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Abstract

CNN image classifiers are widely used, thanks to their
efficiency and accuracy. However, they can suffer from bi-
ases that impede their practical applications. Most existing
bias investigation techniques are either inapplicable to gen-
eral image classification tasks or require significant user
efforts in perusing all data subgroups to manually specify
which data attributes to inspect. We present VISCUIT, an
interactive visualization system that reveals how and why
a CNN classifier is biased. VISCUIT visually summa-
rizes the subgroups on which the classifier underperforms
and helps users discover and characterize the cause of the
underperformances by revealing image concepts responsi-
ble for activating neurons that contribute to misclassifica-
tions. VISCUIT runs in modern browsers and is open-
source, allowing people to easily access and extend the
tool to other model architectures and datasets. VISCUIT
is available at the following public demo link: https:
//poloclub.github.io/VisCUIT. A video demo is
available at https://youtu.be/eNDbSyM4R_4.

1. Introduction
Recently, data classification algorithms are widely used

for practical applications, such as face recognition [39, 50,
53], autonomous driving [19, 41], and clinical trials [44, 51,
59]. Despite the fact that visual models outperform humans
in some circumstances [7], several works have found that
these classifiers are often biased with disparate performance
across data subgroups [4, 8, 29, 35]. Exploiting the biased
classifiers for critical purposes can cause unintentional fair-
ness violation and huge societal problems [20, 37, 55, 61].

Likewise, image classifiers based on deep convolutional
neural networks (CNN), which have achieved state-of-the-

art performance in various areas [22, 30, 45, 48, 49], often
suffer from biases [29]. To facilitate real-world applications
of the state-of-the-art techniques, there have been attempts
to understand [3, 11, 15] and mitigate [14, 21, 52, 54] the
biases in CNN classifiers. However, most existing meth-
ods require humans to specify the attributes on which to
audit the classifiers. As people tend to focus more on sen-
sitive attributes (e.g., race, gender), less sensitive attributes
(e.g., wearing glasses, hair color) that can correlate with bi-
ases and degrade the overall performance are easily missed.
Existing approaches assume availability of additional at-
tributes other than the class label for each image; thus,
datasets without any additional attributes cannot be ana-
lyzed using these methods.

Krishnakumar et al. [28] proposed UDIS, which auto-
matically detects the data subgroups, on which a CNN clas-
sifier underperforms. While UDIS does not require addi-
tional attribute labels, the approach produces a large num-
ber of potentially biased subgroups which may or may not
align with semantic concepts. This leads to ambiguous find-
ings even after substantial manual inspection. Moreover,
most aforementioned bias investigation approaches detect
the source of biases in classifiers, primarily focusing on
their training datasets, not how the neurons in the classifier
are activated and generate biased outputs [3, 8, 13].

In this paper, we present VISCUIT, an interactive vi-
sualization system that reveals how and why a CNN image
classifier is biased, without requiring users to pre-determine
which attributes to inspect. VISCUIT’s major contributions
include:

• Visual summarization of the undeperforming sub-
groups. VISCUIT highlights the data subgroups gen-
erated by UDIS [28] on which a CNN classifier un-
derperforms. This allows users to understand how the
classifier is biased, not limiting the bias factors to the
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Figure 1. VISCUIT reveals how and why a CNN image classifier is biased. Our user Jane trains a classifier using the biased CelebA dataset,
which has high co-occurrence of the attribute black hair and the label smiling, to observe how the training data affects model predictions.
She hypothesizes that the model would use the attribute black hair to predict smiling and launches VISCUIT to verify her hypothesis. (A)
Subgroup Panel displays underperforming data subgroups found by UDIS [28]. Jane figures out that several underperforming subgroups
consist of people with black hair. To see whether the model indeed uses the attribute black hair for predictions, Jane clicks on subgroup
#14, and VISCUIT displays subgroup #380, which is similar to #14 in terms of the last-layer feature vectors from the model but has high
accuracy. Clicking on an image in each of those subgroups brings up a Grad-CAM Window, which shows that the classifier attends to (A1)
forehead (near hair, irrelevant to smiling) for the subgroup #14 and (A2) mouth (relevant to smiling) for the subgroup #380. (A3) Confusion
matrices quantitatively summarize such misclassifications that many not smiling black-haired people are wrongly classified as smiling. Jane
is now certain that the classifier uses the attribute black hair for predicting smiling and therefore often misclassifies black-haired people. (B)
The Neuron Activation Panel enables users to understand which neurons and concepts are responsible for misclassifications, by organizing
the neurons in the model into 3 columns: the left column for the neurons highly activated only by underperforming subgroup, the right
only by well-performing subgroup, and the middle by both. Clicking on a neuron displays a Neuron Concept Window, which reveals that
(B1, B2) the subgroups #14 and #380 activate the neurons for the area near forehead and mouth, respectively.

sensitive attributes. As VISCUIT summarizes the un-
deperforming subgroups as a list, users can easily char-
acterize each subgroup. For each undeperforming sub-
group, VISCUIT also displays its most similar sub-
group with high accuracy, based on Euclidean distance
in the feature space, enabling users to gain insights into
the deviant features responsible for the biases [28].

• Visual bias attribution in CNN image classifiers.
VISCUIT demonstrates why a CNN classifier under-
performs on each subgroup, by revealing image con-
cepts responsible for activating neurons that contribute
to the underperformances. Users can observe how the
classifier is activated differently by the underperform-
ing and well-performing subgroups, focusing on the
high-level concepts in images. Moreover, for each im-
age, VISCUIT displays Grad-CAM Window, which

visually highlights features in an input image deemed
relevant for classification [43].

• Open-sourced, web-based implementation. VIS-
CUIT runs directly in modern browsers and is open-
source,1 allowing people to easily access and extend
the tool to other model architectures and datasets. Fig-
ure 1 illustrates the user interface of VISCUIT. VIS-
CUIT is available at the following public demo link:
https://poloclub.github.io/VisCUIT. A
video demo is available at https://youtu.be/
eNDbSyM4R_4.

1Code: https://github.com/poloclub/VisCUIT



2. Related Works

2.1. Identification of Biases in Algorithms

There have been many efforts to identify biases (i.e. the
disparity in the performance among the data subgroups) in
the state-of-the-art algorithms. Many of the face recogni-
tion algorithms have been proven to include racial and gen-
der biases [3, 8, 11, 60]. Lambrecht et al. [31] and Angwin
et al. [4] revealed that the advertisement recommendation
systems and legal decision making software are also biased
against specific ethnicity or gender. However, all these ap-
proaches require people to predefine protected attributes to
audit the algorithms; therefore, only few sensitive factors
(e.g., race, gender) are considered. Moreover, these meth-
ods are inapplicable to the image classification tasks whose
datasets do not contain any additional attributes, such as eth-
nicity and gender, other than the class labels.

To analyze biases in general image classifiers, Singh et
al. [47] investigated the co-occurence between objects and
their contexts for each category and attempted to decorre-
late them to reduce classifiers’ dependency on the contexts.
UDIS [28], which is developed to generate the image sub-
groups without human guides or additional attributes, clus-
tered images based on the last-layer feature vectors from
classifiers and extracted the subgroups with low accuracies.
However, it is hard to define how a classifier is biased using
these methods since numerous subgroups are generated and
the characteristics of each subgroup is often unclear. Fur-
thermore, most existing approaches [3, 8, 13] argue that the
skewness in training datasets is the major source of biases
but do not inspect how the neurons in the classifiers are acti-
vated and generate biased outputs. Different from the exist-
ing methods, VISCUIT visually summarizes the discovered
subgroups to allows users to easily define each underper-
forming subgroup. Also, VISCUIT reveals which neurons
and image concepts are responsible for making predictions
for each subgroup, so that users can learn more about why
the classifier underperforms on some subgroups.

2.2. Bias Analysis Toolkits

Since bias can hugely affect various people’s lives, the
toolkits to help people without much background knowl-
edge understand algorithmic biases have been actively de-
veloped. FairML [1] quantifies the relative significance of
the inputs to a predictive model to evaluate the model’s
fairness. While Aequitas [42] enables users to easily mea-
sure fairness of algorithms using various metrics, AI Fair-
ness 360 [5] integrates a number of state-of-the-art tech-
niques for algorithmic biases, including bias assessment
metrics, bias mitigation algorithms, and bias explanations.
FairVis [9] allows users to generate and explore data sub-
groups based on their domain knowledge and suggests rel-
evant subgroups. However, these approaches are applicable

only for the datasets with abundant well-defined attributes
(e.g. tabular data), and therefore cannot handle the models
associated with image data unless additional attributes for
the data are provided.

2.3. CNN Analysis Techniques

A growing body of research has proposed techniques to
help people interpret the behaviors of CNN models. Ear-
lier CNN interpretation approaches have made input-level
explanations, which aim to reveal the features in inputs
with major contribution to model behaviors [43, 46]. How-
ever, these approaches do not demonstrate which neurons
in CNN models are responsible for the model behaviors.
Recently, several methods propose neuron-level explana-
tions [18, 24, 38]. In parallel, some research attempts to in-
terpret adversarial attack in CNNs [10,12,34], hyperparam-
eter tuning [2, 26, 27], and model selection [36]. VISCUIT
focuses on biases in CNN models and investigates neuron
activations in the model to understand why the model gen-
erates biased outputs.

3. System Design and Implementation
3.1. Overview

User Interface. VISCUIT aims to reveal how and why
a CNN image classifier is biased. VISCUIT consists of
the Subgroup Panel (Figure 1A) and the Neuron Activation
Panel (Figure 1B). The Subgroup Panel displays image sub-
groups on which the CNN classifier underperforms and al-
lows users to select a subgroup to explore. For a selected
underperforming subgroup, the Subgroup Panel shows a
well-performing subgroup similar to the selected underper-
forming subgroup, where similarity is determined based on
the last-layer feature vectors from the classifier. At the bot-
tom of the Subgroup Panel, the confusion matrices of the
two subgroups are displayed. The Neuron Activation Panel
(Figure 1B) helps users discover and characterize the cause
of the underperformances, by revealing image concepts re-
sponsible for activating neurons that contribute to the sub-
groups’ predictions.

Dataset and Open-source System Implementation. In
our demo, we investigate the ResNet50 [22] classifier that
has been trained with the biased CelebA [28, 33] dataset
to predict whether a person in an image is smiling and has
achieved an accuracy of 92.1%. To verify the validity of
VISCUIT, we intentionally increase the co-occurrence of
the attribute black hair and the label smiling, so that the
classifier would more likely use image features related to
black hair to predict smiling; and VISCUIT would iden-
tify such biases. VISCUIT is open-source, and can be
easily extended to support other model architectures and
datasets. We have implemented VISCUIT using the stan-
dard HTML/CSS/JavaScript web technology stack and the



D3.js [6] visualization library. CNN model training and in-
ference are all implemented using PyTorch [40].

3.2. Subgroup Panel

Underperforming Subgroups. The Subgroup Panel (Fig-
ure 1A), shows a list of underperforming subgroups, whose
accuracies are much lower than the model’s overall accu-
racy of 92.1%. We adopt the UDIS [28] subgroup discov-
ery algorithm to identify these underperforming subgroups,
which works by clustering the images based on their fea-
ture vectors from the last layer of the classifier, and then
collecting the clusters with accuracies lower than half of
the overall accuracy. Each subgroup’s accuracy and images
are displayed, and the subgroups are sorted by accuracy. An
image incorrectly predicted by the classifier is marked with
a small red cross ( ).

Most Similar Subgroup with High Accuracy. When the
user clicks an underperforming subgroup, VISCUIT dis-
plays its most similar subgroup with high accuracy, based
on Euclidean distance in the feature space, enabling users
to gain insights into the deviant features responsible for the
biases [28]. We call this subgroup the “well-performing
similar subgroup.” In more detail, to assess the similar-
ity between subgroups, we compute the vector embedding
of each subgroup, by averaging the last-layer feature vec-
tors from the classifier of all the images in the subgroup.
Using the obtained subgroup embeddings, we evaluate the
Euclidean distances between subgroups and regard the well-
performing subgroup closest to the selected underperform-
ing subgroup as its most similar well-performing subgroup.
The well-performing subgroup is summarized in the same
format as the underperforming subgroup, displaying its ac-
curacy and images.

Grad-CAM Window. When user clicks an image in the
selected underperforming subgroup or its well-performing
similar subgroup, a Grad-CAM Window pops up (Figure 2).
The window contains the selected image’s prediction results
and Grad-CAM [43] saliency visualizations. Grad-CAM is
one of the most popular methods that visually highlights
features in an input image deemed relevant for classifica-
tion; using Grad-CAM, users can more easily understand
why an image is incorrectly classified [43].

Subgroup Confusion Matrix. The bottom of the Subgroup
Panel shows the confusion matrices of the selected under-
performing subgroup and its similar well-performing sub-
group to summarize the prediction results within those sub-
groups. It helps users more easily assess the types of classi-
fication errors and their distributions across the class labels.

3.3. Neuron Activation Panel

The Neuron Activation Panel (Figure 1B) helps users
discover the cause of the underperformances, by revealing

a. b.

Figure 2. The Grad-CAM Window helps users understand the
reasons for misclassifications; it is displayed when a user clicks
on an image. (a) Grad-CAM Window for an image in the under-
performing subgroup #22 reveals that the model attends to back-
ground areas not relevant to facial expressions. (b) Grad-CAM
Window for an image in the well-performing subgroup #296 re-
veals that the model attends to the face as expected.

image concepts responsible for activating neurons that con-
tribute to misclassifications of the selected underperforming
subgroup.

Neuron Activations. The Neuron Activation Panel dis-
plays the highly activated neurons for the selected under-
performing subgroup and its similar well-performing sub-
group. To reveal how the two subgroups diverge in the
classifier, we organize the neurons into 3 columns: Under-
performing Subgroup, Both, and Well-performing Similar
Subgroup. The neurons in the columns Underperforming
Subgroup and Well-performing Similar Subgroup are ac-
tivated only by the underperforming and well-performing
similar subgroup, respectively, while the neurons in the col-
umn Both are activated by both of the subgroups. To help
users more easily assess each layer’s contribution to the pre-
dictions, the neurons are organized vertically based on their
layers in the classifier.

For each neuron, we evaluate neuron activation score,
which is the baseline for differentiating highly activated
neurons from others. The neuron activation score is evalu-
ated based on the neuron importance measurement method
in Summit [24]. For each image, each neuron’s maximum
activation across spatial locations is considered as the ac-
tivation value of the neuron for the image. Then, for each
layer, we extract the neurons with the highest activation val-
ues until the sum of the extracted neurons’ activation values
exceeds 3% of the layer’s total activation value, and we con-
sider the extracted neurons as the highly activated neurons
for the image. We identify highly activated neurons for all
the images in a subgroup, and for each of the neurons, we
calculate the proportion of the images in the subgroup that
have the neuron as their highly activated neuron. The pro-
portion is used as the neuron’s activation score for the sub-
group.

The header above the Neuron Activation Panel displays
a slider to adjust the threshold for neuron activation score.
When user increases the threshold, the neurons, whose acti-
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Figure 3. The Neuron Concept Window helps users identify im-
age concepts responsible for activating neurons that significantly
contribute to model prediction. (a) Neuron Concept Window for
a neuron highly activated only by the underperforming subgroup
#22 shows that text and non-facial textures, both irrelevant to pre-
dicting smiling, have the major contribution to the misclassifica-
tion, with the high activation score of 1. (b) Neuron Concept
Window for a neuron highly activated by the well-performing sub-
group #296 shows the expected image features, such as mouths and
noses. The Neuron Concept Window displays when the user clicks
on a neuron in the Neuron Activation Panel.

vation scores for either the selected underperforming sub-
group or its similar well-performing subgroup are lower
than the threshold, are relocated or filtered out. The thresh-
old ranges from 0.5 to 1.0; we set the lower bound to 0.5 to
prevent numerous neurons from appearing and overwhelm-
ing users.
Neuron Concept Window. When a neuron is clicked,
VISCUIT shows a Neuron Concept Window, which con-
tains the neuron’s activation scores for the underperforming
and well-performing subgroups and concept patches (Fig-
ure 3). This window helps users understand how much and
why each of the neurons have been activated by each sub-
group. We generate the concept patches based on the exist-
ing methods [24,38]; for each neuron, we get the 10 images
that activate the neuron the most over the entire dataset.
Then, for each of the images, we randomly generate 32
masks, each of which is for a square concept patch (30px
by 30px). We separate the square areas of different masks
to be at least 5px apart from each other to promote diversity
among the concept patches.We then input all the concept
patches to the classifier and observe how the neurons in the
classifier are activated. For each neuron, 10 concept patches
that activate the neuron the most are considered as the neu-
ron’s concept patches.
Neuron Clustering. It is known that some neurons in
CNN have redundancy and are activated by similar con-
cepts [16, 23, 25, 56]. To help users identify such redun-
dancy and focus on distinct concepts, when a neuron is
hovered, we highlight the neurons that have similar sets of
concept patches with the hovered neuron. Inspired by the
neuron clustering method in [38], we identify the neuron
clusters activated by the same concepts. We train an addi-
tional model, which is based on the ResNet50 architecture,

Underperforming Subgroup #22 Accuracy 40%
Text and Non-facial Textures

in the background

Figure 4. Images in the underperforming subgroup #22. It is hard
to define the characteristics of the subgroup #22 at the first glance.
Using VISCUIT, our user Henry gets hints that there would be
text and non-facial textures in the background and verifies it by
brightening the image. Henry concludes that the classifier under-
performs on the images of smiling athletes in stadium.

that takes concept patches as inputs and outputs a vector for
each concept patch to maximize the inner products between
the vectors of the concept patches for the same neurons. We
randomly sample 10,000 concept patch pairs, each of which
consists of two patches from the same neurons, to gener-
ate training dataset; for negative sampling, we additionally
sample 10,000 concept patch pairs, each of which is two
patches from two different neurons. The objective function
to be minimized is

−
∑

Vi,Vj∈
Same Neuron

log(Vi · Vj)−
∑

V ′
i ,V

′
j∈

Different Neurons

log(1− V ′
i · V ′

j ) (1)

where Vi, Vj and V ′
i , V

′
j are the normalized vectors of the

concept patches from the same and different neurons, re-
spectively. We initialize the model with the classifier that
we are investigating and train for 10 epochs using the SGD
optimizer with learning rate of 0.0001. After training the
model, we iterate each of the highly activated neurons in the
classifier to compute the inner products between the vectors
for the neuron’s concept patches and the vectors for the con-
cept patches sampled from each neuron cluster. Among the
neuron clusters, a neuron is added to the cluster that yields
the maximum inner product if the inner product value is
greater than the preset threshold 0.9; otherwise, we gener-
ate a new cluster with the neuron as the only element. We
set the threshold for adding a neuron to a cluster to 0.9 to
minimize the error that any two neurons for different con-
cepts are grouped to the same cluster.

4. Usage Scenario
4.1. Bias Characterization

VISCUIT helps users characterize the images where the
classifier underperforms. For example, a hypothetical ma-
chine learning engineer Henry is using VISCUIT to inves-
tigate the ResNet50 classifier that predicts whether a person
in an image is smiling. While scrolling down the list of un-
derperforming subgroups, Henry is curious about subgroup



#22 with an accuracy of 40% (Figure 4) since he finds it
hard to define the common characteristics of the images in
the subgroup. Henry decides to look into the subgroup #22,
wishing to figure out what kinds of images consist of the
subgroup #22 to clarify how the classifier is biased.

As Henry clicks the subgroup #22, VISCUIT displays
the well-performing subgroup #296, which is similar to the
subgroup #22 in terms of the feature vectors from the classi-
fier, confusion matrices of the subgroups #22 and #296, and
the neurons in the classifier activated by the two subgroups.
Henry first clicks on the images in the subgroups #22 and
#296 to examine the Grad-CAM Windows and compare the
two subgroups (Figure 2). From the Grad-CAM Windows,
Henry figures out that the classifier anomalously attends to
the background areas, which look not pertinent to smiling
at all, for the images in the underperforming subgroup #22.
Also, from the confusion matrices, he learns that the classi-
fier predicts all the images in the subgroup #22 as not smil-
ing, even though more than half of them are actually smil-
ing. Wondering why the background areas are attended by
the classifier, he moves on to the Neuron Activation Panel
to scrutinize the neuron activations.

Since there are many neurons in the Neuron Activation
Panel, Henry increases the activation score threshold from
0.5 to 0.8 to reduce the number of neurons displayed and
focus on few important neurons. To see how differently the
two subgroups are processed in the classifier, Henry clicks
on the neurons that are highly activated only by the under-
performing subgroup #22 or only by the well-performing
subgroup #296 to bring up the Neuron Concept Windows
(Figure 3). The Neuron Concept Windows reveal that the
underperforming subgroup #22 activates the neurons that
capture the text and non-facial textures, while the well-
performing subgroup #296 activates the neurons for mouths
and noses. This finding motivates Henry to wonder whether
there may be some text or non-facial textures in the back-
ground of the images in the subgroup #22 and decides to
verify his conjecture by increasing the brightness of the im-
ages. Indeed, as he expects, the brightened images have text
and colored stripe patterns in the background (Figure 4), as-
sociated with the lights, stands, and signs in the stadium.
Based on these findings, Henry realizes that most of the im-
ages in the subgroup #22 are for athletes in stadium and
concludes that the classifier often misclassifies smiling ath-
letes in stadium as not smiling.

4.2. Model Performance Verification

A common need in developing CNN image classifiers is
to verify that they work as expected on both intended pre-
dictions and known undesirable cases [17, 28, 32, 57, 58].
VISCUIT provides an interactive means for users to per-
form such verification. For example, a hypothetical CNN
researcher Jane has prepared a biased CelebA dataset,

where she intentionally increases the co-occurrence of the
attribute black hair and the label smiling. She expects that
the model would potentially use image features related to
black hair to predict smiling.

To verify her hypothesis, Jane launches VISCUIT. As
illustrated in Figure 1, Jane figures out that several image
subgroups with low accuracies are for the people with black
hair at the first glance. To see whether the model indeed
uses the attribute black hair for the predictions, she clicks
on subgroup #14 with an accuracy of 36.4%, and VISCUIT
displays subgroup #380 that is similar to #14 in terms of the
last-layer features from the classifier but has a high accuracy
of 86.1%.

In each of those subgroups, clicking on an image brings
up a Grad-CAM Window. It reveals that the classifier at-
tends to forehead, which is irrelevant to smiling, for the un-
derperforming subgroup #14 (Figure 1-A1), while for the
images in the well-performing subgroup #380, the classi-
fier attends to mouth, which is closely related to smiling
(Figure 1-A2). The confusion matrices quantitatively sum-
marize such misclassification that many of the images of
black-haired people are wrongly classified as smiling even
though they are not (Figure 1-A3). Jane is now certain about
her conjecture that the classifier often misclassifies not smil-
ing black-haired people as smiling due to the inappropriate
attention to forehead.

5. Conclusion
We present VISCUIT, a web-based interactive visual-

ization tool that helps users understand how and why CNN
image classifiers are biased. VISCUIT summarizes image
subgroups with low accuracies so that users can easily iden-
tify on what kinds of images the classifier underperforms
and select the subgroups to investigate more in depth. When
users select an underperforming subgroup, the Subgroup
Panel of VISCUIT displays a well-performing subgroup
that is similar to the selected underperforming subgroup in
terms of the feature vectors from the classifier and confu-
sion matrices for the two subgroups. This can help users
gain insights into the types of classification errors and the
deviant features responsible for the biases. Users can bring
up Grad-CAM Windows by clicking images to learn which
parts of an image have been deemed relevant for the clas-
sification. Also, from Neuron Activation Panel, users can
figure out the neurons and concepts responsible for mis-
classifications and understand why the classifier performs
unexpectedly poorly, by clicking neurons and bringing up
Neuron Concept Windows. VISCUIT can be easily ac-
cessed through modern web browsers and is open-sourced
enabling easy extension of VISCUIT to various model ar-
chitectures and datasets. We believe VISCUIT would en-
hance people’s understanding about CNN model biases and
accelerate practical applications of CNN image classifiers.
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