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Abstract

Measurements from the Event Horizon Telescope en-
abled the visualization of light emission around a black hole
for the first time. So far, these measurements have been
used to recover a 2D image under the assumption that the
emission field is static over the period of acquisition. In
this work, we propose BH-NeRF, a novel tomography ap-
proach that leverages gravitational lensing to recover the
continuous 3D emission field near a black hole. Com-
pared to other 3D reconstruction or tomography settings,
this task poses two significant challenges: first, rays near
black holes follow curved paths dictated by general relativ-
ity, and second, we only observe measurements from a sin-
gle viewpoint. Our method captures the unknown emission
field using a continuous volumetric function parameterized
by a coordinate-based neural network, and uses knowledge
of Keplerian orbital dynamics to establish correspondence
between 3D points over time. Together, these enable BH-
NeRF to recover accurate 3D emission fields, even in chal-
lenging situations with sparse measurements and uncertain
orbital dynamics. This work takes the first steps in showing
how future measurements from the Event Horizon Telescope
could be used to recover evolving 3D emission around the
supermassive black hole in our Galactic center.

1. Introduction

The Event Horizon Telescope (EHT), which recently
captured the first image of a black hole, opens the door to
a new era in black hole research [42]. We are now able to
image the direct environment around a black hole and re-
solve image features on the scale of an event horizon. This
unprecedented resolution is achieved by linking radio tele-
scopes across the globe to synchronously observe an astro-
nomical source [, ], a technique known as Very Large
Baseline Interferometry [43]. Although a black hole itself
is not visible, its imprint or “shadow” on the emission from
the surrounding hot gas is what the EHT aims to image.

The two candidate black holes within reach of the EHT
are M87* and Sagittarius A* (SgrA*). The first black hole
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Figure 1. We formulate and present an approach for a novel to-
mography: recovering the emission distribution of flares in or-
bit around a black hole using observations captured from a sin-
gle viewpoint over time. This is achieved by leveraging expected
physics around a black hole: gravitational lensing and emission
flow modeled by Keplerian orbital dynamics. In this example,
observations are simulated telescope measurements that place a
sparse set of constraints on the Fourier components of the 2D im-
ages images over time (top row); The image formation model ac-
counts for ray trajectories that are curved due to gravitational lens-
ing. The orientation of the observed projection plane is indicated
in green. Our method, BH-NeRF, recovers a representation of the
underlying 3D emission from the sparse telescope measurements.

image of M87* [42] was constructed from measurements
collected over an entire night, with the underlying assump-
tion that its emission is static throughout acquisition. In
contrast, SgrA*, the black hole in our Galactic center, is far
more dynamic and displays strong flares of emission up to
several times a day [19]. A potential explanation for these
flares are compact bright emission spots [&8] in orbit around
the black hole, referred to as hot-spots.

In this work, we formulate and propose an approach for
a novel tomography problem to reconstruct these dynamic
events (Fig. 1). In contrast to previous works [4, 23, 27],
which focus on recovering 2D image plane dynamics, our
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work recovers the underlying dynamic 3D emission dis-
tribution (i.e., 4D spatiotemporal volume). However, re-
constructing volumetric emission in this setting faces two
salient challenges. The first challenge is that light rays
which reach the EHT telescopes do not follow straight lines
that regularly sample space. Instead, the rays follow curved
paths due to the strong gravitational field around black
holes. This effect, predicted by general relativity (GR), is
known as gravitational lensing since massive objects, such
as black holes, act as lenses and bend light. The second
challenge is the EHT only observes from a single fixed
viewpoint, as opposed to the multi-view observations ac-
quired in other tomography settings.

In this paper, we introduce a novel tomography that
leverages expected physics around a black hole to recover
the time-varying volumetric emission from a single obser-
vational direction. In particular, we present a promising so-
lution, BH-NeRF, that represents the 3D emission as a con-
tinuous function using a coordinate-based neural network
and makes use of our knowledge of Keplerian orbit dynam-
ics to relate 3D emission points across time.

Our approach builds upon recent advances in neural rep-
resentations of radiance fields [34] and generalizes them
to account for curved ray trajectories. Our experiments
demonstrate promising first steps towards recovering the 3D
dynamics around a black hole, a high-priority task for as-
tronomy research over the upcoming decade [36].

2. Related Work

Tomographic 3D Reconstruction Tomography aims to
recover densities of a medium from lower dimensional pro-
jection measurements. In medical imaging, where X-ray
computed tomography (CT) [25] is extensively used for
diagnostics, 2D projections from different orientations are
used to recover a 3D volume. These CT approaches are
a well established technology, partly due to the fact that
simple photon-medium interactions result in straight-rays
through the medium [20].

In many scientific fields, complex interactions result in
non-straight light paths (e.g. scattering, refraction, lensing)
and non-linear measurement models, rendering tomography
a largely open problem for research. In Earth Science, at-
mospheric tomography using scattered light gives rise to
broken-ray paths and non-linear measurements [28—30]. In
Seismology, imaging the interior of the Earth involves re-
solving refraction and propagation along curved trajecto-
ries [18]. For optical imaging, a similar effect is caused by
a medium with variable refractive index [3,46]. In Astro-
physics, curved light paths caused by gravitational lensing
around high density regions in space has been used to con-
strain the 3D structure of dark matter [22]. Analogously,
the strong gravitational field near a black hole causes light
paths to curve (refer to Fig. 3).

In the context of black hole imaging, the work of Tiede
et al. [44] showed recovery of a handful of parameters
related to orbiting hot-spots using Monte-Carlo sampling.
While limited to a parameterized model, their work showed
promise in recovering 3D information from 2D projections.
Our work is inherently different from [44] as it is not limited
to a simple parameteric form. Rather, we aim to recover a
continuous unknown 3D volume.

Coordinate-based Neural Representations A recent
trend in computer vision and graphics is to replace tradi-
tional discrete representations of geometry, such as trian-
gle meshes and voxel grids, with continuous “coordinate-
based” neural representations [13, 33, 37]. This approach
parameterizes continuous 3D fields with a multilayer per-
ceptron (MLP) that maps from an input 3D coordinate to a
representation of scene content at that location [34].

The use of neural representations for rendering unob-
served views of scenes was popularized by Neural Radiance
Fields (NeRF) [34], which outputs the volume density and
view-dependent radiance at any continuous 3D point in the
scene. Our work is related to extensions of NeRF to dy-
namic scenes [17,32,38,39,45]. In dynamic settings, a key
challenge is relating 3D points across time so that the scene
can be represented by deformations of a canonical 3D rep-
resentation. Previous methods use priors on deformation
sparsity and rigidity [38, 45], pre-trained monocular depth
estimation [32], or explicit models of human faces and bod-
ies [17,39] to relate 3D points across time. In our work, we
leverage knowledge of Keplerian orbit dynamics to model
the dynamic evolution around a black hole.

We take inspiration from the success of coordinate-based
neural representations in other scientific imaging domains,
such as cryo-electron microscopy [47] and X-ray tomogra-
phy [41], and use it to represent the evolving 3D emission
around a black hole as described in the following sections.

3. Image & Measurement Formation Model

In this section, we discuss the three components of our
“forward model”, which models measurements observed by
the EHT as a function of the emission surrounding a black
hole: 1) the emission dynamics that describe the evolution
over time, 2) the gravitationally lensed ray tracing that de-
scribes how 3D emission is integrated along curved rays to
form a 2D image, and 3) the measurement model that de-
scribes how EHT measurements relate to these images.

3.1. Emission Dynamics

We represent emission, ¢ (¢, x), as a continuous function
of time ¢ and 3D coordinate x = (z, y, z). Emission around
a black hole can be the result of either inflowing plasma
from an accretion disk or outflowing plasma from a jet.
Here, we assume the emission originates in the equatorial
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Figure 2. An illustration of a Keplerian velocity field about a ro-
tation axis &, where the velocity at 3D locations is depicted by
arrows whose length signifies the velocity’s magnitude. The ve-
locity magnitude decreases with distance, as described by Eq (1).
Our approach does not assume knowledge of the axis & which is
jointly estimated with the underlying 3D emission (Sec. 4.2).

plane, where the temporal dynamics are modeled by a Ke-
plerian angular velocity w(r) that decreases with distance
r from the black hole center [9]. In particular, the angular
frequency of an orbit at radius r around a black hole with
mass M and zero angular momentum is given by:

! o 32, (1)

wir) = 2m\/1r3/GM

where G is the gravitational constant. The extension of
(1) for cases where the black hole angular momentum (i.e.,
spin) is nonzero is given in the supplemental material [31].

The continuous change in angular velocity with radial
distance causes a shearing of structures (Fig. 2). The shear-
ing operation can be represented by a coordinate transfor-
mation of a canonical emission at time ¢ = 0:

e(t,x) = eg (Rg ¢x), 2)

where R¢ 4 is a rotation matrix of angle ¢ about the axis
&', The position and time dependent angle ¢ is given by

o (t,1) = tw(r) o tr=3/2, 3)

3.2. Ray Tracing with Gravitational Lensing

The radiance incident any pixel p,,(t) at time ¢ is given
by “backward” integration of 3D emission over a ray path,
T',,, originating at the image plane. For N x N pixels the
discretized image plane is defined by the vector

I(t) = [pr(1), -, P2 (D] )

The curved ray path in General Relativity (GR) can be de-
scribed as a 4D (one time and three spatial dimensions)
parametric function of the distance along the ray, s. If we

le.g. as given by the Rodrigues’ Rotation Formula

Emission around a Image plane intensity
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Figure 3. 2D Illustration of an emission hot-spot orbiting around
a black hole and the resulting 1D image plane projection. As time
progresses, to — t1, the spot is sheared due to the inner radii
moving faster than the outer radii (Sec. 3.1). The color-coded
measurements illustrate the projected image at two different times.
Selected rays are traced to highlight interesting image-features
caused by the gravitationally curved trajectories.

know the path T';, = (¢(s), x(s)) that ends at the n’th pixel,
we can compute its intensity by integrating over s:

pn(t) = /e (t,x)ds =~ Z e (t,x;) As;. 5)

T, X, €l

Here As; is the integration weight associated with the i-
th sample along the path I',, and can be thought of as the
distance along the ray’s path taken in step ¢. In contrast
to standard ray tracing in Euclidean space, the black hole’s
gravitational field causes light ray trajectories to curve, and
these curved ray paths are computed by integrating a differ-
ential equation [15,21]; we provide explicit equations in the
supplementary material [31]. Note that since in this work
we assume ray paths are fixed according to the mass and
spin of the black hole, pre-computed trajectories are used
throughout the tomographic optimization.

In Eq. (5), we make three simplifying assumptions. First,
we assume that the attenuation (due to absorption and scat-
tering) of light by the emitting gas is negligible. Attenua-
tion is important for general astrophysical images but can
be neglected for EHT images of black holes Sgr A* and
MST7 [16]. Second, although gas is moving at relativistic ve-
locities, causing emission to change as the light ray propa-
gates at a finite speed, we do not account for this [ 12, 14,35].
Finally, we do not account for relativistic redshift, which
decreases the emission when material is deep in the gravi-
tational field or moving away from the observer.

Figure 3 illustrates how an emission hot-spot behind the
black hole is “lensed” onto the image plane as a conse-
quence of the bending of light rays. In the figure, selected
rays are illustrated to showcase interesting image features.
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Figure 4. EHT spatial frequency sampling pattern as a function

of time. Due to the Earth rotation, EHT telescopes probe differ-

ent frequencies at different times. The EHT coverage (left) in-

cludes existing telescopes whereas the ngEHT [40] also includes

candidate telescope sites, resulting in a denser coverage (right).

The observation time was chosen to capture ~1 full orbit around
SgrA™for emission at distances used in our simulations (Sec. 5).

A key image feature predicted by GR is bright “photon
rings” produced by light rays that traverse full orbits around
the black hole before reaching the sensor [24].

3.3. Event Horizon Telescope Measurements

The Event Horizon Telescope (EHT) records simultane-
ous radio signals from the black hole source at telescopes
located around the globe. The correlation of the recorded
radio signals from telescope pairs results in a measurement
that probes a single spatial frequency of the underlying
2D image [43]. The spatial frequency measured is pro-
portional to the projected baselines between the telescopes:
short baselines probe low spatial frequencies and long base-
lines probe high spatial frequencies. These measurements,
known as complex visibilities, can be represented as:

y(t) = FI(t) +e. (©)

Here, F; is the 2D discrete-time Fourier transform (DTFT)
matrix containing frequency components sampled by the
EHT. The measurement thermal noise, e=(e1, ...,ex) ', is
Gaussian distributed according to ¢ ~ N (0, J,%), where
o, is related to the sensitivity of the telescope pair [43]. In
reality, additional noise sources exist due to the atmosphere
and instrumental error [2], but in this work we limit our-
selves to the fundamental telescope sensitivity.

Figure 4 shows the EHT frequency sampling coverage
as a function of time during the night of April 7, 2017.
The EHT array includes the existing telescopes which were
used during the 2017 campaign. The next-generation EHT
(ngEHT) [40] array includes additional candidate telescope
sites that have been proposed for future EHT observations.
These telescope sites, chosen according to favorable atmo-
spheric transmittance and geographic location [40], yield
denser frequency coverage.

4. BH-NeRF: Black Hole Neural Radiance Fields

In this section we discuss how the measurement model
(detailed in Sec. 3) is used to supervise a coordinate-based
neural network reconstruction of the 3D emission around a
black-hole. Figure 5 gives a block diagram overview.

4.1. Representing Emission as an Neural Network

We take inspiration from NeRF [34], parameterizing the
3D volume at time ¢t = 0 with the weights, 8, of an MLP
neural network. This MLP takes continuously-valued coor-
dinates x as input, and outputs the corresponding emission:

eo (x) = MLPg(v(x)) @)

where 7v(x) is a positional encoding of the input coordinates
that projects each input coordinate onto a set of sinusoids
with exponentially-increasing frequencies:

v(x) = | sin(x), cos(x), .. .,sin(2" " 'x), cos (2" 'x) | .
(®)
This positional encoding controls the underlying interpola-
tion kernel used by the MLP, where the parameter L deter-
mines the bandwidth of the interpolation kernel [41].

In our experiments, we use an MLP with 4 layers, where
each layer is 128 units wide and uses ReLU activations. We
use a maximum positional encoding degree of L = 3. The
low degree of L is suitable for volumetric emission fields
which are naturally smooth (see Suppl. [31]). Moreover,
EHT measurements observe a limited range of frequencies,
thus, it is important to use a positional encoding degree that
does not introduce spurious high frequencies that cannot be
supervised by the measurements.

4.2. Rotation Axis Estimation

In the previous section we described how we model the
3D emission as a continuous function using a neural net-
work. To recover the unknown emission from measure-
ments, our approach relies on Keplerian motion to model
the orbit and evolution over time (Sec. 3.1). We consider a
case where the angular velocity is well modeled by Eq. (3),
however, the rotation axis £ (Eq. 2) is unknown.

For SgrA*, past studies have attempted to constrain the
rotation axis [7]. However, these constraints have large un-
certainty due to measurement and modeling error. There-
fore, our approach estimates an unknown axis jointly with
the 3D emission (Fig. 5). The estimated values from other
observations may be able to serve as a good prior or initial-
ization for the optimization problem.

Since the forward model is fully differentiable, gradients
can be back-propagated to directly optimize the unknown
rotation axis, represented as a normalized 3-vector, . As
highlighted in Fig. 6, we identify a persistent local mini-
mum that occurs at the symmetric axis, equal to the neg-

19844



(%)

MLP €o
V(%)
x=>0)—> —
positional
encoding

rotation axis

ray tracing image plane  EHT measurements

o telescope sites

Figure 5. Block diagram of our proposed tomography approach. We model an initial 3D emission eg as a continuous function using an
MLP (parameterized by €). The input to the network are 3D coordinates x (transformed by a positional encoding—see Sec. 4.1). The orbit
dynamics, parameterized by a rotation axis &, dictate how the initial emission evolves over time eg(x) — e(t,x) (Sec. 3.1). BH-NeRF
solves for @ and £ jointly using a physically motivated loss that accounts for material orbit and gravitational lensing effects. Telescope

measurements are used to constrain the optimization over 6 and &.
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Figure 6. Symmetry induces a local minimum at the opposite ro-
tation direction. The top row shows the ground truth emission
of a single hot-spot on the equatorial plane directly behind the
black hole. Top row images are rendered with a rotation axis
&irue = (0,0,1). When initializing &y with a random vector in
the southern hemisphere, the converged solution finds a local min-
imum. Simply initializing the rotation axis to the opposite sign
vector (in the northern hemisphere) identifies the global minimum
and the hot-spot emission is recovered accurately.
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ative of the true rotation axis. This can be intuitively ex-
plained: even without temporal aliasing, two opposing or-
bits share a common rotation plane. Thus, the projected
emission results in a common “line” formed on the image
plane, that results in a lower loss than a perturbed rotation
axes. This local minimum exists in all presented experi-
ments. To avoid this local minimum, we initialize the ro-
tation axis with a random unit vector drawn from the unit
sphere and its symmetric counterpart from the opposing

hemisphere. We present the resulting emission with the
lowest converged loss.

4.3. Optimization

We now detail how all the the components described in
Secs. 3, 4 are integrated in the full optimization problem.
The optimization is solved by minimizing a loss function
over network parameters 8 and rotation axis &:

£(0.6)=>ly(t) —FiIpe(t)ly )

Here, t denotes discrete observational time frames and
|[v|Z = v =~!v. The thermal noise covariance ma-
trix, ¥ = diag (07, ...,0%), is determined by each tele-
scope pair antenna parameters [40]. Using Egs. (2), (5),
(7), each image pixel p,, (elements of I) can be expanded in
terms of the unknown parameters:

Pn(6,6) = Y MLPg [y(Rexi)] As;.  (10)

x;, €y

5. Experiments

In this section we describe the simulation setup and show
experimental results. These synthetic experiments assume
that we are observing SgrA*, the Galactic center black hole
that has a mass, M, of four million solar masses and zero
angular momentum. These intrinsic parameters are neces-
sary to set the magnitude of w(r), as described in Eq. (1).
Emitting hot-spots are randomly placed roughly at a radius
of 1.16 X 7y, resulting in an orbital period of ~ 40 min-
utes. Each hot-spot is generated as a 3D Gaussian with an
isotropic standard deviation of 0.4 x GM/c?.

Ground truth emissions were generated with 128 tem-
poral frames and 64% 3D voxel grid resolution. The net-
work was implemented in JAX [6] and optimized using an
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Figure 7. Comparison of BH-NeRF with two alternative represen-
tations. We display the recovered emission for three experimen-
tal setups, where the ground truth emission increases in complex-
ity from a single hotspot (left column) to four hotspots (middle
column) to eight hotspots (four flaring up before ¢ = 0). In all
approaches, we recover emissions from image-domain measure-
ments (projection plane indicated in green) and visualize the emis-
sion recovered at time ¢ = 0. We find that BH-NeRF preforms bet-
ter visually and quantitatively. For quantitative metrics we show
the PSNR value comparing recovered emissions the ground truth.
While BH-NeRF significantly outperforms the 4D MLP, we note
that this more generalized representation could prove useful in en-
vironments with unknown dynamics.

ADAM optimizer [26] with a polynomial learning rate tran-
sitioning from le~* — 1e~C over 5K iterations. EHT mea-
surements were generated using eht-imaging [11] with
realistic thermal noise. Recovery run times were ~15 min-
utes on two NVIDIA Titan RTX GPUs. Code implementa-
tion is available at the project page [31].

Exploring Alternative Emission Representations Our
proposed approach, BH-NeRF, described in Sec. 4 repre-
sents the 4D emission through time as a 3D volume pa-
rameterized with a coordinate-based continuous neural net-
work and a parameteric flow field. In the experiments pre-
sented in Fig. 7 we explore two alternative representations

and compare them to BH-NeRF.

The first approach, which we term 3D Grid, relies on
the Keplerian orbital motion model (described in Sec. 3.1),
however, instead of a continuous neural representation, it
uses a discrete voxel grid. The second approach, 4D MLP,
ignores the orbital motion model and recovers a 4D contin-
uous emission field, represented as a MLP similar to BH-
NeRF (i.e., taking as input a 4D spatiotemproal coordinate
rather than a 3D spatial coordinate).

In Fig. 7 we compare emissions recovered with full
image-plane measurements and the true rotation axis (not
estimated). Results are shown for three different ground
truth emission patterns with increasing complexity (from
left to right). In the simplest case (left column), a single
emission hot-spot flares at £ = 0 in front of the black hole,
thus, it is directly visible. The top row of Fig. 7 shows the
observations at the initial and final frames: ¢ = {0, }.
The middle column shows a reconstruction of four hot-spots
which flare at t = 0, where two are directly visible and two
are “hidden” behind the black-hole and are gravitationally
lensed. The last experiment (right column) shows eight hot-
spots where four flared up before ¢ = 0 and four at ¢t = 0.

In our experiments, we find that BH-NeRF slightly out-
performs the 3D voxel grid with minimal tuning, poten-
tially due to its continuous and adaptive allocation of res-
olution. In contrast, the 4D representation preforms signif-
icantly worse. This is expected, as it makes no use of any
assumption on the emission dynamics. However, we high-
light that a 4D representation could be particularly useful in
situations where the true dynamics are significantly differ-
ent from our assumption of Keplarian flow.

Increasing Measurement Sparsity In the following sim-
ulations, we demonstrate recoveries for three emission pat-
terns orbiting about different axes with known and unknown
(estimated) rotation axis. The initial emission in the first ex-
periment (top two rows of Fig. 8) has three hot-spots with
two “hidden” behind the black hole and one directly visible
in-front of the black hole. The image plane, where rays are
traced from, is highlighted in green. For each experiment
we show the recovered volume (with PSNR under each re-
construction) and the recovered axis (the dot product of the
recovered and true axis specified under the reconstruction).
Furthermore, results are shown at t=10 min, with the esti-
mated axis, é , used to advance time.

A key aspect of BH-NeRF is the ability to recover arbi-
trary emission distributions which enables novel scientific
discovery. The third experiment in Fig. 8§ demonstrates this
ability by recovering 3D MNIST [10] digits (‘0’—4’) orbit-
ing at a random orientation. Despite the fact that the ‘2’ in-
tially appears behind the black hole, BH-NeRF is able to re-
cover its features (further analysis given in the Suppl. [31]).

While in practice we only have access to sparse visibil-
ity measurements of the image plane (Sec. 3.3), the image-
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Figure 8. Simulation results for three experiments with different rotation axes and emission patterns. The top two experiments show re-
coveries of Gaussian emission hotspots at two different times. The third experiment (bottom) shows recovery of 3D digits which illustrates
the flexibility of our approach which models arbitrary 3D emission. Each experiment shows: the image-plane projection, ground-truth and
recoveries. The orbital period of both is ~40 minutes. Green highlights the image-plane where rays are traced from. Recoveries are shown
for both unknown (estimated) and known rotation axis. At¢ = 0 some of the emission is directly visible and some is “hidden” behind the
black-hole and is lensed onto the image-plane. Quantitative PSNR values for each recovered emission compared to the ground truth are
given below each recovery. For the rotation axis the dot product with the ground truth is indicated below each recovery.

based recoveries are useful as a form of upper bound (anal-
ogous to tiling the Earth with telescopes) on EHT-based re-
sults. As expected, increasing the measurements with ad-
ditional ngEHT telescopes improves the recovery visually
and quantitatively over using current EHT telescopes only.

Velocity Model Mismatch The Keplerian motion model
is a good approximation, however, it does not account for

complex dynamics (e.g. due to turbulence or outflowing
motion in a magnetically-driven jet [16]). To analyze the
robustness of our approach to a mismatch in the velocity
model we perturb it with correlated Gaussian noise param-
eterized by magnitude m and correlation length ¢. For each
parameter set, (m, £), five velocity profiles were sampled to
generate data. Sample reconstructions are shown from the
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emission orbit region. 2) The mean PSNR is shown in the top right. 3) The bottom panel shows the volumetric ground-truth, no velocity
noise reconstruction, and reconstructions from the highlighted parameter sets. Results are obtained from synthetic ngEHT measurements.

best and worst PSNR parameter sets, highlighted in blue
and red respectively. While reconstruction degrades with
noise magnitude, our approach is still able to capture the
emission structure and estimate the rotation axis with a rea-
sonable level of model mismatch.

6. Limitations

While our model is able to recover 3D emission in chal-
lenging scenarios with sparse observations, we rely on a
few assumptions to do so. First, we assume knowledge
of the black hole’s spin and mass in order to pre-compute
the curved trajectories of rays and velocity profile. Al-
though reasonable ranges of values for these variables can
be obtained from other observations, estimating them inde-
pendently could provide tighter constraints on these scien-
tifically impactful parameters. However, estimating these
parameters requires back-propagating through the gravita-
tional lensing ray-tracing equations (see supplemental ma-
terial [31]). We therefore leave this challenging extension
to future work. Second, we assume a Keplerian dynamics
model where the angular velocity is determined by the dis-
tance from the black-hole center. Nevertheless, in Sec. 5
we show that our method is robust to some uncertainty in
the velocity profile. Third, in this work we do not consider
additional flares appearing during the observation window.
However, as we expect to be able to identify and isolate
the time that flares appear by looking for changes in the
source’s integrated flux (total brightness), we do not expect
this to be a significant limitation. Fourth, while our exper-
iments include realistic thermal noise, we do not include
instrumental errors or particularly challenging atmospheric

noise, which would need to be studied before applying our
model to real EHT or, in the future, ngEHT measurements.

7. Conclusion

This work takes the first steps in showing how ground-
based observations from the Event Horizon Telescope could
be used to recover evolving 3D emission around the super-
massive black hole in our Galactic center. Our contribu-
tions are two-fold. First, we formulate the novel tomogra-
phy problem of recovering dynamic 3D emission orbiting
a black hole. Second, we generalize neural radiance fields
to work in scenarios with curved ray trajectories and orbital
dynamics induced by the gravitational field around a black
hole. This enables the recovery of dynamic 3D emission
from sparse measurements of a single viewpoint over time.

Our simulations and analysis show great promise for
tomographic reconstruction of the dynamic environment
around a black hole, a direction that can open the door to
new insights into our dynamic universe. Moreover, we be-
lieve that our work can pave the way for other scientific
tomography applications, such as refraction and scattering,
which rely on complex ray-tracing at their core.
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