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Abstract

Photo retouching finds many applications in various
fields. However, most existing methods are designed for
global retouching and seldom pay attention to the local
region, while the latter is actually much more tedious
and time-consuming in photography pipelines. In this pa-
per, we propose a novel adaptive blend pyramid network,
which aims to achieve fast local retouching on ultra high-
resolution photos. The network is mainly composed of
two components: a context-aware local retouching layer
(LRL) and an adaptive blend pyramid layer (BPL). The
LRL is designed to implement local retouching on low-
resolution images, giving full consideration of the global
context and local texture information, and the BPL is then
developed to progressively expand the low-resolution re-
sults to the higher ones, with the help of the proposed
adaptive blend module and refining module. Our method
outperforms the existing methods by a large margin on
two local photo retouching tasks and exhibits excellent
performance in terms of running speed, achieving real-
time inference on 4K images with a single NVIDIA Tesla
P100 GPU. Moreover, we introduce the first high-definition
cloth retouching dataset CRHD-3K to promote the research
on local photo retouching. The dataset is available at
https://github.com/youngLBW/CRHD-3K.

1. Introduction
Photo retouching [25], especially portrait photo retouch-

ing, finds a vast range of applications in photography sce-

narios including wedding, advertisement, personal record-

ing, etc. While extensive works [5, 12, 14, 21, 46, 57] yield

impressive results on photo retouching, most of them ma-

nipulate the attributes of the entire image, such as color,

illumination, and exposure. Few methods deal with the lo-

cal region in photos (e.g., face, clothing, and commodity),

*This work was done while Xiefan Guo was an intern at the DAMO.

Figure 1. High-fidelity retouched photos. From left to right: (a)

raw photos, (b) our retouched results, and (c) ground-truth images.

which is actually the most tedious and time-consuming step

in professional photography pipelines.

To focus on this kind of problem, we summarize them

as the Local Photo Retouching (LPR) task, whose goal

is to edit the target region in the photo and keep the rest

area unchanged. Different from general local image edit-

ing tasks (such as image inpainting and rain removal), LPR

pays more attention to enhancing the aesthetic perception

and visual quality of the target object. Fig. 1 gives some

LPR examples.

We conclude three main challenges of the LPR task as:

(1) accurate localization of the target region; (2) local gen-

eration with global consistency and detail fidelity; and (3)

efficient processing of ultra high-resolution images. The

first two are brought by the characteristics of the task it-

self, while the last one is determined by the application sce-

narios of LPR. As ultra high-resolution photos have been

widely used in various photographic scenes, the ability to

process them becomes a key factor of LPR methods in prac-

tice. Given these challenges above, we in this paper analyze

the applicability of existing methods to the LPR task and

attempt to propose a more suitable solution to it.
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In recent years, massive works have devoted to the

image-to-image translation task and achieve impressive re-

sults in style transfer [11, 16, 19, 45], semantic image syn-

thesis [7, 18, 37], etc. Most of them adopt a deep net-

work with an encoding-decoding paradigm to fulfill faith-

ful translation, which results in a heavy computational, thus

severely limiting their applications in some high-resolution

scenarios. Some methods [12, 25, 47, 52] try to accelerate

the models by transferring the computational burden from

high-resolution maps to low-resolution ones and success-

fully accomplish global translation on high-resolution im-

ages. However, due to the lack of attention to local regions,

few of them well adapt to the LPR task.

Instead of performing global translation, a number of

works focus on the local image editing task, such as im-

age inpainting [28, 39, 55], shadow removal [15, 32, 33],

and rain removal [40–42, 48, 49]. Most of them rely on the

masks that indicate the target region as input, while in the

LPR task, accurately acquiring such masks is itself a quite

challenging issue. Though some methods resort to the deep

generative networks and perform local editing without spec-

ifying the masks, they are hardly capable of processing ultra

high-resolution images directly. Besides, AutoRetouch [46]

employs a sliding window strategy to achieve local model-

ing and retouching, but it fails to capture the global context,

especially in the case of high resolution.

Based on the observations, we propose a novel adaptive

blend pyramid network (ABPN) for local retouching of ul-

tra high-resolution photos, as shown in Fig. 3. The network

addresses the three challenges aforementioned via two com-

ponents: a context-aware local retouching layer (LRL) and

an adaptive blend pyramid layer (BPL). In general, given

a high-resolution image, the LRL performs local retouch-

ing on its thumbnail and the subsequent BPL expands the

outputs of LRL to the original size of the input. For LRL,

specifically, we design a novel multi-task architecture to ful-

fill mask prediction of the target region and local generation

simultaneously. A local attentive module (LAM) is pro-

posed, where the local semantics and texture of the target

region and the global context can be fully captured and ag-

gregated to achieve consistent local retouching. For BPL,

inspired by the blend layer in digital image editing, we de-

velop a light-weight adaptive blend module (ABM) and its

reverse version (R-ABM) to implement the fast expansion

from the low-resolution results to the higher ones, ensuring

great extensibility and detail fidelity. Extensive experiments

on two LPR tasks reveal that our method outperforms the

existing methods by a large margin in terms of retouching

quality and processing efficiency, demonstrating its superi-

ority in the LPR task.

Moreover, since the editing work is usually time-

consuming and requires high image processing skills, there

are few publicly available datasets for the LPR task. Ac-

cordingly, we build and release the first high-definition cloth

retouching dataset (CRHD-3K) to facilitate the research.

Our main contributions in this work are as follows:

(A) We propose a novel framework ABPN for local retouch-

ing of ultra high-resolution photos, which exhibits the re-

markable efficiency performance (real-time inference on 4K

images with a single NVIDIA Tesla P100 GPU) and supe-

rior retouching quality to the existing methods.

(B) We present a local attentive module (LAM), which is ef-

fective in capturing and aggregating the global context and

local texture.

(C) We design an adaptive blend module (ABM), which

provides powerful extensibility to the framework, allowing

the fast expansion from low-resolution results to the higher

ones.

(D) To boost the research on LPR (e.g., cloth retouch-

ing), we introduce the first high-definition cloth retouching

dataset CRHD-3K.

2. Related Work
Photo Retouching. Benefiting from the development of

deep convolutional neural networks, learning-based meth-

ods [5,10,12,14,21,46,50,57] have recently been presented

to produce exciting results on photo retouching. Most of

those, however, are limited by the heavy computational and

memory costs when the photo resolution is increased. In

addition, these methods are designed for global photo re-

touching and do not well fit for the LPR task.

Image-to-Image Translation. Image-to-image translation

was originally defined by [18], in which many computer-

vision tasks were summarized as a pixel-to-pixel predicting

job and a conditional GANs-based framework was devel-

oped as a general solution. Following [18], various methods

have been proposed to address the image translation prob-

lem, using paired images [7,18,27,37,43,47,52] or unpaired

images [3, 8, 9, 16, 17, 23, 25, 30, 36, 38, 59]. Several works

focus on a specific image translation task (such as semantic

image synthesis [7,18,37] and style transfer [11,16,19,45])

and achieve impressive performance. However, the works

above mainly concentrate on global transformation and give

less attention to the local region, which limits their capabil-

ity in the LPR task.

Image Inpainting. Image Inpainting is the closest task to

LPR, which refers to the process of reconstructing missing

regions of an image given a corresponding mask. The deep

generative methods [13, 22, 26, 28, 29, 35, 39, 51, 53–56, 58]

have achieved significant progress, owing to their powerful

feature learning ability. However, acquiring accurate masks

is itself a very challenging issue, and taking unreasonable

masks tends to incur large errors in filled results. Recently,

the blind image inpainting methods [6, 31, 53] relax the re-

striction by completing the visual contents without specify-

ing masks for missing regions. Nevertheless, those methods
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Figure 2. Examples from the CRHD-3K Dataset (zoom in for a better view). Left: raw photos, right: retouched results by professional

staffs with high image processing expertise.

assume the contamination with simple data distributions or

undesired images, which makes them fail to take full advan-

tages of the inherent semantics and textures of the image

for LPR. Moreover, the existing methods can only handle

low-resolution inputs, ultra high-resolution image inpaint-

ing is still extremely challenging. There are also some local

image editing tasks that aim to restore the local region in

the image, including shadow removal [15, 32, 33], rain re-

moval [40–42, 48, 49], etc. Unfortunately, due to the strong

specificity of these methods, few of them are adaptive for

the common LPR task.

High-resolution Image Editing. To enable translation on

high-resolution images, [12, 25, 47, 52] attempt to allevi-

ate the space and time burden by shifting the major com-

putation from high-resolution maps to low-resolution ones.

Though yielding impressive efficiency performance, it is

still problematic when applied to LPR as the lack of atten-

tion to the local regions.

3. The CRHD-3K Dataset
Photo retouching [24] refers to the process of enhanc-

ing the visual aesthetic quality of an image, and cloth re-

touching is one of the most representative tasks, which is

conventionally achieved via hand-craft operations. How-

ever, the process of manual retouching is tedious and time-

consuming. In order to facilitate the learning-based re-

touching methods, we introduce the first large-scale high-

definition cloth retouching (CRHD-3K) dataset.

Data collection. We initially collected more than 60,000

raw photos from Unsplash1, and further carefully checked

them one by one, where outliers (e.g., severe motion blur)

and duplicates (e.g., same content) were removed. The

CRHD-3K dataset finally includes 3,022 high-definition

raw portrait photos.

Data labeling. To obtain high-quality retouched photos,

the process is accomplished by a team of professional im-

age editors, with the goal of removing the wrinkles, creases,

and other blemishes on the clothes to make them look more

smooth and beautiful. The retouching time for each photo

is 3 to 5 minutes. Some retouched examples are shown in

Fig. 2.

1https://unsplash.dogedoge.com

Data statistics. The CRHD-3K dataset consists of 3,022

pairs of raw and retouched photos, of which 2,522 are for

training and 500 for testing. The resolutions mainly vary in

the range of 4K to 6K.

Ethics guidelines. To avoid the attendant risk of harm from

the data, we blurred and cropped the personally identifiable

information contained in the photos (e.g., faces), and kept

only the clothing components as much as possible.

Cloth retouching is a typical and quite challenging LPR

task due to the diversity of clothing patterns and the subjec-

tivity of wrinkle judgment. More importantly, ultra high-

resolution images from the CRHD-3K dataset place ex-

tremely strict requirements on the time and space efficiency

of the model.

4. Methods
4.1. Overview

As discussed above, subject to the lack of attention to

local regions or the high computational costs, the existing

methods are difficult to cope with the LPR task. To solve

these problems, we develop an adaptive blend pyramid net-

work for local retouching of ultra high-resolution photos.

Fig. 3 shows an overview of our framework. The network is

mainly composed of two components: a context-aware local

retouching layer (LRL) and an adaptive blend pyramid layer

(BPL). Given an image I0 ∈ R
h×w×3, we first build an im-

age pyramid PI = [I0, I1, · · · , I l] and a high-frequency

component pyramid PH = [H0,H1, · · · ,H l−1], where

PH is acquired following Laplacian Pyramid [4] and l is

the number of downsampling operations (l = 2 as default

in Fig. 3). Then LRL is applied to I l ∈ R
h

2l
× w

2l
×3

to predict

the target region mask M and generate the retouched results

Rl ∈ R
h

2l
× w

2l
×3

. After that, we employ BPL to expand the

low-resolution outputs Rl to the original size of I0. Specif-

ically, the reverse adaptive blend module (R-ABM) is intro-

duced to generate the blend layer Bl ∈ R
h

2l
× w

2l
×3

, which

records the translation information from I l to Rl. By pro-

gressively upsampling and refining, the blend layer B0 with

high resolutions and abundant details is obtained. At last,

we utilize the adaptive blend module (ABM) to apply B0

to I0 to generate the final results R0.

We introduce these sub-networks and loss functions used
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Figure 3. Overview of the proposed Adaptive Blend Pyramid Network (ABPN).

Figure 4. The details of the local attentive module (LAM).

for training in detail in the following sections, including

LRL in Sec. 4.2, BPL in Sec. 4.3, and loss functions in

Sec. 4.4.

4.2. Context-aware Local Retouching Layer

In this section, we propose a context-aware local re-

touching layer (LRL) to address the first two challenges

mentioned in Sec. 1: accurate localization of the target

region and local generation with global consistency. As

shown in Fig. 3, the LRL adopts a multi-task architecture

and consists of a mutual encoder, a mask prediction branch

(MPB) and a local retouching branch (LRB).

Mutual Encoder. The mutual encoder is composed of

six simple convolution blocks (3 × 3 convolutions, batch

normalization, and ReLU) in series, and the output of

each convolution block composes a feature pyramid PF =

[F skipi ∈ R
h

2l+i × w

2l+i ×ci ]6i=0, where ci denotes the number

of channels and F skip0 = I0. Sharing the encoder with the

subsequent MPB and LRB is feasible because both of the

two branches rely on the semantic features and contextual

information to generate their results. It also greatly reduces

the computational complexity of the model.

Mask Prediction Branch. MPB aims to automatically pre-

dict the mask M ∈ R
h

2l+2 × w

2l+2 ×1
of the target region to

guide subsequent local region generation. It consists of four

convolution blocks (3 × 3 convolutions, batch normaliza-

tion, and leakyReLU) and a classification head. Besides,

we employ skip connections [44] to incorporate low-level

features to improve the accuracy of segmentation. Note that

M is 4× smaller than I l but it is sufficient for the guid-

ance of LRB, without sacrifice to the overall performance.

Although most of the datasets do not directly provide the

target region mask Mgt for supervision, owing to the char-

acteristics of the LPR task, we can obtain the Mgt by taking

a difference between I l and its target and applying a thresh-

old to it.

The contributions of MPB to the network are two-fold.

First, the predicted mask M itself can help LRB focus on

the target region to enhance the retouching quality. Sec-

ond, through joint training, the global context and semantic

information can be better perceived, thereby achieving con-

sistent generation results.

Local Retouching Branch. Most image translation meth-

ods adopt a traditional encoder-decoder architecture to im-

plement global translation, which leads to insufficient at-

tention to the target regions. Based on the gated convolu-

tion (GConv) [55], we thus design a local attentive mod-

ule (LAM) to improve capturing local semantics and tex-

tures, as shown in Fig 4. Different from image inpainting,

the target region in LPR contains rich texture information,

which is essential to generate detailed and realistic results.

In this case, we apply skip connections to incorporate low-

level features F skipi from the mutual encoder. Besides, in-

stead of only involving the binary mask in the first or the

last block of LRB, we concatenate the soft mask M in ev-

ery LAM to guide feature fusion and update at different lev-

els. Owing to the gating mechanism of GConv, spatial at-

tention and channel attention are simultaneously employed

to fully fuse the features and capture the semantics and tex-

tures of the target region. By stacking LAM, LRB is then

able to produce consistent and faithful local retouched re-

sults. Note that although the predicted mask may have er-

rors, the final retouching area could still not be affected as

the mask is only used as soft guidance in LRB.
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4.3. Adaptive Blend Pyramid Layer

LRL achieves local retouching on a low-resolution im-

age, and the following objective is to extend the result to

a larger scale while simultaneously enhancing its detail fi-

delity. Inspired by the concept of blend layer (or top layer)

in the digital image editing, we propose an adaptive blend

module (ABM) and its reverse one (R-ABM) to achieve

lossless transformation between two images with a sparse

and smooth blend layer. Then, we build a pyramid to pro-

gressively upsample and refine the blend layer and finally

apply it to the original input to generate the final result. We

describe the implementation details of these components

below.

Adaptive Blend Module. The blend layer is often utilized

to be blended with the image (or base layer) in various

modes [1] to fulfill different image editing tasks, such as

contrast adjustment, dodge and burn. Generally, given an

input image I ∈ R
h×w×3 and a blend layer B ∈ R

h×w×3,

we blend the two layers to produce the result R ∈ R
h×w×3

as:

R = f(I,B) (1)

where f is a pixel-wise function and denotes the mapping

formula determined by the blend mode. Limited by the

translation ability, a certain blend mode with the fixed func-

tion f is difficult to apply to various image editing tasks. To

better adapt to the data distribution and the transformation

patterns of different tasks, we refer to the Soft Light blend

mode [2] and design an adaptive blend module (ABM) as

follows:

g(I, i) = E�I � I · · · � I︸ ︷︷ ︸
i

(2)

R = fa(I,B) =

2∑
i=0

((jiB + kiE)� g(I, i)) (3)

where � indicates the Hadamard product, ji and ki are

learnable parameters shared by ABMs and R-ABM in the

framework, and E ∈ R
h×w×3 denotes a constant matrix

with the value 1 for all items.

Reverse Adaptive Blend Module. ABM is based on the

prerequisite of the blend layer B. However, we only ob-

tain the low-resolution results Rl in the previous LRL. To

acquire the blend layer B, we solve Eq. (3) and build a re-

verse adaptive blend module (R-ABM) as:

B = fr(I,R) =
R−∑2

i=0(kig(I, i))∑2
i=0(jig(I, i))

(4)

where ji, ki and g are consistent with those in Eq. (3).

In general, utilizing the blend layer as an intermediate

medium, ABM and R-ABM offer an adaptive transforma-

tion between the image I and the result R. Instead of di-

rectly expanding the low-resolution result, we employ the

blend layer to achieve this goal, which has its advantages

on two aspects: (1) In the LPR task, the blend layer mainly

records local transformation between two images. That

means it contains less irrelevant information and can be

readily refined with a light-weight network. (2) The blend

layer is to be blended with the original image to implement

final retouching, which makes full use of the information of

the image itself, thereby delivering local retouching with a

high detail fidelity.

Actually, there are plenty of alternative functions or

strategies to achieve adaptive blend. An intuitive way is

to utilize two networks composed of 1×1 convolutions and

nonlinear activation layers to replace Eq. (3) and Eq. (4)

respectively. However, the transformations from the two

networks are irreversible and may increase the difficulty

in training. In contrast, good reversibility and consistency

between ABM and R-ABM ensure that all the blend lay-

ers lie in the same domain, which effectively reduces the

burden on the model. Moreover, Eq. (3) is a generalized

form of the Pegtop’s formula [2], which is easy to opti-

mize and tends to produce a smooth and sparse blend layer

(see Fig. 7 and Fig. 8). As in our framework, we fulfill

the expansion by progressively upsampling and refining the

blend layer. Smoothness and sparseness mean a smaller in-

formation gap between the low-resolution blend layer and

its high-resolution target, which greatly eases the burden on

the refining module. See experimental results toward ABM

in Sec. 5.4 for its superiority.

ABM and R-ABM hold simple structures but fully con-

sider the characteristics of the LPR task and provide pow-

erful extensibility to the framework, facilitating fast expan-

sion of the low-resolution results at a negligible cost.

Refining Module. To apply the low-resolution blend layers

to high-resolution images, the refining module is essential

to compensating the information loss caused by downsam-

pling. Since the blend layer is initially generated from the

low-resolution result, it is short of the transformation infor-

mation of high-frequency components. We thus include the

high-frequency component of the image as an additional in-

put for the refining module. Owing to the smoothness and

sparsity of the blend layer produced from R-ABM, we can

build a light-weight refining module as:

Bi = φ2(h(φ1(Cat(up(Bi+1),Hi)))) + up(Bi+1) (5)

where up denotes bilinear interpolation, Cat is channel-

wise concatenation, Hi (i ∈ {0, 1, ..., l − 1}) is the high-

frequency component of image Ii, φ1 and φ2 are 3×3 con-

volutions with 16 and 3 filters respectively, and h indicates

leaky ReLU with negative slop 0.2.

Given the input and output of LRL, we first adopt Eq. (4)

to calculate a primitive blend layer Bl. By continuously

upsampling and refining the blend layer, we then obtain a

high-resolution blend layer B0 with detailed transformation
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(b) VCNet(a) Input (c) AutoRetouch (d) pix2pixHD (h) Target(e) ASAPNet (f) LPTN (g) Ours
Figure 5. Qualitative comparison on FFHQR and CRHD-3K (zoom in for a better view): (a) original images, (b) VCNet [53], (c) AutoRe-

touch [46], (d) pix2pixHD [52], (e) ASAPNet [47], (f) LPTN [25], (g) Ours, and (h) ground-truth images.

information. At last, Eq. (3) is applied to B0 and I0 to

deliver the final result.

4.4. Loss Functions

The model is trained in an end-to-end manner, and the

loss functions that we utilize for training consist of (i)

the multi-scale mean squared-error (MSE) loss Lmse =∑l
i=0 ||Rgti − Ri||22, (ii) the perceptual loss Lperc [19]

is only applied to the low-resolution outputs Rl for saving

training memory cost, (iii) the adversarial loss Ladv [18]

for the final outputs R0, (iv) the dice loss Ldice [34] for

the predicted mask M of MPB, and (v) the total variation

loss Ltv [19] for each blend layer Bi (i ∈ {0, 1, ..., l}). In

summary, the joint loss is written as:

Ljoint = λ1Lmse + λ2Lperc + λ3Ladv

+ λ4Ldice + λ5Ltv,
(6)

where λ1 = λ4 = 1 and λ2 = λ3 = λ5 = 0.1 as default.

5. Experiments
5.1. Experimental Settings

Datasets. To verify the effectiveness and generalization of

our model in LPR, we conduct experiments on two typi-

cal and popular local retouching scenarios: cloth retouching

(CRHD-3K) and face retouching (FFHQR). The CRHD-3K

dataset is described in Sec. 3. FFHQR [46] is a large-scale

face retouching dataset based on FFHQ [20], which con-

tains 70,000 high-definition face images from FFHQ and

their corresponding retouched images. To enable compar-

ison with the methods having diverse inference ability, we

pad and resize all the images to 1024 × 1024 for training

and evaluation in our experiments. Besides, we show the

performance of the proposed network on CRHD-3K in the

case of different resolutions (from 480p to 4K) in Sec. 5.5.

CRHD-3K is randomly divided into a training set of 2,522

images and a test set of 500 images, and FFHQR is split

into train/val/test set as in [46].

Implementation details. Our model and baselines are im-

plemented using PyTorch 1.0 on Python 3.6 and trained on a

single NVIDIA Tesla P100 GPU. We train our model using

the Adam optimizer. With a batch size of 8, the learning rate

is 5× 10−4 initially and reduced by 10× after 100 epochs.

We set l at 2 as default in our experiments. Training the

whole framework to convergence takes about 18 hours on

CRHD-3K and about 70 hours on FFHQR.

5.2. Qualitative Comparison

Fig. 5 compares the images generated by the proposed

model with those by the current state-of-the-art methods on

the FFHQR [46] and CRHD-3K datasets. As we can see,

pix2pixHD [52], ASAPNet [47], and LPTN [25] are limited

in handling the LPR task, and fail to distinguish the retouch-

ing regions, resulting in global transfer. Moreover, visual

artifacts are observed in the results of pix2pixHD [52] and

ASAPNet [47]. VCNet [53] and AutoRetouch [46] yield

competitive results; however, the details are still less ele-

gant than ours. To sum up, the proposed model outperforms
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Figure 6. Ablation study toward MPB and LAM on CRHD-3K. The masks presented in the upper right corner of the last four columns

show the changing area relative to the input, following the same processing method illustrated in Sec. 4.2.

Datasets FFHQR [46] CRHD-3K

Metrics LPIPS† PSNR¶ SSIM¶ User Study¶ LPIPS† PSNR¶ SSIM¶ User Study¶ Time†

VCNet [53] 0.039 38.36 0.973 13.3% 0.084 31.99 0.902 6.0% 0.197

AutoRetouch [46] 0.025 41.83 0.986 18.0% 0.081 32.70 0.907 7.3% 0.057

pix2pixHD [52] 0.053 31.39 0.952 2.0% 0.101 27.23 0.892 1.3% 0.055

ASAPNet [47] 0.163 26.21 0.910 0.0% 0.101 30.31 0.887 4.7% 0.015

LPTN [25] 0.069 37.42 0.949 4.0% 0.042 35.09 0.963 20.0% 0.035

Ours 0.018 44.35 0.993 62.7% 0.029 37.35 0.971 60.7% 0.009

Table 1. Objective quantitative comparison (†Lower is better; ¶Higher is better).

the counterparts with reasonable retouched results of high

detail fidelity.

5.3. Quantitative Comparison

Objective evaluation. We quantitatively evaluate the pro-

posed method with three metrics: LPIPS, PSNR and SSIM.

Table 1 shows the results achieved on the FFHQR [46] and

CRHD-3K datasets, where the proposed method achieves

the best results compared with the other approaches, clearly

demonstrating its effectiveness.

User study. We evaluate the proposed method via a hu-

man subjective study. 10 volunteers with image process-

ing expertise were invited to choose the most elegant image

from those generated by the proposed method and the state-

of-the-art approaches. Specifically, each participant has 15

questions from FFHQR [46] and 15 questions from CRHD-

3K. We tally the votes and show the statistics in Table 1.

Our method performs favorably against the other methods.

Inference time. We evaluate the inference time of all

the models on images of 1024 × 1024 pixels with a sin-

gle NVIDIA Tesla P100 GPU (16 GB). As shown in Ta-

ble 1, VCNet [53], AutoRetouch [46] and pix2pixHD [52]

are computationally expensive on high-resolution images.

Thanks to the proposed adaptive blend pyramid architec-

ture, our model outperforms the other methods regarding

the time consumption.

5.4. Ablation Study

In order to verify the rationality and effectiveness of the

proposed components, we conduct extensive ablation exper-

iments on the CRHD-3K dataset. Table 2 shows the quan-

titative results, including ablation comparison for MPB,

LAM, the refining module (RM), and some major blend

methods. As revealed in the table, MPB plays a key role

in the architecture, contributing a ∼4% improvement. We

replace LAM with PCB proposed in VCNet [53], and the

results show that LAM achieves a ∼1% improvement. RM

produces a ∼2.5% improvement. We also compare the re-

sults by adopting different blend modes for image trans-

lation, and ABM yields an improvement of 1∼1.5% com-

pared to other methods. Below we analyze the effectiveness

of each module in detail based on the visualization results.

On MPB. MPB realizes the localization of the target re-

gion to guide local retouching. With the assistance of the

mask predicted by MPB, LRB achieves a better semantic

perception of the image under a limited model capacity. As

shown in Fig. 6, without MPB (column b), the model pro-

duces a certain blur effect in the non-target region (the local

region on the top), and it is susceptible to background dis-

traction. The changing areas of the results show that MPB

helps to keep the non-target region intact to a large extent.

Moreover, thanks to the attention to the local target region,

precise retouched results are obtained.

On LAM. We compare LAM with PCB [53], which ex-

hibits its effectiveness in the image inpainting task. As

shown in Fig. 6 (column c), the network with PCB fails to

make full use of the textures of the target region and results

in the loss of details that should be preserved. In contrast,

our LAM renders local retouching with high detail fidelity.

On ABM. To validate the effectiveness of ABM for extend-

ing local retouched results from low resolution to high res-

olution, we compare it with various blend methods as well

as other translation strategies. As shown in Fig. 7, directly

upsampling and refining the RGB results loses plenty of
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Figure 7. Visual comparison among different blend methods on CRHD-3K, including (b) refining RGB directly, (c) Addition [1], (d) Soft

Light [2], (e) adaptive blend with convolutions and (f) ours. To facilitate visualization, we scale all the blend layer values to 0 ∼ 255.

Figure 8. Ablation study toward the Refining Module on FFHQR

and CRHD-3K. For better observation, we only present some local

regions of the blend layers and the corresponding RGB results.

details, resulting in blurred effects. We adopt some exist-

ing blend modes with fixed functions used in digital image

editing, such as Addition [1] and Soft Light [2]. The Ad-

dition blend mode that adopts linear translation is unable to

fit well when the color of the local region changes severely.

Limited by the transformation ability, the soft light blend

mode cannot greatly change the pixel value near 0 and 255

(as shown in the column d). We also design two 3-layer

convolutional networks to replace Eq. (3) and Eq. (4) re-

spectively for adaptive blend. However, subject to the irre-

versibility of the two translations, it is prone to produce a

color difference. With powerful transformation capabilities

and good reversibility, the proposed ABM module achieves

much more smooth and realistic results.

On RM. The refining module is proposed to progres-

sively compensate for the deficiency of details in the low-

resolution blend layer. As shown in Fig. 8, RM gains mas-

sive details for the blend layer, so as to complete precise

retouching of the local region.

5.5. High-resolution Expansion Capability

BPL has a powerful ability to expand upward. By in-

creasing l in Fig. 3, we can achieve local retouching on ul-

tra high-resolution photos at a very low cost. Table 3 shows

the quantitative results and runtime of our model at differ-

ent resolutions. It can be seen that even for 4K resolution

images, the model still achieves good retouched results at

a super fast speed. Visual examples of 4K images are pro-

MPB LAM
Blend methods

RM PSNR
RGB Addition Soft Light Convs Ours

� � � 33.02

� � � 36.24

� � � 34.78

� � � � 35.76

� � � � 36.57

� � � � 36.10

� � � � 35.88

� � � � 37.35

Table 2. Quantitative ablation experiments on CRHD-3K.

Resolution LPIPS† PSNR¶ SSIM¶ Runtime Memory

512×512 (l = 1) 0.027 37.50 0.971 0.008 1043MB

1024×1024 (l = 2) 0.029 37.35 0.971 0.009 1329MB

2048×2048 (l = 3) 0.029 37.24 0.968 0.010 2505MB

4096×4096 (l = 4) 0.030 37.19 0.969 0.014 7191MB

Table 3. Comparison of evaluation metrics, runtime, and memory

consumption of our model in the case of different resolutions on

CRHD-3K. The runtime denotes the average inference time of all

test samples on a single NVIDIA Tesla P100 GPU (16 GB).

vided in the supplementary material.

6. Conclusion
We summarize a kind of photo retouching as the local

photo retouching (LPR) task and develop a novel solution

to it, giving full consideration to the intrinsic characteristics

of the task itself. Specifically, we design a context-aware

local retouching layer based on a multi-task architecture to

implement mask prediction and local retouching simultane-

ously. By utilizing the predicted mask as guidance, global

context and local texture can be fully captured to render

consistent retouching. Then, we build a pyramid based on

the adaptive blend module and the refining module to ex-

pand the low-resolution results to the high-resolution ones

progressively, showing great extensibility and high fidelity.

Consequently, our method exhibits excellent performance

in terms of the retouching quality as well as the running

speed, achieving real-time inference on 4K images with a

single NVIDIA Tesla P100 GPU. In addition, we introduce

the first high-definition clothing retouching dataset CRHD-

3K to promote the research on clothing retouching and LPR.
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