
Deep Stereo Image Compression via Bi-directional Coding

Jianjun Lei1 Xiangrui Liu1 Bo Peng1* Dengchao Jin1 Wanqing Li2 Jingxiao Gu3

1 Tianjin University 2 University of Wollongong 3 CalmCar Vehicle Vision System
{jjlei,xr liu,bpeng,jdc3159761141}@tju.edu.cn, wanqing@uow.edu.au, jingxiao.gu@calmcar.com

Abstract

Existing learning-based stereo compression methods
usually adopt a unidirectional approach to encoding one
image independently and the other image conditioned upon
the first. This paper proposes a novel bi-directional
coding-based end-to-end stereo image compression net-
work (BCSIC-Net). BCSIC-Net consists of a novel bi-
directional contextual transform module which performs
nonlinear transform conditioned upon the inter-view con-
text in a latent space to reduce inter-view redundancy, and a
bi-directional conditional entropy model that employs inter-
view correspondence as a conditional prior to improve cod-
ing efficiency. Experimental results on the InStereo2K and
KITTI datasets demonstrate that the proposed BCSIC-Net
can effectively reduce the inter-view redundancy and out-
performs state-of-the-art methods.

1. Introduction

With the rapid development of stereoscopic imaging
technologies, stereo images are widely used in many ap-
plications, such as augmented reality, autonomous driving,
and robot navigation [23, 11, 31, 21]. Accordingly, several
methods [8, 14, 15, 18, 19, 24, 13] have been developed and
improved to compress stereo images. Different from single
image compression, compression of stereo images needs to
reduce the inter-view redundancy in addition to the intra-
view redundancy.

Traditionally, stereo image compression methods em-
ploy inter-view prediction, such as disparity compensation
prediction (DCP) [8, 15, 18, 19], to deal with the inter-view
redundancy. For instance, when compressing the right im-
age, DCP estimates the disparities between the right image
and the reconstructed left image, then derives the prediction
of the right image via disparity compensation. The dispari-
ties and the residues between the actual and predicted right
image are encoded. However, the hand-crafted prediction
methods struggle to cope with the intricate inter-view cor-
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Figure 1. Illustration of compression performance achieved by the
proposed method and the state-of-the-art method HESIC [13].

relations for complex scenes, and thus the residues and the
bits often remain large.

With the development of deep learning, end-to-end sin-
gle image compression [2, 3, 27, 20, 22, 26, 10, 12, 25, 17,
16] has achieved promising progress. These works have
provided insights and methodologies for stereo image com-
pression, and some frameworks [24, 13] following the deep
learning paradigm have been preliminarily studied. Specif-
ically, they adopt deep learning-based single image com-
pression networks and inter-view prediction networks to re-
duce the intra-view and inter-view redundancy, respectively.
The existing methods mainly employ a unidirectional cod-
ing mechanism to reduce the inter-view redundancy, i.e.,
the reconstruction [8, 18, 19, 13] or the latent representa-
tion [24] of the left image is propagated as a context to the
right-view coding branch. Therefore, they follow on the
strictly sequential coding order that the left image is first
encoded and then the right image or vice versa. Such a uni-
directional framework, on the one hand, is not always effec-
tive to reduce the inter-view redundancy. On the other hand,
it is difficult to extend the framework into a bi-directional
coding framework that is expected to be more effective in
reducing the inter-view redundancy, hence, saving the bi-
trate.
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To address this issue, this paper proposes an end-to-end
stereo image compression network based on bi-directional
coding (BCSIC-Net). The main idea of the proposed
method is to eliminate the limitation of sequential cod-
ing by designing a novel inter-view context dependency,
i.e., extending the unidirectional coding mechanism to a
bi-directional one. Thus, a bi-directional contextual trans-
form module (Bi-CTM) and a bi-directional conditional en-
tropy model (Bi-CEM) are proposed. As shown in Fig-
ure. 1, compared with the state-of-the-art unidirectional
method [13], the proposed BCSIC-Net can achieve higher
reconstruction quality with lower bit-consuming.

The major contributions of this paper are summarized as
follows.

1) A novel end-to-end stereo image compression net-
work based on bi-directional coding (BCSIC-Net) is pro-
posed to improve the performance of stereo image compres-
sion by effectively exploiting the inter-view correlation.

2) A bi-directional contextual transform module (Bi-
CTM) that performs nonlinear transform conditioned on the
inter-view context is presented to effectively reduce the re-
dundancy between stereo views.

3) A bi-directional conditional entropy model (Bi-CEM)
is developed to improve the efficiency of entropy coding by
exploiting the inter-view correspondence as a conditional
prior.

4) Experimental results on popular benchmark datasets
show that the proposed method achieves the state-of-the-art
coding performance.

The rest of this paper is organized as follows. Section II
summarizes the related works of the single image compres-
sion and stereo image compression. The proposed method
is described in Section III, followed by experimental results
and analysis in Section IV. Section V concludes the paper.

2. Related Works
This section briefly reviews the recent methods for single

image compression and stereo image compression.

2.1. Single Image Compression

Traditional image compression methods typically con-
sist of hand-crafted transform of an image into compact co-
efficients, quantization of the coefficients, and entropy cod-
ing of the quantized coefficients [33, 30]. Furthermore, hy-
brid coding methods employed intra prediction to reduce
spatial redundancy [6, 32, 9].

In the era of deep learning, various end-to-end image
compression methods have been investigated [2, 3, 27, 20,
22, 26, 10, 12, 25, 17, 16]. These methods employ neural
networks to nonlinearly transform an image to a compact
latent representation. An entropy model is then used to esti-
mate the probability distribution of the latent representation
for entropy coding. In decoder, the reconstructed image is

generated from the latent representation. The coding per-
formance of the end-to-end framework mainly depends on
how well the nonlinear transform and the entropy model can
be learned [4].

Recently, several studies have been done on nonlin-
ear transform to improve compact representation. Ballé
et al. [2] proposed an end-to-end image compression
method, which utilizes the generalized divisive normaliza-
tion (GDN) and inverse GDN (IGDN) [1] to strengthen the
nonlinearity of the transform. Cheng et al. [12] incorpo-
rated an attention mechanism with the nonlinear transform
to derive a latent representation. Ma et al. [25] proposed
a wavelet-like invertible transform that avoids information
loss in the nonlinear transform.

Further studies have also been reported to improve the
efficacy of the entropy model. For instance, Ballé et al. [3]
proposed an entropy model conditioned on the side infor-
mation, namely the hyperprior, in which the Gaussian dis-
tribution is used to model the probability distribution of la-
tent representation and its parameters are determined by the
hyperprior. Minnen et al. [27] proposed an autoregressive
context as a supplementary prior to promote the efficiency
of the conditional entropy model in [3]. Inspired by [27],
Lee et al. [20] proposed an adaptive context entropy model.
Chen et al. [10] developed an autoregressive context model
based on a 3D-CNN to capture both spatial and channel
correlations in the latent representation. Additionally, sev-
eral methods have been reported to reduce the computa-
tional complexity of entropy model. Hu et al. [17] obtained
considerable time savings by replacing the autoregressive
model with a coarse-to-fine hyperprior structure. He et
al. [16] suggested a parallel variation of the autoregressive
context model named the checkerboard context model to ac-
celerate the decoding process.

Despite the progress on end-to-end single image com-
pression and the fact that such compression can be applied
to the left and right views of stereo images, a mechanism is
required to reduce the inter-view redundancy in stereo im-
ages in order to further improve coding efficiency.

2.2. Stereo Image Compression

In stereo image compression, inter-view redundancy
needs to be reduced in addition to intra-view redundancy.
Typically, stereo image compression follows a unidirec-
tional coding approach, i.e., the left image is encoded in-
dependently, then the right image is encoded conditioned
on the context provided by the compressed left image.

Traditionally, inter-view prediction, such as DCP, is per-
formed to reduce the redundancy between the left and right
images. Boulgouris et al. [8] proposed a stereo image com-
pression framework based on DCP. Specifically, the left
image is first independently encoded, and then the recon-
structed left image is specified as the reference image of
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Figure 2. Architecture of the proposed BCSIC-Net.

the right image. When coding the right image, a prediction
of the right image is generated based on the reference image
using DCP, and only the estimated disparities and prediction
residues are compressed. Kaaniche et al. [18] incorporated
the vector lifting scheme with DCP to effectively compress
the prediction residues. Kadaikar et al. [19] proposed a vari-
able size-block stereo image compression method, which
combines the variable block-size coding strategy with DCP.

Recently, researchers have proposed some end-to-end
methods for stereo image compression [24, 13]. Liu et
al. [24] proposed deep stereo image compression (DSIC),
where a parametric skip function is designed to exploit the
inter-view correlations for improving coding performance.
Specifically, the parametric skip function warps the left-
view features and latent representation into the right-view
coding branch to provide inter-view information. Addition-
ally, a conditional entropy model is employed, in which
the left latent representation serves as a prior for the right-
view probability distribution. Deng et al. [13] developed
deep homography for efficient stereo image compression
(HESIC), in which a homography matrix is introduced to
produce the right prediction by warping the reconstructed
left image. Following that, the right-view coding branch
only compresses the homography matrix and the prediction
residues.

However, these unidirectional coding methods sequen-
tially encode the left and right views and are hard to extend
to a bi-directional coding scheme.

3. Proposed Method

3.1. Architecture of BCSIC-Net

As illustrated in Figure. 2, the proposed BCSIC-Net con-
sists of three components, including encoder, entropy cod-
ing, and decoder. Specifically, a pair of left and right images
{IL, IR} are transformed to latent representation {yL, yR}
by the encoder. Inside the encoder, the proposed Bi-CTM is
inserted after each GDN [1] layer to reduce the redundancy
between the left and right features. Owing to the employ-
ment of Bi-CTM at multiple feature levels in the encoder,
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Figure 3. Illustration of the bi-directional contextual transform
module.

BCSIC-Net is capable of improving the coding performance
by sufficiently reducing the inter-view redundancy at multi-
ple feature scales.

During the entropy coding, quantization is firstly ap-
plied to {yL, yR}. The proposed Bi-CEM is then utilized to
provide probability estimates for the quantized latent rep-
resentation {ŷL, ŷR}. Inside the Bi-CEM, inter-view cor-
respondence is effectively exploited to improve probabil-
ity estimates. Finally, an arithmetic encoding (AE) is per-
formed to compress {ŷL, ŷR} into bitstream {bL, bR}, and
the arithmetic decoding (AD) is used to retrieve {ŷL, ŷR}
from {bL, bR}.

The decoder is utilized to transform the quantized la-
tent representation {ŷL, ŷR} to the left and right images
{ÎL, ÎR}. It is symmetric to the encoder, and the proposed
Bi-CTM is also inserted after each IGDN [1] layer.

3.2. Bi-directional Contextual Transform Module

Due to the high degree of similarity in contents, there ex-
ists significant inter-view redundancy between the left and
right features. Therefore, the Bi-CTM is proposed to ef-
fectively reduce the inter-view redundancy by performing
a nonlinear transform conditioned upon the inter-view con-
text in a latent space.
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Figure 4. Illustration of the bi-directional conditional entropy model.

As depicted in Figure. 3, the proposed Bi-CTM takes
the left and right features {fL, fR} as inputs and out-
puts compact features {f∗L, f∗R}. At the start of the pro-
posed Bi-CTM, two residual blocks are separately applied
to {fL, fR} to generate representative features {f ′

L, f
′

R}.
Inside the proposed Bi-CTM, there are two parallel paths.
In the left-view path, a two-stage mapping function is de-
veloped to generate context for fL. Specifically, in the first
stage, the preliminary context fR→L is acquired by map-
ping the right feature f

′

R to the left view,

fR→L = FL(f
′

R, f
′

L), (1)

where FL(·) denotes the mapping function implemented by
a simplified nonlocal block [29]. In the subsequent stage,
the refined context f

′

R→L is obtained by screening fR→L

according to f
′

L,

f
′

R→L = SR→L ∗ fR→L

with SR→L = σ(hL(fR→L ⊕ f
′

L)),
(2)

where hL(·) is composed of two consecutive convolution
layers, σ(·) indicates the sigmoid function, and ⊕ denotes
the channel-wise concatenation. Finally, fL is transformed
to a more compact feature f∗L conditioned on the inter-view
context f

′

R→L,

f∗L = fL − gL(f
′

L ⊕ f
′

R→L), (3)

where gL(·) is composed of two consecutive convolution
layers. Similar process is applied to the right feature fR to
reduce the inter-view redundancy in fR and yield the com-
pact feature f∗R.

The proposed Bi-CTM explores the inter-view con-
texts {f ′

R→L, f
′

L→R} with respect to left and right fea-
tures from the right and left views, respectively. Com-
pact features {f∗L, f∗R} are then extracted conditioned on
{f ′

R→L, f
′

L→R}. Compared with the existing unidirectional

mechanism, the proposed Bi-CTM provides a novel condi-
tional dependency, i.e., the bi-directional context for effec-
tive reduction of inter-view redundancy.

3.3. Bi-directional Conditional Entropy Model

Appropriate conditional dependencies are critical for the
estimation of probabilities in a conditional entropy model.
Therefore, the Bi-CEM is developed to exploit the inter-
view correspondence as an additional prior for the left and
right latent representation, namely the inter-view prior.

As shown in Figure. 4, Bi-CEM estimates the proba-
bility distribution {pŷL

(ŷL), pŷR
(ŷR)} for the quantized la-

tent representation {ŷL, ŷR}. Inter-view prior is utilized to
provide conditional dependencies for the input latent rep-
resentation and integrated into the autoregressive entropy
model [27], i.e.,

pŷL
(ŷL) =

∏
i

pŷL
(ŷiL|ϕL, φ

<i
L , ψ<i

L ),

pŷR
(ŷR) =

∏
j

pŷR
(ŷjR|ϕR, φ

<j
R , ψ<j

R ),
(4)

where ŷiL represents the ith elements of ŷL, and ŷjR repre-
sents the jth elements of ŷR. The priors {ϕL, φ

<i
L , ψ<i

L }
denote the hyperprior, the autoregressive prior, and the
proposed inter-view prior for ŷiL, respectively. Similarly,
{ϕR, φ

<j
R , ψ<j

R } indicate the priors for ŷjR.
Since the hyperprior and autoregressive prior are practi-

cal representations of the image content, the inter-view prior
is generated based on the two priors. In particular, for the
ith element of the left latent representation, the inter-view
prior ψ<i

L can be calculated as follows:

ψ<i
L = σ(uL(π

<i
L ⊕ π

<i
R )) ∗ π<i

R

with π<i
L = ϕL ⊕ φ<i

L and π<i
R = ϕR ⊕ φ<i

R ,
(5)

where uL(·) is composed of two masked convolution lay-
ers. The inter-view prior of the jth right elements ψ<j

R
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Table 1. BD-PSNR and BD-rate comparisons on the InStereo2K
dataset.

Methods BD-PSNR (dB) BD-rate (%)
Ballé (ICLR’17) [2] -0.489 14.195
BPG [6] -0.501 14.162
HEVC/H.265 [32] -0.005 -11.342
Lee (ICLR’19) [20] 0.192 -8.167
Hu (AAAI’20) [17] 0.169 -4.415
DSIC (ICCV’19) [24] 0.238 -7.062
HESIC (CVPR’21) [13] 1.373 -38.809
Proposed 1.778 -45.745

can be calculated in the same way. Additionally, the Gaus-
sian conditional model is used to parametrically model the
{pŷL

(ŷL), pŷR
(ŷR)}, i.e.,

pŷL
(ŷiL|ϕL, φ

<i
L , ψ<i

L ) ∼ N (µi
L, σ

i
L),

pŷR
(ŷjR|ϕR, φ

<j
R , ψ<j

R ) ∼ N (µj
R, σ

j
R),

(6)

The Gaussian parameters are estimated by the priors,

µi
L, σ

i
L = vL(ϕL, φ

<i
L , ψ<i

L ),

µj
R, σ

j
R = vR(ϕR, φ

<j
R , ψ<j

R ),
(7)

where vL(·) and vR(·) indicate the estimators for the left
and right views, respectively.

The proposed Bi-CEM utilizes the inter-view pri-
ors {ψL, ψR} to improve the estimates of probabilities
{pŷL

(ŷL), pŷR
(ŷR)}. Compared with the existing condi-

tional entropy models for stereo image compression [24,
13], the suggested entropy model generalizes the unidirec-
tional probability dependency to a bi-directional one, in
which the latent representation {ŷL, ŷR} can be conditioned
on the inter-view correspondence concurrently.

3.4. Implementation

The proposed BCSIC-Net is trained using the same rate-
distortion function L as in the previous works [24, 13],

L = RL +RR + λ(DL +DR), (8)

where {RL, RR} denote the bitrate calculated from the es-
timated probabilities {pŷL

(ŷL), pŷR
(ŷR)} respectively, and

{DL, DR} represent the reconstruction distortion calcu-
lated by mean square error metric. λ is a hyper parameter to
control the rate-distortion trade-off. Specifically, λ is set to
128, 256, 512, 1024, 2048, 4096 and 8192 to meet various
bitrates.

In order to conduct a fair comparison with HESIC that
has a post-processing network, a post-processing network
consisting of residual blocks is utilized. Specifically, two

Table 2. BD-PSNR and BD-rate comparisons on the KITTI
dataset.

Method BD-PSNR (dB) BD-rate (%)
Ballé (ICLR’17) [2] -0.311 16.750
BPG [6] -1.418 105.068
HEVC/H.265 [32] -1.367 105.804
Lee (ICLR’19) [20] -0.897 55.633
Hu (AAAI’20) [17] -0.677 41.406
DSIC (ICCV’19) [24] 0.005 -4.027
HESIC (CVPR’21) [13] 0.920 -28.836
Proposed 1.518 -39.068

identical branches consisting of 16 residual blocks are ap-
plied to enhance the quality of the reconstructed left and
right images, respectively.

4. Experiments
4.1. Experimental Settings

To ensure the fairness of experiments, the same datasets
provided by [13], i.e. InStereo2K and KITTI, are adopted
to train the network and conduct the tests. The proposed
method is implemented based on compreessAI [5] and Py-
Torch [28]. Adam optimizer is adopted to train the network
for 400 epochs with initial learning rate of 0.0001 and pa-
rameters β1 = 0.9, β2 = 0.999. The learning rate decays
by half per 100 epochs. All experiments are conducted on
a PC with GeForce GTX 1080Ti GPU and Intel i7-8700K
processor @3.70 GHz.

4.2. Results and Analysis

Objective evaluation. To demonstrate the efficacy of
the proposed BCSIC-Net, quantitative evaluations are con-
ducted to compare the proposed method with the traditional
compression methods [6, 32] as well as several end-to-end
compression methods, including methods designed for sin-
gle image [2, 20, 17] and methods designed for stereo image
[24, 13]. Since the experimental settings are same as those
in [13], the results of [2, 20, 17, 24, 13] are obtained from
[13]. In the experiments, the widely employed BD-rate and
BD-PSNR [7] are adopted as the objective metrics to evalu-
ate the coding performance, where the Ballé et al. [3] is set
as the baseline to compute the BD-rate and BD-PSNR. As
shown in Table 1, on the InStereo2K dataset, the proposed
BCSIC-Net obtains 45.745% BD-rate reduction and 1.778
dB BD-PSNR increase. HESIC [13] obtains 38.809% BD-
rate reduction and 1.373 dB BD-PSNR increase. Compared
with HESIC [13], the proposed BCSIC-Net further achieves
6.936% BD-rate reduction and 0.405 dB BD-PSNR in-
crease. In addition, experiments on the KITTI dataset are
also conducted to verify the effectiveness of the proposed
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(b)

(d)

(a)

Figure 5. Rate-distortion curves in terms of PSNR and MS-SSIM on the InStereo2K and KITTI datasets. (a) Comparison of PSNR on
the InStereo2K dataset, (b) Comparison of MS-SSIM on the InStereo2K dataset, (c) Comparison of PSNR on the KITTI dataset, (d)
Comparison of MS-SSIM on the KITTI dataset.

BCSIC-Net, and results are shown in Table 2. It can be
observed that, compared with with HESIC [13], the pro-
posed BCSIC-Net has significant advantages. Specifically,
HESIC [13] obtains 25.967% BD-rate reduction and 0.920
dB BD-PSNR increase, while BCSIC-Net obtains 39.068%
BD-rate reduction and 1.518 dB BD-PSNR increase. The
experimental results in Table 1 and Table 2 show that the
proposed BCSIC-Net achieves the highest rate-distortion
performance on both the InStereo2K and KITTI datasets,
which indicates the advantage of the proposed BCSIC-Net.

In addition, rate-distortion curves in terms of the PSNR
and the multi-scale structural similarity (MS-SSIM) met-
rics are shown in Figure. 5. As for the PSNR metric, the
proposed BCSIC-Net yields better performance than other
comparison methods on both the InStereo2K and KITTI

Table 3. Performance comparison in ablation study.

BD-PSNR (dB) BD-rate (%)
w/o Bi-CTM 0.950 -29.174
w/o Bi-CEM 1.187 -32.837
Proposed 1.778 -45.745

datasets, which demonstrates the effectiveness of the pro-
posed BCSIC-Net. Regarding the MS-SSIM metric, the re-
sults in Figure. 5 demonstrate that the performance of the
proposed BCSIC-Net is competitive with other methods.

Visual evaluation. Four reconstructed images from the
InStereo2K test set are shown in Figure. 6, and some details
are zoomed in. It can be observed that the reconstructed
images obtained by the proposed BCSIC-Net have clearer
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Figure 6. Visual comparison of the reconstructed left and right images from the proposed BCSIC-Net and the HESIC [13]. For each
comparison case, the first column is the input images, the second column is the images reconstructed by the HESIC [13], and the third
column is the images reconstructed by the proposed BCSIC-Net.

Figure 7. Ablation study on the InStereo2K dataset.

texture and edges as compared to HESIC [13].

4.3. Ablation Study

1) Effectiveness of the Bi-directional Contextual Trans-
form Module. The Bi-CTM is designed to effectively reduce

the redundancy between the left and right views by per-
forming a nonlinear transform conditioned on the inter-view
context. To evaluate the contribution of the bi-directional
context in Bi-CTM, fR is no longer fed to the left branch
and the up nonlocal block as well as subsequent convolu-
tion layers are removed. That is, fL is processed without
concatenating any information about fR. The experimental
results are shown in Figure. 7 and Table 3, denoted as “w/o
Bi-CTM”, while the method in [3] is assigned as the anchor
for the calculation of the BD-rate and BD-PSNR. It can be
observed that, without the bi-directional context in the Bi-
CTM, the BD-PSNR performance decreases from 1.778 dB
to 0.950 dB and the BD-rate performance decreases from
45.745% to 29.174%. This is because the left feature is dis-
abled to exploit the inter-view correlations, resulting in an
ineffective reduction of the inter-view redundancy.

To further illustrate the effectiveness of the Bi-CTM, the
latent representation of the BCSIC-Net and the BCSIC-Net
without Bi-CTM are visualized in Figure 8. It can be ob-
served that the left latent representation generated by the
BCSIC-Net is more compact than that of the BCSIC-Net
without Bi-CTM, while the right latent representation gen-
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Figure 8. Visualization of the left and right latent representation of the proposed BCSIC-Net and BCSIC-Net without Bi-CTM. We use two
stereo images from the InStereo2K test set, and assemble the visualization of the first 36 channels of their latent representation to display.

Table 4. Complexity comparison on the InStereo2K dataset.

Methods FLOPs Params Enc-time Dec-time
DSIC [24] 766.4 G 91.5 M 325.42 ms 246.31 ms
HESIC [13] 191.1 G 50.6 M 182.70 ms 8863.36 ms
Proposed 547.2 G 28.6 M 526.60 ms 12014.42 ms

erated in the two cases is similar. This is because the pro-
posed Bi-CTM can jointly promote the compactness of both
left and right latent representation by using the inter-view
context.

2) Effectiveness of the Bi-directional Conditional En-
tropy Model. The proposed Bi-CEM aims for accurate
probability estimation based on the inter-view correspon-
dence. To verify its effectiveness, modifications similar to
those in the ablation study of Bi-CTM are applied. That
is, pŷL

(ŷL) is estimated without leveraging any right-view
information. The results are also shown in Figure. 7 and
Table 3, denoted as “w/o Bi-CEM”. It can be seen that,
if the bi-directional dependency is removed, the BD-PSNR
performance decreases from 1.778 dB to 1.187 dB and the
BD-rate performance decreases from 45.745% to 32.837%.
This is because that the left-view probability estimation can
no longer utilize the inter-view prior, resulting in a decrease
in coding performance.

4.4. Complexity Analysis

Table 4 illustrates the complexity comparison between
the proposed BCSIC-Net and the other two end-to-end
stereo image compression methods. Compared with DSIC
[24] and HESIC [13], model size of the proposed BCSIC-
Net is reduced by 68% and 43% respectively, which shows
that the proposed BCSIC-Net can provide competitive per-
formance with smaller model size. As for the computation
complexity, the FLOPs of the proposed BCSIC-Net is 5x

higher than HESIC [13], but still lower than DSIC [24]. In
addition, three stereo image compression methods are all
tested on GTX 1080Ti to record the coding time. As shown
in Table 4, the average coding time of the proposed BCSIC-
Net is higher than that of DSIC [24] and HESIC [13].

5. Conclusion
This paper proposes a novel end-to-end stereo im-

age compression network based on bi-directional coding
(BCSIC-Net). In particular, a bi-directional contextual
transform module is proposed to effectively reduce the
inter-view redundancy by performing nonlinear transform
conditioned on the inter-view context. In addition, a bi-
directional conditional entropy model is developed to im-
prove the accuracy of probability estimation for entropy
coding by leveraging the inter-view correspondence as a
prior. Experimental results demonstrate that the proposed
BCSIC-Net achieves promising compression performance
and is superior to the state-of-the-art methods.

Note that the decoding time of the proposed BCSIC-Net
is longer than that of other state-of-the-art methods. This
is mainly because the Bi-CEM with autoregressive context
needs to decode all the pixels sequentially. According to
the checkboard context model in [16], this issue can be al-
leviated by designing a parallel conditional entropy model
for stereo image compression. We will work on this in the
future.
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