suppressed by map-
ping to 0. It helps strengthen the foreground activation.
As a result, with the same global threshold as the previ-
ous studies [1, 25,27], AMN largely improves the quality
of pseudo-mask and eventually records the state-of-the-art
performances on the Pascal VOC 2012 and MS COCO 2014
benchmarks.

2. Related work

Most WSSS techniques utilize CAM [45] to obtain lo-
calization maps from image-level labels. Considering the
sparse coverage of CAM as the bottleneck of WSSS, many
studies focused on expanding the seed activation of CAM.
Specifically, [8, 16,29] suggested erasing the most discrim-
inative regions. CIAN [13] utilized the cross-image affin-
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ity. [5,38] devised a self-supervised task. [18,26] suggested
a feature ensemble method. [30,37] developed a class-wise
co-attention mechanism. AdvCAM [27] proposed an anti-
adversarial image manipulation method. [, 2] implicitly
exploit the boundary information with pixel-level affinity
information, naturally expanding the object coverage until
boundaries.

Another approach exploits additional information to re-
fine the object boundaries or distinguish co-occurring ob-
jects [12,40,42]. [6,41] combined saliency maps with class-
specific attention cues to generate reliable pseudo-masks.
EPS [28] utilized the saliency maps as the cues for bound-
aries and co-occurring pixels. DRS [20] suppressed the
most discriminative parts to expand the object coverage and
then refine the boundary with saliency map.

Several existing studies resolved the limitation of CAM-
GAP by modifying the pooling methods [3, 22, 25].
SEC [22] argued that global max pooling (GMP) underes-
timates the object size and GAP sometimes overestimates
it. Then, they proposed global weighted rank pooling.
Araslanov et al. [3] claimed that CAM-GAP may penalize
small segments and proposed normalized global weighted
pooling (nGWP) instead of GAP. As a concurrent work,
RIB [25] promotes less discriminative regions by collect-
ing only non-discriminative regions for pooling. Unlike the
methods suggested new pooling layers, we focus on the fact
that GAP (in fact, any pooling methods will do) leads to
having a different optimal threshold per image.

3. Preliminaries

Class activation mapping (CAM). In the WSSS frame-
work, CAM is used to provide class activation maps cor-
responding to their image-level labels. Given a CNN f and
the input 2 € RT*Wx3_ [T and W indicate the height and
width of the input. The feature maps are average pooled and
then multiplied by the weights w7 for class c from the clas-
sifier, resulting in the classification score. By multiplying
w¢ back to the feature maps f(z) € RFoutxWourx@ e
can compute the class activation map F,.(z) € RfoutxWout
for class c as follows:

Q
Fo(z) =Y wi' - fi(x), (1)
i=1

where @ is the number of channels in feature maps.

All existing WSSS methods normalize F. into the range
of [0 1] and then apply a global threshold to separate the
foreground and background pixels. In this way, we can gen-
erate pixel-level masks from image-level labels.

Threshold matters in WSSS. GAP allows different activa-
tions to be mapped to the same classification score. Thus,
the resultant F. can have various distributions of activa-
tions. As a result, as seen in Figure 1, no single thresh-
old can be sufficient to derive the optimal pseudo-masks for
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Figure 2. Two different activation maps and their IoU curves un-
der different thresholds. The black with 0 activation for the back-
ground, the white with 1 activation for the foreground, and a red
box for the ground-truth object region. A magenta and yellow
indicate a threshold line at 7 = 0.25 and corresponding IoU of
each activation map, respectively. The plots in the second column
are the one-dimensional horizontal cross-section of the activation
map.

different inputs. We investigate the conditions where the
pseudo-mask is accurate and robust against different thresh-
olds. The first condition (cl) is reducing the activation im-
balance within the foreground as also pointed out in [24].
It guides the activation value cover the entire extent of the
target object rather than focusing on the most discrimina-
tive part. The second condition (c2) is enforcing the large
activation gap between the foreground and the background
activation. It helps the pseudo-mask generation less sen-
sitive against the threshold. By jointly satisfying cl and
c2, we argue that the activation is formed to distinguish
the foreground and the background reasonably well with
a global threshold. A simple toy example in Figure 2(a)
illustrates that satisfying the two conditions can guarantee
consistent and accurate performance regardless of thresh-
old 7; the same pseudo-mask is generated by choosing any
7 within the gap. Figure 2(b) shows the opposite scenario,
where it satisfies neither cl nor c2; the performance is ex-
tremely sensitive to the choice of 7. The two cases illustrate
that satisfying both cl and c2 allows us to obtain accurate
and robust pseudo-masks.

4. Activation Manipulation Network

Our goal is to improve pseudo-mask quality by manip-
ulating the activation map at the pixel-level, leading to ro-
bust performance against threshold choice. To this end, we
propose an activation manipulation network (AMN) with
two learning objectives. Firstly, we introduce a per-pixel
classification loss, which reduces the activation imbalance
inside foreground and provides the large gap between the
foreground and the background (i.e., 1 when it is normal-
ized into [0 1]). In addition, we propose a label conditioning
module, which eliminates the activation from the non-target
classes. It helps produce the foreground and background ac-
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Figure 3. The overall framework of activation manipulation network (AMN). The refined seed from a classification network is used as
noisy supervision to train AMN. The per-pixel classification loss (PCL) and label conditioning (LC) improve the pseudo-mask quality.

tivation more accurately by reallocating the activation.

4.1. Overall training procedure

The training of the proposed WSSS framework consists
of three stages: 1) seed generation, 2) pseudo-mask gen-
eration with the proposed AMN, and 3) final segmenta-
tion. For seed generation, we obtain noisy pixel-level an-
notations from image-level labels by applying CAM. Then,
we apply conditional random field (CRF) [23]. CREF is
the prevalent post-processing method and refines the ini-
tial seed by assigning an undefined region for less confi-
dent pixels. Specifically, we follow the procedure of Ahn
et al. [1] to generate the refined seed S;. Secondly, given
the image x; and its image-level label y; as inputs and the
refined seed S; as the target output, we train AMN via a
per-pixel classification loss (PCL) with label conditioning
(LC). The network architecture for AMN is identical to that
of the classification network for CAM with a small modi-
fication; replacing the GAP layer and the last classification
layer with convolutional layers to predict pixel-level mask.
Specifically, we adopt the atrous spatial pyramid pooling
(ASPP) scheme [7]. To generate the final pseudo-masks, we
improve the predicted mask quality using the well-known
refinement technique, IRN [1]. Finally, we train a segmen-
tation network with the generated pseudo-masks as super-
vision. Figure 3 visualizes the overall framework of AMN.

4.2. Per-pixel classification

Based on a case study in Section 3, we concluded that
jointly achieving the two conditions can resolve the issue
caused by the global threshold: reducing the imbalance
within the foreground activation and having a large gap be-
tween the foreground and the background activations. Then,
we devise an activation manipulation network (AMN) that
satisfies the above two conditions. To achieve this goal, we
introduce the per-pixel classification loss (PCL) because it
directly enforces the two-level activation (e.g., 0 or 1), ma-
nipulating the activation (before thresholding) at the pixel-
level.

Specifically, the two-level activation as the target signal
can reduce the activation imbalance inside the foreground

because the foreground should be assigned to the same ac-
tivation value. Likewise, the two-level activation naturally
retains the large activation gap between the foreground and
background. Another advantage of PCL is that it does not
rely on GAP. Since GAP yields different activation maps
having the same classification score, discarding the GAP
can be effective in handling a global threshold problem.
To train the model with per-pixel classification, we need
pixel-level supervision. Under the WSSS scenario, direct
access to the pixel-level supervision is prohibited. We in-
stead utilize the refined seed S; as noisy supervisory for
training AMN. Finally, the balanced cross-entropy loss [17]
is adopted for a per-pixel classification loss (PCL).

4.3. Label conditioning

The original per-pixel classifier maps each pixel into one
out of N+1 classes (i.e., a total of IV foreground classes and
a background class). Meanwhile, label conditioning (LC)
imposes that each pixel should be mapped into one out of
K +1 classes, meaning K -number of classes in the ground-
truth image-level label per image and 1-background class.
LC is effective in two aspects. Firstly, it helps distinguish
objects with similar appearances unless they really appear
together in the image. It prevents false predictions due to
confusing textures (e.g., among the skin of horse, cow, or
dog) by allowing activation only if its class is correspond-
ing to any of the input ground-truth image-level label. Next,
noisy pseudo-masks S; often include a considerable number
of undefined regions. The model is thus data-hungry due to
lack of supervisory signals. LC can act as auxiliary supervi-
sion, providing rich learning signals. As a result, adopting
LC leads to reallocating the non-target class activation to
the target class activation, increasing the overall activation
of the foreground. This is particularly useful to promote the
less discriminative regions of the foreground.

Here, we introduce an additional layer for LC such that
the effects of LC only influence high-level features. This is
because limiting the choice of classes at low-level features
may add to unwanted bias to the representation. Instead,
we encode the ground-truth image-level labels as a feature
vector and then directly multiply this vector to the feature
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CAM PCL LC w/CRF w/IRN/[I]

v 54.3 66.3
v 4 62.1 69.1
v v v 65.3 72.2

Table 1. Ablation study of the proposed modules. The accuracy
(mIoU) of pseudo-masks on PASCAL VOC 2012 train set is re-
ported. The best score is in bold throughout all experiments.

map f(x). Finally, the activation map M is computed as:
M = o (g(f(2) - h(ygt)), 2)

where f, g, and h indicate a CNN backbone, convolutional
layers to predict pixel-level masks, and a linear layer to map
the label to the feature vector, respectively. By doing so, the
feature vector of ground-truth image-level labels directly
constrains the final map.

S. Experiments
5.1. Experimental setup

Dataset & evaluation metric. For performance evaluation,
we use both PASCAL VOC 2012 [10] (CC-BY 4.0) and
MS COCO 2014 [4] (CC-BY 4.0) datasets, the most pop-
ular benchmarks in the semantic segmentation task. PAS-
CAL VOC 2012 contains 20 foreground object categories
and one background category with 10,582 training images
expanded by SBD [14], 1,449 validation images, and 1,456
test images. MS COCO 2014 dataset consists of 81 classes,
including a background, with 82,783 and 40,504 images for
training and validation. In all experiments, we only used
image-level class labels for training. For an evaluation met-
ric, we used mean Intersection over Union (mloU), which
is widely used to measure segmentation performance.
Implementation details. We train the classification net-
work to extract the seed activation map via CAM. Here,
we adopt ResNet50 [15] pre-trained on ImageNet [9] as a
backbone classification network, except for the additional
layers. The CAM implementation follows the configura-
tion from Ahn et al. [1]. For training AMN, we used an
Adam [21] optimizer and the learning rate of 5e-6 for up-
dating the backbone parameters and le-4 for updating pa-
rameters associated with a per-pixel classification head. We
adopt label smoothing as a training technique to subside the
noise in initial seed, as discussed in [34]. The additional
hyper-parameters are found in supplementary material. For
the segmentation network, we experimented with DeepLab-
v2 with the ResNet101 backbone [7] and followed the de-
fault training settings of AdvCAM [27].

5.2. Ablation study

We investigate whether each component of AMN is ef-
fective. Considering the CAM with IRN as the baseline, we

Figure 4. The effects of label conditioning on the cow image. The
wrong activations of the horse are reallocated into the correct class
when LC is applied. (a) and (b) are activation maps corresponding
to cow and horse, respectively.

add a per-pixel classification loss (PCL) and a label condi-
tioning (LC) in sequence and report their performances in
Table 1. These results are from PASCAL VOC 2012 train
set, thereby implying the quality of pseudo-masks. Com-
pared to the baseline, adding PCL improves the mloU by
2.8%. By additionally applying LC, the performance in-
creases by 3.1%. Considering that the performance is al-
ready high, the additional gain by LC is impressive. Since
LC suppresses any activation for non-target classes, it im-
plicitly increases the activation of the target objects.

To confirm the effects of LC, we visualize the activation
map with and without LC in Figure 4. The two classes hav-
ing a similar appearance, such as cow and horse, can be
hardly distinguishable using AMN without LC. When the
image only has cow, Figure 4 shows that the results without
LC are activated for both the cow and horse (the first image
of (a) and (b)). Meanwhile, after adopting LC, it is clearly
seen that only cow pixels are activated, but horse pixels are
deactivated, as shown in the second images of Figures 4(a)
and (b). From these results, we support that LC not only
reduces non-target activations but also increases the fore-
ground activations of the target objects. It can be interpreted
that using the ground-truth image-level labels can subside
the noise in our initial target (CAM with CRF), greatly in-
creasing the performance.

We stress that LC is not applicable to the conventional
image classifier because its target is already the image-level
labels; LC on the image classifier can yield the model to
return a trivial solution. Since AMN learns to manipulate
pixel-level activation, adopting LC behaves as auxiliary su-
pervision and leads to performance improvement.

In addition, we experimented to determine which layer
of AMN is best for LC to affect. We use ResNet50 as the
backbone, consisting of 4 resblocks. We applied LC af-
ter each residual block sequentially, and computed the fea-
ture vectors. The accuracy of pseudo-masks by applying
LC differently is summarized in Table 2. The best perfor-
mance was achieved when LC was applied to high-level fea-
tures. Likewise, the performance deteriorated when applied
to low-level features. Also, applying LC on multiple layers,
including the last layer, did not help the performance either.
These results show that the idea of LC should be carefully
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Figure 5. The effects of each component of AMN on PASCAL
VOC 2012 train set. All activation maps are normalized.

layerl layer2 layer3 layer4 mloU

v 48.2

v 51.7
61.2
62.1
61.0
514
50.9

NSNS SN
NSNS

4
4

Table 2. Accuracy (mloU) of pseudo-masks from AMN without
the boundary refinement on PASCAL VOC 2012 train set. The
accuracy varies depending on where to apply LC.

implemented, because class-specific information is not al-
ways useful for feature engineering. We conjecture that the
last layer handles the semantics, thus it can effectively uti-
lize the LC for improving the final decision.

5.3. Sensitivity to threshold

Quantitative evaluation. In this section, we evaluate the
robustness of different methods under various thresholds.
We apply different thresholds to the activation map, ob-
tain the pseudo-mask accordingly, and then measure its ac-
curacy (mloU). For comparison, the baseline CAM [45],
RIB [25], DRS [20] without saliency map, AMN without
LC, and AMN are selected. Figure 6 presents mloU.

In the case of CAM and RIB, the accuracy decreases
even by adding a small perturbation to their global thresh-
old; the curves fluctuate rapidly upon 7. This is expected
because GAP yields an imbalance in activation, thus the
pseudo-mask is highly sensitive to 7. On the other hand,
DRS and AMN without LC exhibit relatively gentle slopes,
indicating robust performances to the changes in threshold.
Note that DRS tends to decrease the high activation on the
most discriminative parts, thereby it partially shares the phi-
losophy of PCL. However, DRS only focuses on suppress-
ing foreground activations while PCL i) promotes the less
discriminative parts of the foreground and ii) reduces the
background activation. For this reason, activation of PCL
tends to distinguish foreground and background more accu-
rately, whereas DRS always tends to have excessive fore-

0.8
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we= RIB m— AMN w/o LC
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Figure 6. Accuracy(mloU) of pseudo-masks depending on thresh-
olds. The results are before boundary refinement thus differ from
the final mIoU score. AMN shows more accurate and robust per-
formance than others.

Method mloU
IRN [1]cver'16 66.3
SEAM [38]cver20 63.6
MBMNet [32]acmmm20 66.8
CONTA [44]NeurIPs 20 67.9
AdvCAM [27]cvero21 69.9
RIB [25]Neurtps 21 70.6
AMN (ours) 72.2

Table 3. Accuracy (mloU) of pseudo-masks evaluated on PAS-
CAL VOC 2012 train set.

ground coverage. These side effects of DRS finally result
in relatively low accuracy in general. The original DRS
utilizes a saliency map as additional supervision to com-
pensate for this issue, thus the disadvantage was well miti-
gated. AMN without LC alleviated the imbalance in activa-
tion for both the foreground and background. Consequently,
we achieve high mloU and robust performance against the
threshold at the same time.

Final AMN uses LC, and it increases the prior probabil-
ity of a class belonging to the input image-level label. It
helps reduce wrong activation for wrong classes, reallocat-
ing them to the correct class. This effectively promotes the
less discriminative part of the foreground. As a result, we
can achieve more accurate and robust performance.
Qualitative evaluation. Figure 5 shows the effect of each
component of AMN qualitatively. Since PCL imposes each
pixel to map either the foreground or background, it penal-
izes the high activation in the most discriminative parts as
well as the noisy activation in the background. Meanwhile,
PCL can increase the moderate activation in the less dis-
criminative part. As a natural consequence, we observe that
the map generated by PCL alone (AMN without LC) cov-
ers the full extent of the object more than the original CAM.
Concretely, the result from CAM concentrated on the most
discriminative regions, such as a cow’s face. Meanwhile,
the resultant map by AMN without LC can capture the en-
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Method Backbone  Sup. val test

ResNet101 I1.+S. 649 65.3
ResNetl01 I.+S. 652 66.4
ResNetl01 I1+S. 67.2 66.7
ResNet38 I1.4+S. 66.2 66.9
ResNetl01 L+S. 67.1 67.2
ResNetl01 I1+S. 709 70.8
ResNetl01 L+S. 71.2 71.4

FickleNet [26]cvypr 19
OAA [18]iccvi19
Multi-Est. [12]gceviio
MCIS [37]gccv20
SGAN [41]access20
EPS [28]cvpre21

DRS [20]aaar21

ICD [11]cver20 ResNet101 L 64.1 64.3
SEAM [38]cver20 ResNet38 1. 64.5 65.7
SC-CAM [5]cver20 ResNet101 L. 66.1 65.9
RRM [43]aaar20 ResNet101 L 66.3 66.5
BES [33]eccvi20 ResNet101 I 65.7 66.6
CONTA [44]NeurIPs 20 ResNet50 L. 66.1 66.7
AdvCAM [27]cver2r ResNetl01 L 68.1 68.0
RIB [25]NeurTPs 21 ResNet101 1. 68.3 68.6
ResNetl0l L 69.57  69.6

AMN (ours) ResNetl0l L. 707" 70.6

Table 4. Segmentation results (mIoU) on PASCAL VOC 2012. 1.
and S. denotes image-level labels and the external saliency maps
used for supervision, respectively. The best score is underlined for
I.+S. and in bold for I. { for the ImageNet pre-trained model and
for the MS COCO pre-trained model throughout all experiments.

tire extent of the object. Depending on the object size, the
CAM occasionally covers the object excessively, as seen in
Figure 5 (the bottom image for CAM). Since PCL regu-
larizes both the foreground and background activation, it
achieves reasonable coverage of object extent.

LC provides additional supervision to undefined areas
(originally less confident) and promotes the less discrimi-
native parts of the foreground. Figure 5 shows that acti-
vation of AMN is evenly spread inside the foreground and
reasonably covers the object, such as cow and car region.
Besides, it shows a large activation gap between the object
region and the background by promoting the less discrimi-
native regions of the foreground. As we intended, LC helps
reduce activation imbalance and increases the gap between
the foreground and the background activation.

5.4. Comparisons with the state-of-the-arts

Accuracy of pseudo-masks. Similar to existing WSSS
methods, we aim to improve the pseudo-mask quality and
expect that it will eventually increase the accuracy of
WSSS. We first evaluate the quality of pseudo-masks by
comparing them with ground-truth masks. Table 3 com-
pares mloU of the proposed AMN with that of other state-
of-the-art WSSS methods. For a fair comparison, we ap-
ply the best refinement scheme reported by each method for
pseudo-mask generation. Our results achieve a gain of 5.9%
over that of IRN [1], which can be regarded as a baseline,
and the gain of 1.6% over RIB, the state-of-the-art method
among the WSSS methods only with image-level labels.

Method

SGAN [41]acEss 20
EPS [28]cver-21

Backbone  Sup. val

VGG16  L+S. 336
VGG16  L+S. 357

ADL [8]tpamra0 VGG16 I. 30.8
CONTA [44]NeurtPs20 ResNet50 I. 334
IRN [1]cver 19 ResNet101 L 41.4
RIB [25]Neurtps21 ResNet101 I. 43.8

AMN (ours) ResNet101 L 4471

Table 5. Accuracy (mloU) of semantic segmentation evaluated on
MS COCO 2014 val set.

Specifically, the accuracy (mloU) in dining table / tv was
41.9/54.2 with RIB, but 62.8 / 63.1 with ours on PASCAL
VOC 2012 train set. dining table usually exhibits extremely
strong activation on the most discriminative parts (i.e., an
extreme imbalance in activation), thus the optimal thresh-
old for this class is much smaller than the global threshold.
Although existing WSSS methods aim at expanding the ob-
ject coverage, their effects are designed at image-level, thus
cannot suppress strong activation at pixel-level. Meanwhile,
AMN explicitly regularized the pixel-level activation, there-
fore capable of handling extreme activation.

On the other hand, the optimal threshold for #v signifi-
cantly varies depending on the image. That means, no sin-
gle threshold is meaningful. Thanks to the robust nature of
AMN, we could achieve considerable gain on #v regardless
of images. These results are consistent with our motiva-
tion; threshold matters in WSSS and AMN can effectively
resolve this issue. A quantitative evaluation of the pseudo-
mask for each class is provided in supplementary material.

Accuracy of segmentation maps. For quantitative com-
parison, we report the mloU scores of our method and re-
cent WSSS methods on PASCAL VOC 2012 validation and
test images. The competitors are chosen to represent the
best-performing models in the last three years. On PAS-
CAL VOC 2012 benchmark, we achieved 69.5% and 69.6%
mloU using the ImageNet pretrained backbone, and 70.7%
and 70.6% mloU with MS COCO pretrained backbone.
This is a new state-of-the-art record for WSSS methods only
using the image-level labels; comparable to EPS [28] using
both image-level labels and saliency maps.

Analogous to the observation in the pseudo-mask, our
achievement is particularly affected by a large improvement
in several classes that have performed poorly in the past.
Specifically, the segmentation result (mloU) in dining table
/ tv was 37.5 / 54.9 with RIB, but 53.8 / 57.5 with ours on
PASCAL VOC 2012 validation set. These results are con-
sistent with the pseudo-mask accuracy. Our method handles
the strong imbalance in activation at the pixel-level (dining
table) and is robust against the threshold choice (#v). More
results on per-class mloU scores are provided in supplemen-
tary material. Figure 7 shows the qualitative examples of
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Figure 7. Qualitative examples of segmentation results on PASCAL VOC 2012 val set. (a) Input, (b) Ground-truth, (c) IRN, and (d) AMN.

@ (®) @ (@
Figure 8. Failure cases of AMN. The results are normalized acti-
vation maps of (a) chair, (b) bicycle, (¢) train, and (d) boat.

segmentation results on PASCAL VOC 2012 validation set.
These results confirm that our method covers the full extent
of the objects correctly, especially dining table, which was
not possible by previous methods.

To investigate our performance on the large-scale bench-
mark, we adopt the MS COCO 2014 dataset. Not all com-
petitors provide their evaluation on MS COCO 2014. For
this reason, we only compare our method with five com-
petitors. Table 5 summarizes the comparison results on
MS COCO 2014 validation set. AMN achieves 44.7%
mloU, breaking a new state-of-the-art record. This demon-
strates that AMN is also effective on large-scale bench-
marks. More qualitative comparisons and results on per-
class segmentation mloU scores for MS COCO 2014 are in
supplementary material.

5.5. Discussion

Limitation. Although LC helps disambiguate the confus-
ing foreground classes (e.g., visually similar to each other),
it cannot handle the case where they appear together in the
input image or the background is similar to the foreground
object. For example, the table in Figure 8(a) is misclas-
sified as chair pixels upon similar appearance. Similarly,
the metal ring in Figure 8(b) is mispredicted as bicycle pix-
els due to its shared shape. In addition, our method cannot
overcome the contextual bias (i.e., co-occurrence) and in-
accurate boundary problem, which is inherited by CAM.

Since the classifier is not designed to separate the fore-
ground and background, activation maps from the classi-
fier do not capture precise object boundaries, especially for
complex shapes (e.g., the rough boundary of bicycles and
chairs). Figures 8(c) and (d) show that our method cannot
distinguish the co-occurring pixels in a railroad-train pair
and a boat-water pair, respectively.

Negative societal impact. Since our framework consists of
three training stages, it incurs more carbon emissions and
power consumption. In future work, we plan to reduce the
training stages, integrating the classifier and AMN.

6. Conclusions

In this paper, we identified that the optimal thresholds
largely vary in the images, and this issue can significantly
affect the performance of WSSS. To address this issue, we
devised a new activation manipulation strategy for achiev-
ing robust and accurate performances. Toward this goal,
we showed that jointly satisfying the two conditions can
sufficiently resolve this problem. That is, we should re-
duce the imbalance in activation and increase the gap be-
tween the foreground and the background activation at the
same time. For that, we developed an activation manipula-
tion network (AMN) with a per-pixel classification loss and
an image-level label conditioning module. Extensive ex-
periments show that each component of AMN is effective,
AMN helps induce robust pseudo-masks against the thresh-
old, and finally achieved a new state-of-the-art performance
in both PASCAL VOC 2012 and MS COCO 2014 datasets.
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