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Abstract
Federated Learning (FL) framework brings privacy ben-

efits to distributed learning systems by allowing multiple
clients to participate in a learning task under the coordi-
nation of a central server without exchanging their private
data. However, recent studies have revealed that private in-
formation can still be leaked through shared gradient infor-
mation. To further protect user’s privacy, several defense
mechanisms have been proposed to prevent privacy leak-
age via gradient information degradation methods, such as
using additive noise or gradient compression before shar-
ing it with the server. In this work, we validate that the
private training data can still be leaked under certain de-
fense settings with a new type of leakage, i.e., Genera-
tive Gradient Leakage (GGL). Unlike existing methods that
only rely on gradient information to reconstruct data, our
method leverages the latent space of generative adversarial
networks (GAN) learned from public image datasets as a
prior to compensate for the informational loss during gradi-
ent degradation. To address the nonlinearity caused by the
gradient operator and the GAN model, we explore various
gradient-free optimization methods (e.g., evolution strate-
gies and Bayesian optimization) and empirically show their
superiority in reconstructing high-quality images from gra-
dients compared to gradient-based optimizers. We hope the
proposed method can serve as a tool for empirically mea-
suring the amount of privacy leakage to facilitate the design
of more robust defense mechanisms.

1. Introduction
Federated Learning (FL) [26, 29, 34] has recently

emerged as a new machine learning paradigm that enables
multiple clients to collaboratively train a global learning
model under the orchestration of a central server. Instead
of directly exchanging their private data, each client learns
on its local dataset and shares the computed model update or
gradient to update the global model. FL places a heavy em-
phasis on user’s data privacy, which has made it particularly
suitable for developing machine learning models in privacy-
sensitive scenarios such as typing prediction [21], spoken
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Figure 1. Illustration of data leakage via gradient: 1⃝ Client com-
putes gradients on its private data; 2⃝ Client applies defense to
degrade the computed gradients y; 3⃝ Adversary attempts to re-
construct the private image from the shared gradients y′.

language understanding [16,20], medical research [4,8,41],
and financial services [32, 50].

Although FL is designed to structurally encode data min-
imization principles to protect privacy, recent studies have
revealed that, in certain cases, sensitive information can still
be leaked through the shared gradients [13, 35, 51, 54, 56].
To further strengthen FL’s privacy properties in these cases,
several defense strategies have been proposed to degrade
the gradient information before sharing it with the server,
such as differential privacy [14, 48], gradient compres-
sion/sparsification [56], and perturbing gradients via data
representations [44]. These state-of-the-art privacy de-
fenses have been shown to be effective against existing at-
tacks through modifying the gradient information to de-
grade its fidelity prior to sharing.

A natural question is: Can the aforementioned defenses
provide sufficient privacy guarantees to prevent the leakage
of sensitive information from the client’s private data? To
investigate this, we model the gradient leakage process as
an inverse problem, where the goal is to reconstruct the pri-
vate training data from the client’s shared low-fidelity and
noisy gradients. Existing methods seek to solve this inverse
problem by iteratively solving for the optimal set of data
samples that best match the client’s shared gradients via an
optimization process (e.g., gradient descent [13, 51] or L-
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BFGS [54, 56]). However, such a problem is ill-posed as
there are infinite sets of feasible solutions in the image space
and the outcome of the reconstruction may not be a decent
natural image. To solve this, existing attacks [13, 51] uti-
lize handcrafted image priors such as total variation [33] to
regularize the reconstruction process. Although such prior
constraint is relatively effective when there is no defense,
we find that it is still not sufficiently tight (i.e., many non-
image signals can satisfy this constraint) for reconstructing
from low-fidelity and noisy gradient observations, causing
existing attacks to falsely return unrealistic images when a
defense mechanism is applied (e.g., differential privacy), as
illustrated in Figure 1.

In this work, we demonstrate on two image datasets
that recovering high-fidelity images from shared gradients
is still feasible even under certain defense settings by intro-
ducing a new type of leakage, namely Generative Gradient
Leakage (GGL). As shown in Figure 1, our method lever-
ages the manifold of the generative adversarial network
(GAN) [6,15,27] learned from a large public image dataset
as prior information, which provides a good proximation of
the natural image space. By minimizing the gradient match-
ing loss in the GAN image manifold, our method can find
images that are highly similar to the client’s private training
data with high quality. However, solving such an optimiza-
tion problem is not trivial as both the gradient operator and
the GAN latent space are highly non-linear and non-convex,
and the defense methods applied at the client’s side also in-
ject noises into the objective function. To resolve this, we
design an adaptive loss function against common defenses
by considering the underlying gradient transformation and
resort to gradient-free optimization methods (e.g., evolution
strategies [19] and Bayesian optimization [10]) to search for
the global minima within the GAN latent space. We empir-
ically demonstrate that compared with gradient-based op-
timizers, doing so significantly reduces the chance of con-
verging to a local minimum, leading to a higher quality of
reconstructed images as well as improved similarity to the
client’s private image. We note that the findings made from
the chosen defense settings and datasets may not be general
in scope. Nevertheless, we expect the proposed method can
serve as a means for privacy auditing in FL by showing how
much an adversary can learn under a specific defense setting
to assist the future design of privacy mechanisms.

Our main contributions are summarized as follows:

• We propose to solve the inverse problem of gradient leak-
age in FL under noises and defensive transformations by
leveraging the prior information learned from deep gen-
erative models.

• We systematically study 4 types of gradient-degradation-
based defenses, including additive noise, gradient clip-
ping, gradient compression, and representation perturba-
tion, and design adaptive loss functions by accounting for

the underlying gradient transformation.

• To avoid sub-optimal solutions and reveal more private in-
formation, we compare different gradient-free optimizers
with conventional gradient-based optimizers (e.g., Adam)
and experimentally show their superiority for gradient
leakage attack in terms of reconstructed image quality and
its similarity to the client’s private image.

• We demonstrate on two image datasets (i.e., CelebA [31]
and ImageNet [9]) that with the proposed GGL, high-
resolution images can still be recovered from the shared
gradients even with the considered defenses, while exist-
ing gradient leakage attacks all fail.

2. Related Work
2.1. Privacy Leakage via Gradient

The studies on privacy leakage in FL originate from
membership inference, where a malicious analyst infers
whether a specific data sample has been involved in the
training set [38]. Moreover, researchers have discovered
that the exchanged model updates can be utilized to further
infer unintended private information, such as the retrieval
of certain input attributes [11, 35] (e.g., whether people in
the training data wear glasses). Further studies find it is
possible to recover class-level [24] or even client-level data
representatives [47] (i.e., prototypical samples of the private
training set) through generative modeling.

Data Reconstruction Attacks. Recently, Zhu et al. [56]
demonstrate a more severe type of privacy threat where an
attacker can fully restore the client’s private data samples
by solving for the optimal pair of input and label that best
matches the exchanged gradients. A follow-up work [54]
improves on this method by proposing a method for ana-
lytically extracting the label information. However, these
methods are limited to shallow networks trained with low-
resolution images. A later study by Geiping et al. [13] ex-
tends this attack to more realistic scenarios by successfully
restoring ImageNet-level high-resolution data from deeper
networks (e.g, ResNet [23]) using a magnitude-invariant
loss design. Along this direction, a more recent work by
Yin et al. [51] even achieves image batch reconstruction
by utilizing the strong prior encoded in batch normalization
statistics. Despite the improvement, the current research ef-
forts on data reconstruction attacks often assume an ideal
setting by targeting a bare-bone FL system without apply-
ing any additional privacy-preserving measures or defenses,
which contradicts industrial practices.

2.2. Privacy Preservation in FL

Existing research efforts for achieving privacy preserva-
tion in FL can be generally categorized into cryptography-
based and gradient-degradation-based approaches.
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A common type of cryptographic solution is secure
multi-party computation (MPC), which aims to have a set
of parties to jointly compute the output of a function over
their private inputs in a way that only the intended output
is revealed to the parties. This can be achieved by de-
signing custom protocols [1, 37], or via secure aggregation
schemes such as homomorphic encryption [22] and secret
sharing [49]. However, merely relying on MPC isn’t suffi-
cient to resist inference attacks over the output [35, 45].

Another line of research seeks to constrain the amount
of leaked sensitive information by intentionally sharing de-
graded gradients. Differential privacy (DP) is the standard
way to quantify and limit the privacy disclosure about indi-
vidual users. DP can be applied at either the server’s side
(central DP) or the client’s side (local DP). In comparison,
local DP provides a better notion of privacy as it does not
require the client to trust anyone. It utilizes a randomized
mechanism to distort the gradients before sharing them with
the server [14, 48]. DP offers a worst-case information the-
oretic guarantee on how much an adversary can learn from
the released data. However, for these worst-case bounds to
be most meaningful, they typically involve adding too much
noise which often reduces the utility of the trained models.
In addition to DP, it is demonstrated that performing gradi-
ent compression/sparsification can also help to prevent in-
formation leakage from the gradients [56]. A most recent
work by Sun et al. [44] identifies the data representation
leakage from gradients as the root cause of privacy leakage
in FL and proposes a defense named Soteria, which com-
putes the gradients based on perturbed data representations.
It is shown that Soteria can achieve a certifiable level of ro-
bustness while maintaining good model utility.

3. Methodology
3.1. Threat Model

In most existing data leakage attacks [13, 51, 54, 56], the
adversary is considered to be an honest-but-curious server
and has access to the current FL model as well as the shared
gradients. As illustrated in Figure 2a, we further assume
that clients apply a privacy defense locally on the gradi-
ents computed from their private data, and the adversary can
only access the degraded gradients modified by the defense
mechanism. The adversary’s objective is to reveal as much
private information as possible from the degraded gradients.
The adversary may or may not know the underlying defense
strategy adopted by the client. In either case, the adversary
could attempt to launch an adaptive attack by directly us-
ing this knowledge or by estimating the defense parameters
through the observed gradients. Additionally, we assume
the adversary can utilize the knowledge extracted from pub-
licly available datasets (disjoint from client’s private data) to
facilitate and improve the attack.
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Figure 2. Illustration of the threat model and the proposed method.

3.2. Background

Problem Formulation. The task of reconstructing a
training image x ∈ Rd from its gradients y ∈ Rm can be
formulated as a non-linear inverse problem:

y = F (x), (1)

where F (x) = ∇θL(fθ(x), c) is the forward operator that
calculates the gradients of the loss L provided with x and
its label c, along with the FL model fθ parameterized by θ.
When defense is applied at the client’s side, the reconstruct-
ing problem defined in Equation 1 becomes:

y = T (F (x)) + ε, (2)

where T (·) is referred to as the lossy transformation (e.g.,
compression or sparsification) and ε means the additive
noise (e.g., DP) introduced by the defense algorithm.

Current Approach and Its Limitation. Existing meth-
ods [13, 51, 56] aim to solve this inverse problem by using
image priors in a penalty form:

x∗ = argmin
x∈Rd

D(y, F (x)) + λω(x), (3)

whereD(·) is a distance metric, ω(x) : Rd → R is the stan-
dard image prior (e.g., total variance [2] regularization) and
λ is the weight factor. This form has been demonstrated ef-
fective for reconstructing images from the actual gradients.
However, when reconstructing from a set of low-fidelity and
noisy gradients, such methods would suffer from the limited
identification ability of hand-crafted priors, rendering them
to return false solutions that are not valid natural images,
which is illustrated in Section 4.4.
3.3. Generative Gradient Leakage

Motivated by the success of deep generative models for
compressed sensing [3,46], in this work, we aim to leverage
a generative model trained on public datasets as the learned
natural image prior to ensure the reconstructed image qual-
ity. Moreover, to further account for the privacy defenses
that produce degraded gradient information, we propose an
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adaptive attack by estimating the transformation T (·) and
incorporating it in the optimization process. Specifically,
given a well-trained generator G(·), we target to solve the
following optimization problem:

z∗ = argmin
z∈Rk

D
(
y, T

(
F (G(z))

))︸ ︷︷ ︸
gradient matching loss

+λ R(G; z)︸ ︷︷ ︸
regularization

, (4)

where z ∈ Rk is the latent space of the generative model,
R(G; z) is a regularization term that penalizes latent vec-
tors which deviate from the prior distribution, and λ is the
weight factor. Once the optimal solution z∗ is obtained, the
image can be reconstructed by G(z∗). An overview of the
proposed method is provided in Figure 2b. We next describe
each component in detail.

Label Inference. Given the shared gradients, the ad-
versary can first adopt an analytical method [54] to infer
the ground truth label c associated with the client’s private
image x. Specifically, for FL models performing classifica-
tion task over n classes, the ith entry of the gradients with
respect to the weights of the final fully-connected (FC) clas-
sification layer (denoted as∇Wi

FC) is given by:

∇Wi
FC =

∂L(fθ(x), c)
∂zi

× ∂zi
∂Wi

FC

, (5)

where zi is the ith output of the FC layer. Note that com-
puting the second term ∂zi

∂Wi
FC

results in the post-activation
outputs of the previous layer, which will be always non-
negative if activation functions like ReLU or sigmoid are
applied. For networks trained with cross-entropy loss on
one-hot labels (assuming softmax is applied at the last
layer), the first term will be negative if and only if i = c.
Thus the ground truth label can be retrieved by identifying
the index of the negative entry of ∇Wi

FC . The inferred la-
bel will be used for evaluating the FL model training loss
L(fθ(x), c). For conditional GANs [36], the inferred label
will also be used as the class condition.

Gradient Transformation Estimation. The adversary
can further attempt to mitigate the impact of the defense by
adopting a similar transformation when evaluating the loss
of reconstructed images. Although the transformation pro-
cess at the client’s side isn’t directly known to the adversary,
the adversary can estimate the parameters of the transforma-
tion through the observed gradients. Specifically, we con-
sider the following defensive transformations (i.e., T (·)):

(1) Gradient Clipping: A common technique used in DP
studies [14, 48] to restrict the contribution of each individ-
ual client. Given a clipping bound S, gradient clipping
transforms the gradients as Tcli(y, S) = y/max(1, ∥y∥2

S ).
In practice, gradient clipping is often done in a layer-wise
manner. The adversary can take the ℓ2 norm at each layer
of the observed gradients as the estimated clipping bound.

(2) Gradient Sparsification: Originally proposed for re-
ducing the communication bandwidth of distributed train-
ing [30], gradient sparsification is also reported to be ef-
fective for defending against gradient leakage attacks [56].
Specifically, given a pruning rate p ∈ (0, 1), the client first
computes a threshold τ ← p of |y|, which is then used
to produce a mask M ← |y| > τ . Finally, the mask
is applied to the gradients during the transformation, i.e.,
Tspa(y, p) = y ⊙ M. This operation is also layer-wise.
The adversary can use the percentage of non-zero entries in
the observed gradient to estimate its sparsity.

(3) Representation Perturbation: The core of the re-
cently proposed Soteria [44] defense is to prevent data leak-
age by perturbing the representation learned from a single
fully-connected layer L (i.e., the defended layer) to cause
maximal reconstruction error. Assume fr : Rd → Rl is the
feature extractor before the defended layer that maps x ∈
Rd to a l-dimensional data representation r ∈ Rl. Specif-
ically, the client first evaluates the impact of each entry of
the representation by computing

{∥∥ri(∇xfr(ri))
−1

∥∥
2
: i ∈

{0, 1, ..., l − 1}
}

. Given a pruning rate p ∈ (0, 1), the
client then prunes the p × l elements in r with the largest∥∥ri(∇xfr(ri))

−1
∥∥
2

values to get r′. Finally, the client
computes the gradients on the perturbed representation r′.
This can be thought as applying a mask only to the gradi-
ents of the defended layer: Trep(y, p) = y ⊙ML. As this
process is deterministic for a given x and FL model fθ, the
adversary can reverse-engineer this mask according to the
non-zero entries of the gradients from the defended layer.

Gradient Matching Loss. The first term in the objec-
tive function (Equation 4) encourages the solver to find
images that are contextually similar to the client’s private
training images in the generator’s latent space by mini-
mizing the distance between the transformed gradients of
the generated images ỹ and the observed gradients y. We
explore the following distance metrics for calculating the
gradient matching loss: (1) Squared ℓ2 norm [51, 54, 56]:
D1(y, ỹ) = ∥y − ỹ∥22; and (2) Cosine Distance [13]:
D2(y, ỹ) = 1 − <y,ỹ>

∥y∥2∥ỹ∥2
. Cosine distance is magnitude-

invariant and is equivalent to optimizing the Euclidean dis-
tance of two normalized gradient vectors.

Regularization Term. Optimizing with gradient match-
ing loss alone is likely to produce latent vectors that de-
viate from the generator’s latent distribution, resulting in
unrealistic images with significant artifacts. To avoid
this issue, we explore the following loss functions to
regularize the latent vector during the optimization pro-
cess: (1) KL-based regularization [28]: R1(G; z) =

− 1
2

∑k
i=1

(
1 + log

(
σ2
i

)
− µ2

i − σ2
i

)
, where µi and σi de-

note the element-wise mean and standard deviation. The
KL term aims to reduce the Kullback–Leibler divergence
(KLD) between the latent distribution and the standard
Gaussian distribution N (0, I); and (2) Norm-based regu-
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Reg.
Grad. D1 D2

MSE-I ↓ PSNR ↑ MSE-I ↓ PSNR ↑
R1 0.0320±0.0173 15.6814±2.6387 0.03671±0.0227 15.3471±3.1093
R2 0.0337±0.0206 15.5405±2.7090 0.06290±0.0815 14.3249±4.1627

Table 1. Comparison of different loss function configurations.

larization [7]: R2(G; z) = (∥z∥22 − k)2, which penalizes
latent vectors that are far from the prior distribution.

Optimization Strategy. The target inverse problem
described in Equation 4 is highly non-linear and non-
convex, and thus choosing the right optimization strategy
becomes a critical factor for achieving good image recon-
struction. Existing data reconstruction attacks are all based
on gradient-based optimizers such as L-BFGS [54, 56] and
Adam [13, 51]. The outcome of such local optimization
strategies highly depends on the choice of initialization
and often requires multiple trials to find a decent solution.
Moreover, we find that for more complex generative mod-
els, gradient-based optimizers are likely to converge to lo-
cal minima, leading to poor reconstruction results. Inspired
by Huh et al. [25], besides gradient-based optimizers, we
further explore two gradient-free optimization strategies to
overcome these issues:

(1) Bayesian Optimization (BO) [43]: BO is a global op-
timization method that can well handle stochastic noise in
blackbox functions, which are modeled by a Gaussian pro-
cess. Vanilla BO scales poorly to high-dimensional prob-
lems [43] and thus we adopt a variant of BO, namely, trust
region BO (TuRBO) [10], for performing a global search in
the high-dimensional latent space of the GAN model.

(2) Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [19]: CMA-ES leverages a multivariate normal
sampling distribution over the search space. At each step,
a stochastic search is performed by drawing samples from
that distribution to compute the loss. Evolutionary strate-
gies such as recombination and mutation are used to adap-
tively update its mean and covariance matrix [18].

4. Experiments
4.1. Experimental Setup

FL Tasks & Datasets. We evaluate our method on two
FL tasks: (1) Gender Classification: Binary gender clas-
sification performed on the CelebFaces attributes dataset
(CelebA) [31] with images of size 32 × 32; and (2) Im-
age Classification: 1000-class image classification on the
ImageNet ILSVRC 2012 dataset [9] with images of size
224 × 224. The FL model for all tasks adopts the ResNet-
18 [23] architecture with randomly initialized weights. We
consider the case where the client performs one local step
with batch size =1 to compute the gradients.

Implementation. For CelebA dataset, we use the train-
ing set containing 162k images to train a DCGAN [40] on
the Wasserstein loss with gradient penalty [17], while the
rest images are reserved for evaluation. For experiments on
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Figure 3. Visual comparison of different optimizers. The images
on the right are the reconstruction samples produced by three types
of optimizers with different random seeds.

Dataset Metric Adam BO CMA-ES
Mean Std. Mean Std. Mean Std.

CelebA

MSE-I ↓ 0.0427 0.0025 0.0813 0.0131 0.0708 0.0008
PSNR ↑ 13.6965 0.2593 10.9455 0.6816 11.4989 0.0533
LPIPS ↓ 0.1435 0.0083 0.2162 0.0328 0.2136 0.0133
MSE-R ↓ 0.0003 0.0001 0.0012 0.0003 0.0015 0.0022

ImageNet

MSE-I ↓ 0.5918 0.1955 0.2648 0.0181 0.2667 0.0119
PSNR ↑ 2.4433 1.3565 5.7783 0.2992 5.7420 0.1988
LPIPS ↓ 0.7983 0.0280 0.6166 0.0590 0.5736 0.0209
MSE-R ↓ 0.1051 0.0703 0.0035 0.0005 0.0018 0.0002

Table 2. Quantitative comparison of different optimizers.

ImageNet dataset, we use a pretrained BigGAN [6] released
by the authors [5]. Note that the FL task is performed on the
evaluation set which is disjoint from the GAN training set.
We use the gradients computed from the FL model after ap-
plying defenses to conduct reconstruction.

Evaluation Metrics. Besides qualitative visual compar-
ison, we use the following metrics for quantitative evalua-
tion of the similarity between the target image and the re-
constructed image: (1) Mean Square Error - Image Space
(MSE-I ↓): the pixel-wise MSE between the target image
and the reconstructed image; (2) Peak Signal-to-Noise Ra-
tio (PSNR ↑): The ratio of the maximum squared pixel
fluctuation and the MSE between the target image and the
reconstructed image; (3) Learned Perceptual Image Patch
Similarity (LPIPS ↓) [52]: the perceptual image similar-
ity between the target image and the reconstructed image
measured by a VGG network [42], and (4) MSE - Repre-
sentation Space (MSE-R ↓): the MSE between the target
image and the reconstructed image measured in the learned
representation space, i.e., the feature vector before the final
classification layer [44]. Note that “↓” means the lower the
metric the higher relative image quality, while “↑” repre-
sents the higher the metric the higher image quality.

4.2. Choice of Loss Function

We first evaluate the performance of different loss func-
tion configurations. We randomly select 10 images from the
evaluation set of the CelebA dataset and measure the mean
and standard deviation of the MSE-I and PSNR scores be-
tween the original images and their reconstructions using
Adam optimizer. From results presented in Table 1 we ob-
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Table 3. Quantitative comparison of GGL with state-of-the-art methods under various defenses.

Dataset Attack Additive Noise [44, 56] Gradient Clipping [14, 48] Gradient Sparsification [56] Soteria [44]
MSE-I ↓ PSNR ↑ LPIPS ↓ MSE-R ↓ MSE-I ↓ PSNR ↑ LPIPS ↓ MSE-R ↓ MSE-I ↓ PSNR ↑ LPIPS ↓ MSE-R ↓ MSE-I ↓ PSNR ↑ LPIPS ↓ MSE-R ↓

CelebA

DLG [56] 0.6479 1.8843 0.8197 0.0021 0.2097 6.7831 0.7375 0.0326 0.3335 4.7679 0.7986 0.0155 0.3624 4.4069 0.8007 0.0285
iDLG [54] 0.6261 2.0329 0.8209 0.0025 0.1960 7.0762 0.7280 0.0326 0.3301 4.8124 0.8035 0.0162 0.3269 4.8553 0.8036 0.0396

IG [13] 0.4880 3.1151 0.8260 0.0097 0.0543 12.6517 0.2998 0.0003 0.4103 3.8687 0.7975 0.0113 0.3441 4.6326 0.8008 0.0316
GI [51] 0.5738 2.4116 0.8302 0.0023 0.1790 7.4701 0.7142 0.0322 0.2958 5.2888 0.7775 0.0163 0.3179 4.9768 0.7991 0.0409
GGL 0.0780 11.0766 0.1906 0.0010 0.0760 11.1902 0.1670 0.0015 0.0768 11.1466 0.1620 0.0007 0.0968 10.1434 0.2561 0.0007

ImageNet

DLG [56] 0.7438 1.2852 0.9353 0.0049 0.3809 4.1912 0.9798 2.1610 0.4432 3.5336 0.8907 0.0075 0.5990 2.2253 0.9195 0.5415
iDLG [54] 0.7352 1.3359 0.9392 0.0041 0.3699 4.3190 0.9473 1.8810 0.4357 3.6077 0.8935 0.0077 0.6089 2.1542 0.9198 0.5425

IG [13] 0.3081 5.1120 0.8677 0.4490 0.1432 8.4386 0.7476 0.0214 0.2993 5.2376 0.8805 0.0501 0.3683 4.3373 0.8700 0.5057
GI [51] 0.6593 1.8090 0.9448 0.0031 0.3702 4.3154 0.9451 1.8807 0.4404 3.5611 0.8889 0.0072 0.6235 2.0511 0.9169 0.5792
GGL 0.2686 5.7089 0.5915 0.0018 0.2230 6.5163 0.5592 0.0015 0.2141 6.6920 0.5170 0.0017 0.2484 6.0477 0.5685 0.0022

serve that using squared ℓ2 norm (D1) for computing the
gradient matching loss with KLD as the regularization term
(R1) yields the best reconstructed image quality. Therefore,
hereinafter we use this loss configuration for analyzing the
impact of different optimizers and defenses.

4.3. Choice of Optimization Strategy

We next study the impact of different optimizers on the
reconstruction results. We randomly select images from
the CelebA and ImageNet dataset to compute the recon-
struction and repeat the experiment by varying its random
seed. The numbers of updates are set to 2500, 1000, and
800 for Adam, BO, and CMA-ES, respectively. We sum-
marize the results in Table 2 and provide visualization of
the reconstruction samples in Figure 3. We find that the
gradient-based and gradient-free optimizers show similar
performance on the CelebA dataset, with Adam perform-
ing slightly better both visually and statistically. However,
on the ImageNet dataset, the gradient-based Adam opti-
mizer fails to recover any useful information from the gra-
dients other than the class label. Moreover, its reconstruc-
tion results are highly dependent on the initialization. The
gradient-free optimizers (BO and CMA-ES), on the other
hand, are still able to find samples that resemble the original
private image and are more resilient to different initializa-
tion conditions. The reason causing this performance dif-
ference is twofold: (1) the images in the CelebA dataset are
well-aligned, while the ImageNet dataset has a more het-
erogeneous data distribution; and (2) the generator used for
generating high-resolution ImageNet data has a deeper and
more complex structure, which makes it hard for gradient-
based optimizers to find a projection in its latent space.
Based on this observation, we choose to use CMA-ES as
the optimizer for conducting experiments under various de-
fense settings.

4.4. Comparison with Existing Gradient Leakage
Attacks Under Defenses

Attack Baselines. We compare our method with sev-
eral state-of-the-art attack methods: (1) Deep Leakage from
Gradients (DLG) [56]: gradient leakage attack with ℓ2
gradient matching loss and L-BFGS optimizer; (2) Im-
proved Deep Leakage from Gradients (iDLG) [54]: im-
proved DLG attack with label inference; (3) Inverting Gra-

dients (IG) [13]: gradient leakage attack with cosine dis-
tance as loss and total variation as prior, optimized using
Adam; and (4) GradInversion (GI) [51]: gradient leakage
attack with ℓ2 gradient matching loss and Adam optimizer.

We implemented these attacks following the code repos-
itories released by the authors [12,53,55]. In our implemen-
tation of GI, we consider a stricter scenario where the batch
normalization statistics are unknown to the adversary. For
the second-order-based DLG and iDLG attacks, we use the
L-BFGS optimizer to conduct 300 iterations of optimization
on the CelebA dataset and 1, 200 iterations on the ImageNet
dataset to reconstruct the data. As for the first-order-based
IG and GI attacks, we use the Adam optimizer with an ini-
tial learning rate of 0.1 and conduct 8, 000 iterations of op-
timization on CelebA and 24, 000 iterations on ImageNet.
The performance of several existing methods is highly vary-
ing according to different random seeds. To mitigate this,
each attack is given 4 trials and the best result with the low-
est loss is selected as its final reconstruction.

Defense Scheme. Following prior studies [44, 56], we
choose a relatively strict defense setting for conducting
evaluation: (1) Additive Noise [44, 56]: inject a Gaussian
noise ε ∼ N (0, σ2I) to the gradients with σ = 0.1; (2)
Gradient Clipping [14, 48]: clip the values of the gradients
with a bound of S = 4; (3) Gradient Spasification [56]: per-
form magnitude-based pruning on the gradients to achieve
90% sparsity; and (4) Soteria [44]: gradients are generated
on the perturbed representation with a pruning rate of 80%.

Results. Table 3 compares the performance of the
proposed method GGL with other gradient leakage attack
methods. Our general observation is that existing attack
methods struggle to reconstruct a realistic image with the
present of any privacy defense mechanism, while the pro-
posed GGL is able to synthesize high quality images that
are similar to the original ones, with the measured PSNR
>10.1 on the CelebA dataset and >5.7 on ImageNet dataset
across all scenarios. One exception is that we find the gradi-
ent clipping operation has a very low effect on the IG attack.
This is because clipping to ℓ2 norm only changes the mag-
nitude of the gradients and does not affect the angular infor-
mation (i.e., direction). Therefore, though gradient clipping
increases the reconstruction error for attacks based on the
Euclidean distance between gradients, it will not affect the
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Figure 4. Comparison of the reconstruction results with attack baselines on the CelebA & ImageNet datasets under various privacy defenses.

Figure 5. Reconstruction results against the Soteria [44] defense
on the ImageNet dataset: (top) original image and its (bottom)
reconstruction by GGL.

IG attack which utilizes the magnitude-invariant cosine dis-
tance for computing its gradient matching loss. Clipping to
L∞ norm instead would address this issue, however, it is
not adopted by existing DP mechanisms as it will result in
a poor ℓ2 bound. We also notice that comparing to gradient
sparsification, reconstructing from the gradients produced
from the perturbed data representation using the Soteria de-
fense would result in higher MSE in both the image space
and the representation space. Despite this, such defense can
still be bypassed by our adaptive attack.

From the visualization results in Figure 4, we can see
that except for the IG attack in the case of gradient clip-
ping, the reconstructed image of existing attacks does not
reveal much information about the original image. We also
observe that on the CelebA dataset, the proposed method
GGL isn’t able to reconstruct the exact face of the per-
son in the original image when defenses are applied, yet
it successfully reveals several key attributes including gen-
der, hair style, hair color, skin color, head posture, and even
the background color. Even on the more challenging Ima-
geNet dataset, our method can still produce a high quality
reconstruction that reveals the composition of the original
image under these defenses. More samples on the ImageNet
dataset against the Soteria defense is presented in Figure 5.

Combining Clipping and Noise Addition. In addition,
we also evaluate our attack against the combination of mul-
tiple defense mechanisms. Figure 6 compares the recon-
struction results under 3 defense settings: additive noise
with σ = 0.1, gradient clipping with S = 4, and simulta-

Additive Noise Gradient Clipping Clipping + NoiseOriginal

8.3240 6.2744 5.4245

Figure 6. Illustration of combined defense: (left) original image
and its (right) reconstruction by GGL. The PSNR with respect to
the original image is shown below each reconstructed image.

neously applying gradient clipping and additive noise (i.e.,
the privacy defense used in local and distributed DP). We
observe that the high-resolution image can still be recon-
structed under these defenses, and combining gradient clip-
ping and additive noise would lead to a relatively worse re-
construction with the lowest PSNR. We thus believe this
attack can also be used as a means of auditing local DP.

4.5. Impact of Defense Parameter
We next apply the Soteria [44] defense on the CelebA

dataset as a case study to investigate the impact of differ-
ent defense parameters. We use the attack baselines and
the proposed GGL to generate reconstructions as we vary
the pruning rate from 0% to 80%, and summarize the re-
sults in Figure 7. The authors reported in their original
paper [44] that the DLG [56] and IG [13] attack can tol-
erate the Soteria defense with a pruning rate up to 40% on
the CIFAR10 dataset. Differently, we observe that on the
CelebA dataset, defense with a low pruning rate of 10%
would already impose a significant impact on the recon-
struction results of these attacks. This is perhaps because
the Soteria defense mainly affects the fully-connected layer
that produces class-level data representation. Different from
CIFAR10, the class-wise label of the CelebA dataset does
not directly reveal contextual information about the subject
(e.g., the identity of the person). Instead, it only encodes
very coarse-grained information (i.e., gender) and thus can
be more susceptible to perturbations. In other words, pri-
vacy information that is entangled with the class label is
more likely to be leaked through gradients. Nevertheless,
the proposed method can still reliably recover the person’s
profile regardless of the pruning rate.
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Figure 7. Reconstruction results under the Soteria [44] defense
with varying pruning rates on the CelebA dataset. The PSNR with
respect to the original image is shown below each image.

5. Discussion
Limitation. Although the image prior captured by the

GAN model can help restore the missing information from
the degraded gradients for better image reconstruction, at
the same time the output image distribution is also con-
strained by the GAN latent space, rendering it hard to faith-
fully reconstruct out-of-distribution image samples. Fig-
ure 8 shows two examples of attempting to reconstruct
out-of-distribution ImageNet images under the Soteria de-
fense [44]: in Figure 8a, the orientation of the object re-
constructed image is changed from the original image; and
Figure 8b, the reconstruction result is missing important se-
mantics (e.g., the person) that is not well-represented in its
class (i.e., Bernese mountain dog). These phenomena can
potentially be improved by jointly optimizing the class con-
dition [25] or relaxing the generator [39].

Analysis of Loss Landscape and Potential Defense. To
investigate the reconstruction problem under the constraint
of a generative model, we use the latent vector returned by
GGL as the central point and choose two directions to visu-
alize the loss landscape of the gradient matching loss as well
as the LPIPS loss between the original image and the image
generated by the BigGAN model by sampling in the latent
space. The visualization results are presented in Figure 9,
where Figure 9a shows the loss landscape observed by the
adversary if only the gradient information is accessible, and
Figure 9b shows the ground truth loss landscape measured
by the LPIPS score assuming the original image is known.
We have the following two observations: (1) the surface of
the gradient matching loss is non-convex and contains sev-
eral local minima; and (2) there exists an inconsistency be-
tween the ground truth and the observed loss surface, i.e.,
the image found by optimizing the gradient matching loss
doesn’t provide the most similar visual result. However, as

(a) Change in orientation (b) Missing semantics

Figure 8. Reconstruction results of out-of-distribution image sam-
ples: (left) original image and its (right) reconstruction by GGL.

(a) Observation: land-
scape of the ℓ2 gradient
matching loss

(b) Ground truth: land-
scape of the LPIPS loss

Figure 9. Visualization of the loss landscapes.

showed in our experiments, such a level of inconsistency
isn’t sufficient to provide privacy guarantees as the subopti-
mal result with minimized gradient matching loss still leaks
a considerable amount of information about the original im-
age. This hints us that applying transformations to the gra-
dients to reform the gradient matching loss so that its land-
scape is no longer in line with the ground truth LPIPS loss
can help to effectively achieve privacy preservation against
generative gradient leakage attacks.

6. Conclusion
This work presents Generative Gradient Leakage (GGL),

an approach that utilizes a generative model to extract prior
information from public datasets to improve image recon-
struction from degraded gradients produced by privacy de-
fenses. Our experimental results on two image classifica-
tion datasets show that with the learned image prior, the
proposed method is more resilient to the perturbations and
lossy transformations applied to the gradients and is still
able to reconstruct high-fidelity images that reveal informa-
tion about the original images when existing attacks all fail.
We hope the proposed method can serve as an analysis tool
for empirical privacy auditing to help facilitate the future
design of privacy defenses.
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