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Abstract

As 3D object detection on point clouds relies on the ge-
ometrical relationships between the points, non-standard
object shapes can hinder a method’s detection capability.
However, in safety-critical settings, robustness to out-of-
domain and long-tail samples is fundamental to circumvent
dangerous issues, such as the misdetection of damaged or
rare cars. In this work, we substantially improve the gener-
alization of 3D object detectors to out-of-domain data by
deforming point clouds during training. We achieve this
with 3D-VField: a novel data augmentation method that
plausibly deforms objects via vector fields learned in an
adversarial fashion. Our approach constrains 3D points
to slide along their sensor view rays while neither adding
nor removing any of them. The obtained vectors are trans-
ferable, sample-independent and preserve shape and occlu-
sions. Despite training only on a standard dataset, such as
KITTI, augmenting with our vector fields significantly im-
proves the generalization to differently shaped objects and
scenes. Towards this end, we propose and share CrashD: a
synthetic dataset of realistic damaged and rare cars, with a
variety of crash scenarios. Extensive experiments on KITTI,
Waymo, our CrashD and SUN RGB-D show the general-
izability of our techniques to out-of-domain data, different
models and sensors, namely LiDAR and ToF cameras, for
both indoor and outdoor scenes. Our CrashD dataset is
available at https://crashd-cars.github.io.

1. Introduction

With the established wide-spread progress of learning-
based methods tackling a variety of perception tasks (e.g.,
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out-of-domain samples baseline: PointPillars 3D-VField [ours]

Figure 1. Predictions of PointPillars [18] trained on KITTI [13],
without and with our adversarial augmentations on out-of-domain
samples from the proposed CrashD dataset. CrashD comprises
rare (top) and damaged (bottom) vehicles, resulting in natural ad-
versarial examples [17]. As the models were applied to CrashD
without fine-tuning, due to the different object shapes, the stan-
dard PointPillars delivered two false negatives and a false positive.
Images used with courtesy of BeamNG GmbH.

object detection, semantic and panoptic segmentation), a re-
cent trend denoted a focus shift towards ensuring the safe
applicability of these powerful approaches in critical sce-
narios, such as autonomous driving and robotics [27]. This
has led to the pursuit of improving the model robustness and
generalization [12,22,37], especially against out-of-domain
data, which can naturally occur in the real world [17]. Such
approaches include domain adaptation [39] and generaliza-
tion [37], uncertainty estimation [11], simulations [4], and
adversarial alterations [35].

Since corner cases are difficult to be captured as they oc-
cur in a dynamic real-life scenario, current datasets include
only a limited amount of them, if any [5], leaving most of
these cases out-of-domain. However, taking care of cor-
ner cases is particularly important in safety-critical settings,
where long-tail and out-of-distribution samples could lead
to dangerous issues if not accounted for during training [5].

While several works have addressed some of these con-
cerns on the imaging domain [4, 11, 16, 26], this is still
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mostly unexplored for 3D point clouds [35], also due to the
inherent challenges of point clouds, as they are unordered,
sparse and irregularly sampled. Nevertheless, as the output
of 3D sensors (e.g., LiDAR, ToF cameras), point clouds are
especially useful in high automation, where robustness and
redundancy are intertwined with safety.

In this context, real non-standard objects, such as dam-
aged and rare cars, or those from different regions, can lead
to false negatives, as shown in Figure 1, since the inter-
point geometry on which 3D detectors rely is different than
usual. While these examples can naturally occur in the real-
world [17], they can also be generated artificially with ad-
versarial attacks [14]. This kind of approaches show the
vulnerabilities of a model, which can then be addressed to
improve robustness. Recent adversarial point cloud alter-
ation methods [35] have tackled this problem to improve
the generalization to out-of-distribution data. However,
despite being effective attacks, existing adversarial defor-
mation strategies [19, 40] are sample-specific, lack wide-
applicability, and by being designed without considering a
3D sensor, are mostly unconstrained in space [19].

In this work, we substantially improve the generaliza-
tion capability of 3D object detectors to out-of-domain data,
bridging this gap by deforming point clouds during train-
ing. We propose 3D-VField: a novel adversarial augmenta-
tion method that learns to deform point clouds via widely-
applicable and sample-independent vector fields (i.e., col-
lections of vectors linked to a set of points in a given space).
Our deformations preserve the overall object shape, only
slide points along the view ray, and do not add or remove
any points. After learning a vector field, we use it to al-
ter objects as data augmentation. The main contributions of
this paper can be summarized as follows:

• We raise awareness on natural adversarial examples,
such as those represented by damaged and rare cars,
around their ability to fool popular 3D object detectors.

• We propose 3D-VField: a sensor-aware adversarial
point cloud deformation method based on vector fields
able to increase the generalization of 3D object detec-
tors to out-of-domain samples via data augmentation.

• We introduce and publicly release CrashD: a dataset
of damaged and rare cars. Extensive experiments on
four outdoor and indoor datasets, namely KITTI [13],
Waymo [33], our CrashD, and SUN RGB-D [30],
show the wide applicability of our approach.

2. Related Work
Our work is about adversarial augmentation to improve

the generalization of 3D object detectors for point clouds.
In this section we provide a brief overview of existing ap-
proaches in these neighboring fields.

2.1. Improving Generalization

Generalization to unseen data is a highly desirable prop-
erty for any learning-based approach [37]. Unseen data in-
cludes any samples on which a model has not been trained
on, comprising both out-of-domain and in-domain data
(e.g., validation set), depending on the size of the domain
shift. In particular, domain generalization deals with im-
proving the performance on a target domain, without any
knowledge about it [37], in contrast to domain adaptation
which has access to the target data [39]. These works can be
grouped in two broad categories: those acting on the model
itself, and those operating on the input data.

Among the former category, model regularization strate-
gies are commonly used to reduce overfitting [31] or ad-
dress domain generalization [3]. Estimating the model
uncertainty was also found beneficial for out-of-domain
data [11]. Moreover, specific architectures can be found via
search algorithms to improve robustness [22].

A different category of works targets generalization by
manipulating the input data. Towards this end, it is pos-
sible to leverage pretraining and multi-task learning to im-
prove on out-of-distribution samples [2]. Additionally, syn-
thetic data can be included to increase the accuracy on rare
classes [4]. Data augmentation methods [16, 32, 45] also
belong to this category. Among these, there are adversarial
approaches, which extended the training data with altered
inputs learned in an adversarial fashion as a way to improve
generalization [26, 35, 36].

The method we propose in this work addresses domain
generalization (i.e., does not use any target information) and
belongs to the data category, specifically to the adversarial
approaches, which are detailed in Section 2.2.

2.1.1 Generalization for 3D Object Detection

In the context of generalization, some works addressed the
task of 3D object detection, which is also the focus of this
work. Simonelli et al. [29] created virtual views normaliz-
ing the objects with respect to their distance, to better gen-
eralize to samples at different depths in the image domain.
Tu et al. [35] improved the generalization towards cars with
roof-mounted objects, via adversarial examples on LiDAR
point clouds. Wang et al. [39] used domain adaptation to
fill the gap between vehicles from multiple countries and
different LiDAR sensors.

2.2. Adversarial Examples

Adversarial examples are input alterations designed to
lead a model to false predictions [14, 34]. A variety
of works explored adversarial examples in the image do-
main [9,23,24,41,44], where pixel perturbations impercep-
tible to humans are able to fool the target model. Alaifari et
al. [1] deformed images using a different adversarial vector
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Figure 2. Adversarial deformations introduced by previous works,
compared to ours. Other methods add, drop or move points with
minor constraints. Ours only slides points along the view ray,
while preserving shapes and occlusions.

field learned for each sample. Wang et al. [38] proposed
adversarial morphing fields to alter image pixels spatially
and fool classifiers. However, this topic is still mostly un-
explored on point clouds, especially those captured by 3D
sensors (e.g., LiDAR, ToF camera).

2.2.1 Adversarial point clouds

Adversarial methods for 3D point clouds can be grouped
in three categories: generation if they add points, removal
if they remove points, and perturbation if points are only
shifted. Then we present the methods from the perspective
of generalization to out-of-domain samples.

Generation and removal Xiang et al. [40] pioneered ad-
versarial point clouds proposing a series of methods, some
of which added points to fool the shape recognition. Cao et
al. [8] showed the vulnerability of LiDAR-based methods
against adversarial objects added to the scene. Similarly, Tu
et al. [35] added adversarial meshes on top of cars. A differ-
ent line of works explored sensor attacks, adding points by
means of a spoofing device [7]. Conversely, removal meth-
ods adversarially learn to discard a few critical points [43].

Perturbation Xiang et al. [40] also proposed the first
two adversarial perturbation approaches. One is the itera-
tive gradient L2 attack, which is an adaptation of PGD from
the image domain [20], optimizing for a minimal deforma-
tion constrained by the L2 norm. Another approach is the
Chamfer attack, which uses the Chamfer distance (CD) be-
tween the original and the deformed object to decrease the
perceptibilty of the attack [19]. The CD is measured by
averaging the sum of the distances of the nearest neighbor
from each point of the original point cloud to the deformed
one. Using this distance function encourages point shifts
across the surface of the object. Our method is closely re-
lated to the iterative gradient L2 attack, but we do not learn
a vector for each point of each sample. Instead, we learn a
sample-independent vector field and introduce further con-
straints to improve our deformations. Liu et al. [19] inves-
tigated perturbations more noticeable than the ones of Xi-
ang et al., while producing continuous shapes by altering
neighboring points accordingly. Cao et al. [6] 3D printed

adversarial objects to fool multi-modal (LiDAR and cam-
era) detectors.

Generalization Several works on adversarial point
clouds were proposed targeting the ModelNet dataset [15,
19, 40], which comprises a set of synthetic 3D point clouds
resembling various object shapes. Since ModelNet was not
created with a 3D sensor, these foundation works often pro-
duce unrealistic outputs [19, 40], that were not intended to
improve the generalization of the models, but rather set the
basis for adversarial attacks on point clouds [40]. Addition-
ally, these mechanisms are sample-specific, making their
applicability limited [15, 19, 40]. Instead, Tu et al. [35] ex-
plored the impact on LiDAR object detection of meshed
objects, such as canoes and couches, synthesized on top
of a car roof. Moreover, they attacked these meshes in an
adversarial fashion, and used them to defend the detector,
thereby improving its robustness and generalization capa-
bility to unseen samples with roof-mounted objects.

Our work sets itself apart from all sample-specific meth-
ods [1, 19, 40, 43], as we construct a single highly trans-
ferrable and generic set of perturbations. Similar to the
work of Tu et al. [35], we aim to improve the generalization
to out-of-domain samples. However, compared to theirs, as
can be seen in Figure 2, we do not add any points, making
ours a perturbation method. Additionally, unlike Tu et al.,
by not making any assumptions on the object nor the kind
of sensor, our method has a wider applicability, from indoor
to outdoor settings. Plus, we improve realism by taking
into account occlusion constraints, which were ignored so
far, and making our deformations sensor-aware, as we only
shift points along the sensor ray. Additionally, our method
differs from all the ones above also because it generates ad-
versarial point clouds via transferable learned vector fields,
which has not been explored yet.

3. Method
We now illustrate our method, based on deforming point

clouds to account for natural object variations, thereby im-
proving the generalization of 3D object detectors to out-of-
domain data via adversarial augmentation. As shown in
Figure 3, we achieve this by adversarially learning a vec-
tor field (Section 3.1). Once trained, this vector field can be
frozen and then applied to any previously seen or unseen ob-
jects, after scaling it to match the target size and constrain-
ing the points movement to preserve shapes and occlusions
(Section 3.2). We apply it to deform all objects of its class,
which we use as data augmentation (Section 3.3).

3.1. Adversarially learned vector field

We create a lattice of uniformly spaced 3D vectors within
a 3D bounding box. Since the aim is to perturb the point
cloud without adding or removing points, vectors are an
immediate representation of this set of point shifts. This
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Figure 3. Overview of the proposed 3D-VField. We first learn a vector field adversarially to plausibly deform objects, taking constraints
into account. The modified scenes are later used as augmentations to improve the generalization to unseen object shapes.

allows for both compactness and transferability, since the
same learned vector field can be applied to any target ob-
ject. To construct such a vector field, we discretize the space
of a default bounding box Bo with a step size t to obtain
root coordinates f in 3D space and assign an empty vector
v = (x, y, z) to each root. Bo is defined by width w, height
h, length l, orientation angle α and its center c = (x, y, z).

Adversarial loss We use a binary cross entropy loss
to suppress all relevant bounding box proposals, follow-
ing [35]. We consider a proposal as relevant if the prediction
confidence score s > 0.1. Q is the set of relevant proposal
q, where each q has a confidence score s. We minimize s,
weighed by the 3D IoU with the the ground truth q∗:

Ladv =
∑

q,s ∈ Q
−IoU(q∗, q) log(1− s). (1)

By repeatedly reducing the confidence score while training
the vector field, the detector misses the object or predicts a
misaligned box. During training, we apply the same vector
field to each target object in every scene, minimizing the
loss on the whole dataset. At each optimization step, the
vectors are updated, resulting in differently deformed point
clouds of target objects, which eventually lead to different
predictions. As Ladv smoothly converges, the performance
of the detector, against which the vector field is optimized,
decreases. Once trained, the vectors can be used for data
augmentation.

3.2. Objects Deformation

Before applying a vector field, we scale it to match the
target object size. Manipulating the points through these
vectors, we constrain their movement as described below.

Optical ray consistency To help generalization and pre-
serve the sensor’s physical constraints when generating de-
formations, we employ a simple sensor model in which the
3D points can only be moved across the optical ray. We
first compute the ray ui between the 3D sensor and each
point pi, which determines the deformation direction for
each point. Then we calculate the deformation vectors ri,
for each pi by projecting its nearest vector vi onto the ray
ui. Points are therefore only moved by ri.

Regularizing the deformations We limit the perturba-
tion of the points by restricting the vectors with ‖v‖∞ < ε
following the standard PGD L∞ attack [20]. We then en-
sure shape smoothness along the object surface by sampling
multiple k neighboring vectors to move a given 3D point.
For each j-th nearest neighbor we calculate the euclidean
distance dij between each point pi of the object and its near-
est vector vij from the vector field. The final shift mi of
each point is calculated by weighting the deformation vec-
tors rij with their corresponding distance dij :

mi =

∑k
j=1 dijrij

k
(2)

This allows for a more gradual depth difference between
neighboring points, as neighboring vectors with opposite di-
rections would lead to almost no movement of the affected
point. Thus, shape smoothness is preserved and less irregu-
lar deformations are produced.

Relative rotation We found that using a single vector
field for all objects present in the dataset leads to very low
amounts of deformation. Due to the various object poses,
its vectors would be pointing in all directions, decreasing its
efficacy. We circumvent this and allow for a larger degree of
alignment between neighboring vectors, by first clustering
all the objects in the dataset w.r.t. the relative orientation
between object and sensor, and then learning G different
fields, one for each cluster.

3.3. Adversarial Data Augmentation

During training of the object detector, we perturb the
input point clouds by using the adversarially learned vec-
tor fields as data augmentation. This increases the robust-
ness, given that the learned deformations are structurally-
consistent, and are therefore more capable than standard
augmentations (e.g., scaling, flip, rotation) of resembling
out-of-domain car shapes, such as vehicles from a different
country [39]. We increase the variability by learning N dif-
ferent vector fields for each of theG rotations (Section 3.2).
During training, we randomly select only one object in the
scene, and we deform it with a randomly chosen vector field
out of theN possible ones for its relative rotation. This high
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variability ensures that the model learns both normal and
deformed objects, and that each sample can be deformed
differently across training, thereby preventing overfitting to
specific deformations.

4. Experiments and Results

4.1. Experimental Setup

Datasets We conducted our experiments on four differ-
ent datasets. Three of them are autonomous driving LiDAR-
based: KITTI [13], the Waymo Open Dataset [33], and
the proposed synthetic CrashD, which we introduce be-
low. Additionaly, we apply our method also on the in-
door SUN RGB-D dataset [30], showing its wide applica-
bility. KITTI is a popular 3D object detection benchmark
recorded in Germany. We adopted a standard split [18],
which comprises 3712 training and 3769 validation LiDAR
point clouds, where we used the car class, reporting on
the standard easy, moderate and hard. We evaluated mod-
els trained on KITTI (without any fine-tuning) on Waymo
and our CrashD to assess the generalization capability of
the models to out-of-domain data, particularly critical for
autonomous driving. The Waymo dataset is a challeng-
ing large-scale collection of real scenes recorded in vari-
ous locations of the USA. It is highly diverse with different
weather and illumination conditions, such as rain and night.
Furthermore, in the Supplementary Material we show the
wide-applicability of our techniques on time-of-flight (ToF)
cameras with the SUN RGB-D dataset.

CrashD dataset To quantify the generalizability on out-
of-domain samples, we produced a synthetic dataset named
CrashD. As this includes various types of cars, such as nor-
mal, old, sports and damaged, it comprises a variety of plau-
sible vehicle shapes, thereby serving as a valuable out-of-
domain test. Specifically, the crashes are individually gen-
erated with a realistic simulator [21] and distinguished de-
pending on the intensity, namely light, moderate, hard, as
well as the kind of damage: clean (i.e., undamaged), lin-
ear (i.e., frontal or rear), and t-bone (i.e., lateral). The ran-
domly and automatically generated 15340 scenes were cap-
tured by a 64-beam LiDAR configured to mimic the KITTI
one. Each scene presents between 1 and 5 vehicles, with
visible damages, before being repaired and placed at the
same locations to collect the clean set, resulting in a total
of 46936 cars. We are releasing this data publicly, as an
out-of-domain evaluation benchmark for models trained on
KITTI [13], Waymo [33] or similar datasets. Further details
can be found in the Supplementary Material.

Evaluation metrics We evaluated the object detection
performance on the standard AP, with a 3D IoU threshold
of 0.7 for KITTI and CrashD, 0.5 for Waymo, and the stan-
dard 0.25 for SUN RGB-D. To measure the quality of the
adversarial perturbations we followed Tu et al. [35] using

the attack success rate (ASR) metric. It measures the per-
centage of objects that become false negatives after under-
going an adversarial alteration. For the ASR, we considered
an object detected if its 3D IoU was larger than 0.7.

Network architectures We used four different 3D ob-
ject detectors. PointPillars [18] voxelizes the scene in ver-
tical columns (i.e., pillars) from the bird’s eye view, us-
ing PointNet for feature extraction. Second [42] voxelizes
the point cloud and uses a learned voxel feature encod-
ing. Part-A2 Net [28] is an extension of PointRCNN that
predicts intra-object part locations for improved accuracy.
VoteNet [25] (Supplementary Material) is based on Point-
Net++ and Hough voting. While the first three are mostly
used for autonomous driving, VoteNet is used indoor.

Implementation details We constructed each vector
field within Bo with w = 1.8m, h = 1.6m, l = 4.6m and
a step size of t = 20cm resulting in 1656 vectors per vector
field. If not stated otherwise, we grouped objects by rela-
tive rotations with G = 12 groups, and set N = 6. During
the perturbation stage, we moved points according to their
k = 2 nearest vectors and deform only along the sensor ray.
For the PGD optimization, we used Adam with a learning
rate of 0.05. The distance threshold was set to ε = 30cm.
Each vector was randomly initialized form a uniform dis-
tribution with values between -1cm and 1cm. We trained
all models using PyTorch and MMDetection3D [10] on a
single NVIDIA Tesla V100 32GB GPU.

Prior works and baseline We focused on object de-
tection and compared with other adversarial methods. All
models were applied on PointPillars [18], unless otherwise
noted. As point perturbation methods we used the iterative
gradient L2 [40] and the Chamfer attack [19]. For genera-
tion we used [40] adding 10% and [43] removing 10% of
the objects points. For a fair comparison, we trained all on
the same KITTI dataset split [18], with ε = 30cm, then we
altered the point clouds as data augmentation with the same
settings as ours (i.e., random selection of one object per
scene to augment). Moreover, we combined ours with the
domain adaptation statistical normalization (SN) strategy
of [39]. Following [39], after computing the average box di-
mensions in the target datasets (i.e., Waymo and CrashD),
we scaled the source (i.e., KITTI) point clouds within the
ground truth boxes accordingly and fine-tuned the trained
models with this altered target-aware source data.

4.2. Quantitative Results

Adversarial methods and generalization Table 1
shows the comparison between our 3D-VField and related
adversarial approaches when applied on PointPillars [18] in
the context of generalization. In particular, we report other
adversarial perturbation methods, such as the iterative gra-
dient L2 [40] and the Chamfer attack [19], adversarial gen-
eration [40], as well as adversarial removal [43]. Augment-
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KITTI →Waymo → CrashD
AP AP normal AP rare

Architecture Method easy mod. hard ASR AP clean crash clean crash

PointPill. [18]

no augm. [18] 70.00 61.88 56.23 - 30.68 1.79 0.93 3.92 2.33
no obj. sampl. [18] 83.83 74.14 68.30 - 37.85 50.36 36.44 28.70 20.02
PointPillars [18] 88.24 77.11 74.55 - 40.86 65.20 43.67 34.14 22.48
iter. grad. L2 [40] 86.24 76.92 73.84 ∗95.9 39.86 58.65 41.86 35.92 23.69
Chamfer att. [19] 87.15 77.05 74.07 ∗99.8 40.54 56.84 39.56 36.29 24.73
advers. gener. [40] 86.12 76.39 73.18 ∗91.6 40.55 57.75 38.03 35.73 24.18
advers. remov. [43] 86.51 76.85 74.04 ∗86.1 40.32 66.52 48.88 41.42 28.10
3D-VField [ours] 87.05 77.13 75.55 63.4 44.61 67.95 52.87 43.40 30.37

SN dom. adapt. [39] - - - - 49.27 79.42 72.59 60.53 48.23
[ours] + SN [39] - - - - 51.32 92.14 87.28 86.26 76.42

Second [42] Second [42] 88.93 78.68 76.87 - 42.45 72.73 56.74 41.85 32.84
3D-VField [ours] 88.87 78.56 76.81 54.9 43.51 76.54 60.51 47.47 36.14

Part-A2 [28] Part-A2 [28] 89.60 79.16 78.52 - 49.76 83.05 63.25 74.03 52.33
3D-VField [ours] 89.65 79.26 78.62 50.5 56.08 88.80 73.80 81.10 61.34

Table 1. Comparison of models trained on KITTI [13] towards out-of-domain data (without any fine-tuning), namely Waymo validation
set [33] and our CrashD datasets, as well as on the KITTI validation set. Each method applies a data augmentation (for adversarial ones
ASR is measured on their adversarial examples), or performs domain adaptation (only SN [39] in this work), resulting in the reported APs.
→: transfer from KITTI. ∗: being sample-specific, the adversarial method had to be trained on the validation set of KITTI.

ing with the adversarial examples of our 3D-VField did not
reduce the overall in-domain AP compared to PointPillars,
but brought numerous benefits in terms of out-of-domain
generalization. As demonstrated by Wang et al. [39], the
transfer from KITTI to Waymo is particularly challenging
due to the different shapes and sizes of the vehicles found
in Germany and the USA, as well as the 50% higher point
density and the narrower field of view [33]. This test as-
sesses the quality of the generated deformations with re-
spect to real vehicle shapes found in a different country.
On Waymo our 3D-VField delivered more than 9% rela-
tive improvement over PointPillars and the other adversarial
methods, and 13% over Part-A2 [28], proving the benefit of
our added sensor-awareness on real and challenging out-of-
domain data. On the right of Table 1 we report the results on
the proposed CrashD. It can be seen that despite the trans-
fer from KITTI, the AP on clean normal cars is relatively
high for all approaches, likely because those samples are
not particularly difficult. However, when damaging those
exact same vehicles and placing them at the same locations
(crash), the detection performance dropped. This shows the
effort required for the methods to relate these to the cars
learned on KITTI, and proves them as natural adversarial
examples. Similarly, with rare cars (i.e., old and sports
cars), the AP dropped even more, quantifying the domain
shift from normal vehicles. Rare crash cars, by combin-
ing the two out-of-domain aspects (i.e., rarity and damage),

were the hardest for all methods, reducing the AP from nor-
mal clean by up to two thirds (PointPillars). Nevertheless,
our method improved significantly over the detectors and
the other adversarial approaches for all transfers and cate-
gories. This can be attributed to our adversarial augmenta-
tions introducing diversity in the training data, while being
sensor-aware. In particular, the sensor-awareness ensures
that the deformed point clouds are still plausible, thereby
better resembling possible out-of-domain samples, such as
those of Waymo and CrashD. Among the other adversarial
approaches, only removing points [43] improved general-
ization to CrashD, probably because it preserved the over-
all point clouds. Nevertheless, [43] was not beneficial on
Waymo, which features denser point clouds and more chal-
lenging real scenes.

Combination with data augmentations As adversarial
data augmentation, our 3D-VField is not alternative to dif-
ferent augmentation strategies, but can be applied in combi-
nations with others. In Table 1 we show how common data
augmentation techniques impact the detections for Point-
Pillars [18]. Using no augmentations (no augm.) criti-
cally reduced the APs, especially on CrashD at IoU 0.7 (Ta-
ble 1). At IoU 0.5, this resulted in an AP on normal clean of
65.59, while the baseline [18] delivered 98.91. Introducing
standard augmentations (no obj. sampl., e.g., flip and rota-
tion) improved, but adding the popular object sampling [18]
(PointPillars) increased the APs further. On top, our aug-
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# G K. ASR ↑ K. mod. →Waymo # vectors

1 55.08 77.32 40.43 10K
12 63.37 77.13 44.61 120K
360 44.84 77.06 40.30 3.6M

Table 2. Our 3D-VField trained on KITTI (K.) with varying
amounts of relative rotations G. →: transfer no fine-tuning.

mentations substantially improved all transfers, without de-
creasing the in-domain performance.

Combination with domain adaptation By addressing
domain generalization, our approach does not use any tar-
get information. Therefore, ours is not alternative to domain
adaptation methods [39], which make use of target data.
However, similarly to other data augmentation strategies,
our 3D-VField can be combined with domain adaptation
techniques. As shown in Table 1, such combination further
boosts the performance on challenging out-of-domain data.
By altering the objects size via the statistical normalization
(SN) of [39], the AP on Waymo increased. Constrained by
the high amount of false positives and negatives, when com-
bined with SN, ours retained a margin of over 2% compared
to PointPillars with SN. Moreover, the AP on CrashD im-
proved dramatically across all categories, especially for the
hardest rare crash group. The results show how, despite a
substantial increase in AP from PointPillars [18], SN alone
did not reach the full potential of the detector. Only when
combined with ours, the AP doubled (normal crash) and
more than tripled (rare crash) over PointPillars, without us-
ing any extra target information. This shows the benefit of
this combination, and reiterates the added value of incorpo-
rating adversarially deformed objects via data augmentation
to improve generalization to out-of-domain samples.

Adversarial methods as attacks In terms of ASR (Ta-
ble 1), our approach is not as strong as the other adversarial
methods, namely the iterative gradient L2 [40], the Chamfer
attack [19], adversarial generation [40] and removal [43].
However, this is expected as our vector fields are sample-
independent, compared to their point-to-point deformations
being sample-specific. Due to this reason, their alterations
had to be learned directly on the KITTI validation set, on
which the ASR was measured. Nevertheless, a very high
ASR means the altered objects are unrecognizable, which
does not aid generalization. The goal of our method is
not having a detector fully miss the attacked objects (high
ASR), but rather deforming them to improve the perfor-
mance on out-of-domain data. Towards this end, the per-
turbed objects need to be at the same time altered enough
to add diversity to the training data, and not be too far apart
from the training distribution to avoid confusing the detec-
tor. We found this balance by learning our vector fields ad-

KITTI →W. → CrashD
Method mod. ASR n.,clean r.,crash

P.P. [18] 77.11 - 40.86 65.20 22.48
no learn 76.36 10.1 41.62 62.94 21.75
unleash 76.82 97.7 40.95 60.43 27.55
ray con. 76.35 59.5 41.03 59.82 29.16
full 77.13 63.4 44.61 67.95 30.37

Table 3. Ablation on the deformation constraints imposed by our
method, compared to PointPillars (P.P.) [18]. Trained on KITTI.
→: transfer no fine-tun.; W.: Waymo.

versarially, while preserving the objects shape and the sen-
sor realism with our added constraints.

Different 3D detectors In Table 1, we also compare the
performance of our 3D-VField when paired with different
3D object detectors, namely PointPillars [18], Second [42],
and Part-A2 [28]. Remarkably, using the proposed adver-
sarial augmentation improved the AP of Part-A2 on Waymo
by a large margin. The superiority of Part-A2 over the other
detectors can be attributed to its part-awareness [28], which
might have set its focus on the most relevant object parts
(e.g., wheels) and their relationships to identify cars also in
out-of-domain settings. For Second [42], the performance
on KITTI turned out lower than the one reported in [10],
despite using the same settings and framework. This re-
duced AP affected both the baseline [42] and our approach.
Nevertheless, adding our adversarial deformations signifi-
cantly improved the generalization of all three detectors to
out-of-domain data, despite training our vector fields solely
against PointPillars. This shows the wide applicability and
transferability of our techniques.

Specificity-generalization trade-off Table 2 shows that
by varying the amount of relative rotations G, a trade-
off arises between generalization, attack specificity (i.e.,
strength on individual samples by overfitting to the train-
ing data), and storage (i.e., amount of vectors). G = 12
offers a good balance. With the extreme G =# of objects,
ours would become sample-specific, inheriting the weaker
generalization capabilities of [19,43]. While these methods
needed to be trained on the validation set, allowing for high
ASRs (Table 1), our vectors were learned on the training
set. So with high G, ours overfitted on the training data,
which is visible evaluating on the validation set. Our aug-
mentation strategy learns only 1656 3D vectors to perturb
objects. However, by training with G = 12 and N = 6,
the amount of vectors increased to 120K. Conversely, the
sample-specific iterative gradient L2 [40] and the Cham-
fer [19] attacks required 10.9M and 12.6M vectors for train-
ing and validation sets respectively. This shows the easy
applicability of our 3D-VField.
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Figure 4. Predictions on challenging out-of-domain samples from the proposed CrashD (top) and Waymo [33] (bottom). Models based on
PointPillars [18] trained on KITTI (without fine-tuning). Iterative gradient L2 [40] and ours trained with adversarial augmentation.

Ablation study on deformation constraints As we in-
troduced the sensor-awareness and the surface smoothness
constraints to our deformations, we investigate their impact
in terms of generalization to out-of-domain data. In Table 3,
we report this comparison when limiting the deformations
to ε = 30 cm. It can be seen that not learning the per-
turbations, but applying all our constraints (no learn) could
already be a beneficial augmentation technique, as it im-
proved the transfer to Waymo. Instead, removing all con-
straints, but learning the vector fields (unleash) delivered
a strong ASR of 97.7%. This significantly increased the
AP on the CrashD rare cars. When deforming with sensor-
awareness (ray con.), ASR reduced, but the AP on the most
difficult transfer settings (i.e., rare crash) improved. Our
full model 3D-VField, adds the distance smoothing (Sec-
tion 3.2) delivering superior transfer capabilities. Further-
more, increasing the maximum deformation ε to 40 or 60
cm, improved the ASR to 73.3% and 87.1%, but as aug-
mentation decreased the AP on KITTI by 1% and 1.7%,
respectively. This means that higher deformations do not
generalize well, as their plausibility decreases, while 30 cm
offers a good trade-off.

4.3. Qualitative Results

In Figure 4 we compare the transfer predictions from
KITTI to CrashD and Waymo [33] of the standard Point-
Pillars [18], augmented with ours and the iterative gradient
L2 adversarial approach [40], which is the closest to ours in
terms of adversarial deformation (Section 2). For CrashD,
as seen in the quantitative results (Section 4.2), the iterative
gradient L2 method delivered better detections compared to
not using any adversarial augmentations [18], but our 3D-
VField outperformed it, with a more aligned box for the
left damaged car. The figure also shows the severity of the
hard damages present in CrashD, and how adversarial aug-
mentation helps to detect such challenging samples. For
the difficult transfer KITTI→Waymo (Section 4.2), it can
be seen that all methods had troubles detecting the cars with
few points in the parking lot on the left. Furthermore, Point-
Pillars [18] ignored 3 recognizable cars with a high amount

of points, while augmenting with the iterative gradient L2
caused missing 2 of them and detecting 2 further ones, al-
beit with misaligned boxes. Instead, despite missing further
ones, our method was able to recognize these visible cars.

Chamfer attack 3D-VField [ours]original point cloud

Figure 5. Example deformations by our method and the Chamfer
attack [19] on a car of the KITTI validation set [13].

Figure 5 confirms that the strong ASR of the Chamfer at-
tack [19] seen in Table 1 corresponds to unrecognizable ob-
jects. It also provides an example of the minor deformations
introduced by our adversarial vector fields. By preserving
the overall shape of the car and its surfaces, ours allowed
for superior generalization to unseen data.

We refer to the Supplementary Material for more re-
sults on indoor settings, transferability, robustness against
noise, detailed evalutations on CrashD, and various abla-
tion studies on grouping and aggregation strategies, as well
as the amount of deformed objects during training.

5. Conclusion

In this paper we presented 3D-VField: an adversarial
augmentation method for point clouds to improve the object
detection performance on natural adversarial examples and
out-of-domain data, such as rare, damaged cars, or vehicles
from different regions. Towards this end, 3D-VField pro-
duces plausible shapes used as data augmentation. Exten-
sive experiments showed the high generalization and trans-
ferability of the proposed approach, from indoor to outdoor
settings, on both real and synthetic data. Furthermore, we
proposed and released CrashD: a new benchmark to chal-
lenge 3D object detectors on out-of-domain data, including
various kinds of damaged and rare cars.
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