
AutoLoss-Zero: Searching Loss Functions from Scratch for Generic Tasks

Hao Li1∗†, Tianwen Fu2* †, Jifeng Dai4,5, Hongsheng Li1, Gao Huang4, Xizhou Zhu3‡

1CUHK-SenseTime Joint Laboratory, The Chinese University of Hong Kong
2Department of Information Engineering, The Chinese University of Hong Kong

3SenseTime Research 4Tsinghua University
5Qing Yuan Research Institute, Shanghai Jiao Tong University

haoli@link.cuhk.edu.hk, futianwen@ie.cuhk.edu.hk, daijifeng001@gmail.com

hsli@ee.cuhk.edu.hk, gaohuang@tsinghua.edu.cn, zhuwalter@sensetime.com

Abstract

Significant progress has been achieved in automating

the design of various components in deep networks. How-

ever, the automatic design of loss functions for generic tasks

with various evaluation metrics remains under-investigated.

Previous works on handcrafting loss functions heavily rely

on human expertise, which limits their extensibility. Mean-

while, searching for loss functions is nontrivial due to the

vast search space. Existing efforts mainly tackle the issue by

employing task-specific heuristics on specific tasks and par-

ticular metrics. Such work cannot be extended to other tasks

without arduous human effort. In this paper, we propose

AutoLoss-Zero, which is a general framework for searching

loss functions from scratch for generic tasks. Specifically,

we design an elementary search space composed only of

primitive mathematical operators to accommodate the het-

erogeneous tasks and evaluation metrics. A variant of the

evolutionary algorithm is employed to discover loss func-

tions in the elementary search space. A loss-rejection pro-

tocol and a gradient-equivalence-check strategy are devel-

oped so as to improve the search efficiency, which are ap-

plicable to generic tasks. Extensive experiments on various

computer vision tasks demonstrate that our searched loss

functions are on par with or superior to existing loss func-

tions, which generalize well to different datasets and net-

works. Code shall be released.

1. Introduction

Recent years have witnessed exciting progress in Au-

toML for deep learning [15, 35, 36, 41, 42, 68]. The auto-

matic design of many components has been explored, rang-

ing from architectures (e.g., neural architectures [50] and

normalization-activation operations [35]) to learning strate-

*Equal contribution. †This work is done when Hao Li and Tianwen Fu

are interns at SenseTime Research. ‡Corresponding author.

gies (e.g., data augmentation strategies [15], dropout pat-

terns [42], and training hyper-parameters [16]). However,

to automate the entire deep learning process, an essential

component is under-investigated, namely, the automatic de-

sign of loss functions for generic tasks.

Loss functions are indispensable parts in deep network

training. In various tasks, including semantic segmenta-

tion [7, 65], object detection [19, 51], instance segmenta-

tion [3, 23] and pose estimation [56], cross-entropy (CE)

and L1/L2 losses are the default choices for categorization

and regression, respectively. As the default loss functions

are usually approximations for specific evaluation metrics,

there usually exists a misalignment between the surrogate

loss and the final evaluation metric. For example, for

bounding box localization in object detection, L1 loss is

widely used, while the IoU metric is the standard evalu-

ation metric [63]. Similar discrepancy has also been ob-

served in semantic segmentation [31], where some metrics

measure the accuracy of the whole image, while others fo-

cus more on the segmentation boundaries. The misalign-

ment between network training and evaluation results in

sub-optimal solutions with degraded performance.

A multitude of handcrafted loss functions have been pro-

posed for different evaluation metrics. Since most desired

metrics are non-differentiable and cannot be directly used

as training objectives, many existing works [4, 19, 29, 33,

44, 53, 61] design differentiable variants of the CE and

L1/L2 losses by carefully analyzing specific evaluation met-

rics. Another series of works [2, 38, 43, 45, 52, 63, 66]

handcraft clever surrogate losses based on the mathematical

expressions of specific evaluation metrics. Although these

handcrafted loss functions show improvement on their tar-

get metrics, they heavily rely on expertise and careful anal-

ysis for specific scenarios, which limits their extendibility.

In this paper, we aim to automate the design of loss func-

tions for generic tasks. Although there are several pioneer

works [30, 31, 37, 58] on loss function search, they are

1009

all limited to specific tasks and particular evaluation met-

rics, with task-specific heuristics, which cannot be applied

to generic tasks. For example, [31] constructs the search

space by parametrizing the evaluation metrics of semantic

segmentation, which can hardly be applied to mAP metric

in object detection; [37] proposes a rejection protocol for

object detection, which is designed based on specific analy-

sis of mAP metric properties by human expertise. Searching

loss functions for generic tasks is much more challenging,

because of the heterogeneity of various tasks and evalua-

tion metrics. The search space should be composed of ba-

sic primitive operators so as to accommodate such hetero-

geneity, and the search algorithm should be efficient enough

so as to find the best combination of basic primitives for

the given task and evaluation metric. Meanwhile, no task-

specific heuristics should be involved in the search.

This paper presents a general loss function search frame-

work applicable to various evaluation metrics across dif-

ferent tasks, named AutoLoss-Zero. We build our search

space only with primitive mathematical operators to enjoy

the high diversity and expressiveness. A variant of the evo-

lutionary algorithm is employed to discover the high-quality

loss functions from scratch with minimal human expertise.

Specifically, AutoLoss-Zero formulates loss functions as

computational graphs composed only of primitive mathe-

matical operators (see Table 1). The computation graphs

are randomly built from scratch, and are evolved according

to their performance on the target evaluation metrics. In the

search algorithm, to improve the search efficiency, we pro-

pose a loss-rejection protocol that efficiently filters out the

unpromising loss function candidates, which brings great

speed-up to the search procedure. A gradient-equivalence-

check strategy is developed to avoid duplicate evaluations

of equivalent loss functions. The loss-rejection protocol

and the gradient-equivalence-check strategy, with no task-

specific or metric-specific design, are generally applicable

to various tasks and metrics.

We validate our framework on various computer vision

tasks, including semantic segmentation, object detection,

instance segmentation, and pose estimation. Extensive ex-

periments on large-scale datasets such as COCO [34], Pas-

cal VOC [17] and Cityscapes [13] show that the searched

losses are on par with or superior to existing handcrafted

and specifically searched loss functions. Ablation studies

show that our searched loss functions can effectively gener-

alize to different networks and datasets. Our main contribu-

tions can be summarized as follows:

• AutoLoss-Zero is a general AutoML framework to

search loss functions from scratch for generic tasks with

minimal human expertise. The effectiveness is demon-

strated on a variety of computer vision tasks.

• A novel loss-rejection protocol is developed to filter out

the unpromising loss functions efficiently. A gradient-

equivalence-check strategy is also developed to avoid

duplicate evaluations. These techniques bring great im-

provement to the search efficiency, and are designed with

special focus to enable generalization to all tasks and

metrics without extra effort.

• The searched loss functions by themselves are contribu-

tions, because they are transferable across different mod-

els and datasets with competitive performance.

2. Related Work

Hand-crafted loss functions for prevalent evaluation met-

rics have been studied by numerous works. A large fraction

of previous works develop loss function variants based on

the standard cross-entropy loss and L1/L2 loss. For catego-

rization, [29, 33, 53, 61] mitigate the imbalance of samples

by incorporating different sample weights. [4, 44] propose

to up-weight the losses at boundary pixels to deliver more

accurate boundaries. For regression, Smooth-L1 loss [19]

is proposed for improved stability and convergence. An-

other line of research [2, 38, 43, 45, 52, 63, 66, 67] deals

with the misalignment between loss functions and vari-

ous evaluation metrics by handcrafting differentiable ex-

tensions or surrogates of metrics as loss functions, includ-

ing segmentation IoU [2, 45], F1 score [38], bounding box

IoU [52, 63, 66, 67], and Average Precision [43].

Although these handcrafted losses are successful under

different scenarios, they heavily rely on careful design and

expertise for analyzing the property of specific metrics. In

contrast, we propose an automated loss design framework

that is generally suitable for different tasks and metrics.

Direct optimization for non-differentiable evaluation met-

rics has also been studied. For structural SVMs [57],

[26, 46, 64] propose non-gradient methods to directly op-

timize ideal metrics. [22, 39, 55] apply loss-augmented

inference to derive the gradients from the expectation of

metrics. However, the computational complexity is high,

which requires specifically designed efficient algorithms for

different metrics. Policy gradients [1, 47, 48, 54, 60] are

also adopted to directly optimize non-differentiable metrics.

However, these methods suffer from: 1) complicated action

space, which requires task specific approximations [48]; 2)

high variance of gradient estimation and objective instabil-

ity [59]. Recently, [5, 40] adopt error-driven learning for

object detection, which is limited to specific scenarios.

Although these methods mitigate the mis-alignment is-

sue between training objectives and evaluation metrics, they

require specific analysis and designs for the target metrics.

AutoML for generic tasks has long been pursued in ma-

chine learning research [25]. Recent works include au-

tomated search for neural architecture (NAS) [36, 41,

68], normalization-activation operations [35], dropout pat-

terns [42], data augmentation [15], and training hyper-

parameters [16]. Most of the existing works aim to spe-

1010

cialize an architecture built upon expert-designed opera-

tors [36, 41, 68], or search for specific hyper-parameters in

a fixed formula [15, 16, 42].

Our work shares a similar philosophy to AutoML-

Zero [49] and EvoNorm [35], which employ evolutionary

algorithms to search for ML algorithms or normalization-

activation operations from only primitive mathematical op-

erations. However, for loss functions, the search space de-

sign is quite different and there are unique properties that

can be leveraged for efficient search. We introduce 1) an

effective search space for loss functions with specific ini-

tialization and mutation operations; and 2) a loss-rejection

protocol and a gradient-equivalence-check strategy to im-

prove the search algorithm efficiency.

Loss function search has raised the interest of researchers

in recent years. All the pioneer works [30, 31, 37, 58]

are limited to specific tasks and metrics, with task-specific

heuristics. Specifically, [30, 58] search for optimal losses

for face recognition. The searched loss functions are op-

timal combinations of existing handcrafted variants of the

cross-entropy loss. As the resulting objective is essen-

tially an integration of existing loss functions, it cannot

solve the mis-alignment between cross-entropy losses and

many target metrics well. Recently, [31] proposes to search

loss functions for semantic segmentation by substituting the

logical operations in metrics with parameterized functions.

However, such parameterization cannot be easily extended

for generic metrics, such as mAP in object detection, where

the matching and ranking are difficult to be parameterized.

A closely related work is [37], which searches loss func-

tions for object detection. Similar to our method, [37] also

formulates loss functions as the combination of primitive

operators. However, [37] initializes the search from well-

performed handcrafted loss functions specific for object de-

tection, and separately searches for one loss branch with

the other loss branch fixed as initialization. Moreover, [37]

designs their loss-rejection protocol specifically for object

detection, and cannot be applied to other tasks. In con-

trast, our method can simultaneously search for multiple

loss branches from random initialization without starting

from any human-designed loss functions. Our method has

no specialized design for specific tasks or metrics, and con-

sequently is applicable to generic tasks.

3. Method

Given a task (e.g., semantic segmentation and object de-

tection) and a corresponding evaluation metric (e.g., mIoU

and mAP), AutoLoss-Zero aims to automatically search a

proper loss function from scratch for training a neural net-

work. A general search space is proposed, in which each

loss function is represented as a computational graph. The

graph takes the network predictions and ground truths as

inputs, and transforms them into a final loss value. With

Element-wise Operator Expression Arity

Add x+ y 2

Mul x× y 2

Neg −x 1

Abs |x| 1

Inv 1/(x+ ϵ) 1

Log sign(x) · log(|x|+ ϵ) 1

Exp ex 1

Tanh tanh(x) 1

Square x2 1

Sqrt sign(x) ·
√

|x|+ ϵ 1

†Aggregation Operator Expression Arity

Meannhw
1

NHW

∑

nhw
xnchw 1

Meanc
1
C

∑

c
xnchw 1

Max-Pooling3×3 Max-Pooling3×3(x) 1

Min-Pooling3×3 Min-Pooling3×3(x) 1

Table 1. Primitive operator set H. x and y are of the same shape

of (N,C,H,W), which are the input tensors of the operators.

ϵ = 10−12 is a small positive number for avoiding infinite values

or gradients. This primitive operator set is shared in all of our ex-

periments. † Each aggregation operator is a mapping that replaces

the elements of the input tensor with the aggregated values. Both

the stride and padding of Max/Min-Pooling are set as 1. Thus, all

of the operators preserve the shape of the input tensor(s).

minimal human expertise, only primitive mathematical op-

erations (see Table 1) are used as the intermediate compu-

tational nodes to accommodate the high diversity among

different tasks and metrics. An efficient evolutionary al-

gorithm is employed to search the loss function for the

given task and metric. To enable the evolution, effective

random initialization and mutation operations are defined.

A novel loss-rejection protocol and gradient-equivalence-

check strategy are also proposed to improve the search ef-

ficiency, which are applicable to generic tasks. Different

form [31, 37], our method is designed with special focus on

generality, so that no task-specific heuristics are employed.

3.1. Search Space

The search spaces of most AutoML approaches [15, 35,

36, 41, 42, 68] are specially designed for particular pur-

poses and not suitable for loss functions. In loss function

search, [31] proposes a loss function search space specifi-

cally for semantic segmentation, which cannot be extended

to generic tasks. In [30, 58], the search space is simply

the combination of existing loss functions, which cannot

form new loss functions. The search space of [37] is also

of primitives, which is most similar to ours. However, the

primitives of [37] is a constrained set for the specific task

of object detection. In this subsection, we design a general

search space for loss functions applicable for generic tasks

and evaluation metrics.

AutoLoss-Zero seeks to search the proper loss function

for training the networks that maximizes the given evalua-

tion metric ξ. The loss function L(ŷ, y;Nω) is defined on

the network prediction ŷ and its ground-truth training target

1011

newestoldest

Population (𝑃𝑃 = 2500)

newestoldest Population (𝑃𝑃 = 2500)

Mutate

(or Copy / Re-initialize)

Best among randomly selected𝑇𝑇=5% of current population

Step 1.

Tournament Selection

Step 2.

Mutation

Step 3.

Update Population

(Only keep the most recent𝑃𝑃 = 2500 population)

Input

Operator

Output

reject

pass

equivalent

Offspring

Loss-Rejection

Protocol

Gradient-

Equivalence-Check

Strategy

reuse previous score

Proxy Task

Evaluation

Evaluated offspring

···

···

score=0.75

𝑦𝑦 �𝑦𝑦
Mul

Tanh

Sqrt

Add

1

score=0.35 Output

𝑦𝑦
Mul

Add

Sqrt

Tanh

score=0.35

�𝑦𝑦 1

Output

Square

𝑦𝑦 �𝑦𝑦
Add

Neg

score=0.25 Output

Mul

Output

Mul

𝑦𝑦 �𝑦𝑦
1

score=0.30

Log

Mul

Add

�𝑦𝑦 𝑦𝑦
Neg

Tanh

�𝑦𝑦

score=0.65 Output

Log

Mul

Add

�𝑦𝑦 𝑦𝑦
Neg

Tanh

�𝑦𝑦

score=0.65 Output

Log

Mul

Output

Add

�𝑦𝑦 𝑦𝑦
Sqrt

�𝑦𝑦
score=?

𝑦𝑦 �𝑦𝑦
Mul

Tanh

Sqrt

Add

1

score=0.35 Output

𝑦𝑦
Mul

Add

Sqrt

Tanh

score=0.35

�𝑦𝑦 1

Output

Square

𝑦𝑦 �𝑦𝑦
Add

Neg

score=0.25 Output

Mul

Output

Mul

𝑦𝑦 �𝑦𝑦
1

score=0.30

Log

Mul

Output

Add

�𝑦𝑦 𝑦𝑦
Sqrt

�𝑦𝑦

score=0.75

Figure 1. Overview of the search pipeline.

y, where Nω is a network parameterized with ω. The search

target can be formulated as a nested optimization,

max
L

f(L; ξ) = ξ
(

Nω∗(L);Seval

)

,

s.t. ω∗(L) = argmin
ω

E(ŷ,y)∈Strain
[L(ŷ, y;Nω)] ,

(1)

where f(L; ξ) is the evaluation score of the loss function L
under the given metric ξ, and ω∗(L) is the network param-

eters trained with L. E[·] is the mathematical expectation.

Strain and Seval are the training and evaluation sets used in the

search process, respectively. The network prediction ŷ and

its training target y share the same shape of (N,C,H,W).
For each tensor, we use N,C,H,W to refer to the size of

its batch, channel, width and height, respectively1.

Eq. (1) provides a general optimization formula, but it

cannot be trivially optimized by naı̈ve search methods in an

affordable time. We design the search space and algorithm

to efficiently optimize Eq. (1) without loss of generality.

Loss Function Representation. The loss function L is

represented as a computational graph G. The computational

graph is a rooted tree, where the leaf nodes are inputs (i.e.,

network predictions and training targets), and the root is

the output. The intermediate computational nodes are se-

lected from a set of primitive mathematical operations (see

Table 1), which transform the inputs into the final loss value.

The input tensors of the computational graph are sam-

pled with replacement from {y, ŷ, 1}, where the additional

constant 1 is included to improve the flexibility of the

search space. The output tensor o has the same shape of

(N,C,H,W) as the inputs, which is further aggregated to

form the final loss value as

L(ŷ, y) =
1

NHW

∑

nchw
onchw. (2)

Here, we do not normalize among the channel dimension,

following the common practice of the cross-entropy loss.

1For the predictions and training targets without spatial dimensions, we

set H = 1 and W = 1 without loss of generality.

As some tasks may have multiple loss branches (e.g.,

the classification and regression branches in object detec-

tion), we represent the loss of each branch as an individ-

ual computational graph, and sum their loss values together

as the final loss. For a loss with M branches, given the

predictions {ŷ1, ŷ2, . . . , ŷM} and their ground-truth train-

ing targets {y1, y2, . . . , yM} of each loss branch, the final

loss function is represented as L(ŷ, y) =
∑

M

i=1
Li(ŷ

i, yi).
Primitive Operators. Table 1 summarizes the primitive

operator set H used in our search space, including element-

wise operators and aggregation operators that enable in-

formation exchange across spatial and channel dimensions.

Each aggregation operator is a mapping that replaces the el-

ements of the input tensor with the aggregated values. All

the primitive operators preserve the shape of the input ten-

sors in order to ensure the validity of computations.

3.2. Search Algorithm

Inspired by the recent applications of AutoML [35, 49],

a variant of evolutionary algorithm is employed for search-

ing loss functions. In existing works of loss function search

[30, 31, 37, 58], variants of reinforcement learning or evolu-

tion algorithm are also adopted. However, the search meth-

ods in [30, 31, 37, 58] are designed for searching in spe-

cific tasks and particular metrics, with task-specific heuris-

tics, which can hardly be applied to generic tasks. Here,

AutoLoss-Zero searches loss functions for generic tasks

from random initialization with minimal human expertise.

The proposed method has no specialized design for specific

tasks or metrics, which is widely applicable to generic tasks.

Figure 1 illustrates the search pipeline of AutoLoss-

Zero. At initialization, K loss functions (K = 20 by de-

fault) are randomly generated to form the initial population.

Each evolution picks T ratio of population (T = 5% by de-

fault) at random, and selects the one with the highest evalua-

tion score as the parent, i.e., tournament selection [20]. The

1012

Depth = 0

Start

OutputDepth < 𝐷𝐷
Sampling operators

Add

Output

Output Add

Tanh

Log

Neg

Sqrt

Depth = 𝐷𝐷
Sampling inputs

···

Output Add

Tanh

Log

Neg

Sqrt

𝑦𝑦�𝑦𝑦Depth = 𝐷𝐷 + 1
Finish

Figure 2. Random initialization of loss functions.

parent is used to produce offspring through well-designed

mutation operations. Following [35, 49], only the most re-

cent P loss functions (P = 2500 by default) are maintained.

As the search space is very sparse with a large number

of unpromising loss functions, a novel loss-rejection proto-

col is developed to efficiently filter out loss functions that

are not negatively correlated with the given evaluation met-

ric. During the search, the initialization / mutation process

of an individual loss function would be repeated until the

resulting loss function can pass the loss-rejection protocol.

In order to further improve the search efficiency, a

gradient-equivalence-check strategy is developed to avoid

re-evaluating mathematically equivalent loss functions.

Similar to [35, 49], lightweight proxy tasks are employed to

reduce the computational cost of evaluating loss functions,

which will be discussed at the end of this subsection.

Random Initialization of Loss Functions. To ensure gen-

erality, heuristic initialization as in [37] shall not be em-

ployed. Instead, our computational graph of each initial loss

function is randomly generated. Figure 2 illustrates the pro-

cess of loss function generation. Starting from a graph with

root (i.e., the output node) only, each node would randomly

sample one or two operators from the primitive operator set

H (see Table 1), and append to the graph as its child node(s).

The root has one child. For each computational node, the

number of child nodes is decided by its operator arity.

When a computational node reaches the target depth D
(D = 3 by default), it randomly selects input tensor(s) as its

child node(s). The input tensors would be the leaf nodes of

the computational graph. Each randomly generated compu-

tational graph has a depth of D + 1, with D computational

nodes on each path from the root to a leaf node.

Mutation. The mutation process is inspired by [49], but

the candidate mutation operations are specially designed for

our search space. Figure 3 illustrates the candidate mutation

operations, which are defined as:

• Insertion. An operator randomly sampled from H is in-

serted between a randomly selected non-root node and

its parent. If the operator has an arity of 2, it would ran-

domly select an input as the additional child.

• Deletion. An intermediate computational node is ran-

domly selected and removed. For the removed node, one

of its child nodes is randomly picked to become the new

child of its parent.

≈Log

Mul

Output

�𝑦𝑦 𝑦𝑦
Log

Mul

Output

�𝑦𝑦𝑦𝑦
Sqrt Log

Mul

Output

�𝑦𝑦 𝑦𝑦 Log

Output

�𝑦𝑦
Log

Mul

Output

�𝑦𝑦𝑦𝑦 Add

Mul

Output

�𝑦𝑦 𝑦𝑦1

Insertion Deletion Replacement

Figure 3. Candidate mutation operations.

• Replacement. An operator is randomly sampled from H
to replace a randomly selected non-root node. If the non-

root node has children more than the operator arity, a

random subset of the child nodes with the same number

as the arity are kept as the children. Otherwise, it would

randomly select inputs as the additional children.

To produce the offspring, the given computational graph is

processed by the three sequential steps:

1. Directly copy the graph with a probability of 10%.

2. If copying is not performed, randomly re-initialize the

full computational graph with a probability of 50%.

3. If re-initialization is not performed, sequentially per-

form two mutation operations uniformly sampled from

{Insertion, Deletion, Replacement}.

Loss-Rejection Protocol. Our search space is highly flexi-

ble, in which only primitive operations are used to construct

the loss functions. Similar to [35, 37, 49], such flexibility

leads to a large and sparse search space. Most loss function

candidates result in network performance that is not better

than random guessing. In loss function search, to improve

the search efficiency, [37] designs a loss-rejection protocol

to filter out unpromising loss functions before training the

networks. However, it is specifically designed for object

detection, which cannot be directly applied to generic tasks.

Here, we propose a novel loss-rejection protocol that is gen-

erally applicable to various tasks and metrics.

Inspired by the fact that minimizing the proper loss func-

tions should correspond to maximizing the given evaluation

metric, we develop an efficient loss-rejection protocol for

generic tasks. Given B random samples (B = 5 by default)

from the training set Strain and a randomly initialized net-

work Nω0
, we record the network predictions and the cor-

responding training targets as {(ŷb, yb)}
B

b=1
. To efficiently

estimate the correlation between the given evaluation met-

ric ξ and a candidate loss function L, a correlation score

g(L; ξ) is calculated as

g(L; ξ) =
1

B

∑B

b=1
ξ (ŷ∗

b (L), yb)− ξ (ŷb, yb) ,

s.t. ŷ∗
b (L) = argminŷb L(ŷb, yb),

(3)

where ŷ∗
b
(L) is the predictions optimized with loss L. A

large g(L; ξ) indicates that minimizing the loss L corre-

sponds to maximizing the evaluation metric ξ. Otherwise,

if g(L; ξ) is less than a threshold η, the loss function L is

regarded as unpromising, which should be rejected.

Here, to speed up the rejection process, the loss function

optimization is directly applied to the network prediction

1013

ŷb, instead of the network parameters ω. Since the network

computation is omitted, the rejection process is very effi-

cient. With a single GPU, the proposed loss-rejection pro-

tocol can reach a throughput of 500∼1000 loss functions

per minute. In search, the initialization / mutation process

of an individual loss function would be repeated until the

resulting loss function can pass the loss-rejection protocol.

Gradient-Equivalence-Check Strategy. To avoid re-

evaluating mathematically equivalent loss functions, a

gradient-equivalence-check strategy is developed. For each

loss function L, we compute its gradient norms w.r.t. the

network predictions used in the loss-rejection protocol as

{∥∂L/∂ŷb∥2}
B

b=1
. If for all of the B samples, two loss

functions have the same gradient norms within two signifi-

cant digits, they are considered equivalent, and the previous

evaluation metric score would be reused.

Proxy Task. The evaluation of loss functions requires net-

work training, which costs the most time in the search. Sim-

ilar to AutoML works [35, 49], to accelerate the search,

lightweight proxy tasks for network training are employed

in the loss function evaluation. Specifically, fewer training

iterations, smaller models and down-sampled images are

adopted (see Section 4 and Appendix A). We further im-

prove the efficiency by stopping the network training with

invalid loss values (i.e., NaN and Inf values).

4. Experiments

Implementation Details. For the evolutionary algorithm,

the population is initialized with K = 20 randomly gen-

erated loss functions, and is restricted to most recent P =
2500 losses. The ratio of tournament selection [20] is set as

T = 5% of current population. During random initializa-

tion and mutations, the sampling probabilities for all the op-

erators in Table 1 are the same. The initial depth of compu-

tational graphs is D = 3. For the loss-rejection protocol and

the gradient-equivalence-check strategy, B = 5 samples are

randomly selected from Strain. The search and re-training

experiments are conducted on 4 NVIDIA V100 GPUs. The

proxy tasks are designed such that 300 evaluations can be

conducted in 48 hours. More details are in Appendix A.

4.1. Semantic Segmentation

Settings. Semantic segmentation concerns categorizing

each pixel in an image into a specific class. PASCAL VOC

2012 [17] with extra annotations [21] is utilized for our

experiments. The target evaluation metrics include Mean

IoU (mIoU), Frequency Weighted IoU (FWIoU), Global

Accuracy (gAcc), Mean Accuracy (mAcc), Boundary IoU

(BIoU) [28] and Boundary F1 Score (BF1) [14]. The first

four metrics measure the overall segmentation accuracy,

and the other two metrics evaluate the boundary accuracy.

During search, we use DeepLabv3+ [8] with ResNet-

50 [24] as the network. Following [31], we simplify the

proxy task by down-sampling the input images to the reso-

lution of 128×128, and reducing the training schedule to 3

epochs (1/10 of the normal training schedule). After the

search procedure, we re-train the segmentation networks

with ResNet-101 [24] as the backbone for 30 epochs. The

input image resolution is 512×512. The re-training setting

is the same as [8], except that the searched loss function is

utilized. More details are in Appendix A.1.

Results. Table 2 compares our searched losses with the

widely used cross-entropy loss, other metric-specific hand-

crafted loss functions, and the surrogate losses searched by

Auto Seg-loss (ASL) [31], CSE-Autoloss (CSE) [37] and

AutoML-Zero (AML) [49]. Note that ASL is restricted

to a specific designed search space for semantic segmen-

tation, which cannot be simply extended to handle generic

metrics; CSE designs initialization and rejection protocols

specifically for object detection, and we make our best ef-

fort to implement it on semantic segmentation. The results

show that our searched losses outperform the manually de-

signed losses consistently, and on par with or better than

the searched losses by ASL on all target metrics. CSE fails

to find loss functions better than CE regardless of initial-

ization. AML is designed for searching machine learning

algorithms with over 1010 evaluations, and could not find

any well-performing loss functions with the same time and

computational resource as ours. Appendix B presents the

formulas of the discovered loss functions, which indicate

that the intermediate aggregations (e.g., Max-Pooling3×3

and Meannhw) between non-linear operations may have po-

tential benefits for metrics such as mAcc, BIoU, and BF1.

Generalization of the searched functions. To verify

the generalization ability of the searched losses, we con-

duct re-training experiments on different datasets and net-

works using the CE loss and the losses originally searched

for DeepLabv3+ [8] with ResNet50 [24] on PASCAL

VOC [17]. Due to limited computational resource, we only

compare on mIoU and BF1 metrics. Table 3 summarizes

the results on PASCAL VOC and Cityscapes [13], using

DeepLabv3+ / PSPNet [65] with ResNet-50 / ResNet-101

as the networks. The results show that the searched loss

functions generalize well between different datasets, and

can be applied to various semantic segmentation networks.

4.2. Object Detection

Settings. Object detection is the task of detecting the

bounding boxes and categories of instances belonging to

certain classes. To evaluate our algorithm, we conduct ex-

periments on the widely used COCO dataset [34]. The tar-

get evaluation metric is Mean Average Precision (mAP).

We use Faster R-CNN [51] with ResNet-50 [24] and

FPN [32] as the detection network. There are 4 loss

branches, i.e., the classification and regression branches

for the RPN [51] sub-network and Fast R-CNN [19] sub-

1014

Loss Function FWIoU gAcc mAcc BIoU mIoU BF1

Cross Entropy 91.3 95.2 87.3 70.6 78.7 65.3

WCE [53] 85.6 91.1 92.6 61.8 69.6 37.6

DiceLoss [38] 91.3 95.1 87.5 69.9 77.8 64.4

Lovàsz [2] 91.8 95.4 88.6 72.5 79.7 66.7

DPCE [4] 91.8 95.5 87.8 71.9 79.8 66.5

SSIM [44] 91.7 95.4 87.9 71.5 79.3 66.4

FWIoU
ASL [31] 91.9 95.4 89.2 75.1 80.0 65.7

Ours 91.7 95.2 87.7 72.9 78.7 64.6

gAcc
ASL [31] 91.8 95.5 89.0 74.1 79.7 64.4

Ours 91.7 95.3 88.7 73.6 79.4 64.8

mAcc
ASL [31] 85.9 91.3 92.7 72.9 69.8 35.6

Ours 89.2 93.7 92.6 73.7 75.3 44.1

BIoU
ASL [31] 69.9 62.6 81.3 79.2 49.0 39.0

Ours 69.5 80.5 67.1 79.3 50.0 34.4

mIoU

CSE [37] 91.4 95.2 87.0 72.6 78.1 64.1

CSE-RandInit 89.6 93.9 83.1 64.6 71.9 56.5

AML [49] 59.5 64.4 4.9 1.3 4.0 0.4

ASL [31] 92.1 95.7 88.2 73.4 81.0 68.9

Ours 92.1 95.7 89.1 74.1 80.7 66.0

BF1

CSE [37] 91.8 95.4 88.5 73.7 79.4 65.1

CSE-RandInit 69.3 75.6 9.0 3.0 5.3 1.0

AML [49] 0.5 2.6 4.7 1.7 0.8 1.1

ASL [31] 1.0 2.7 6.5 7.4 1.9 74.8

Ours 4.2 9.1 11.9 26.1 7.3 76.7

Table 2. Semantic segmentation results of DeepLabv3+ [8] with

ResNet-101 [24] on PASCAL VOC [17]. Results of the target met-

ric(s) for each loss function are underlined, and the highest results

within a tolerance of 0.5 are in bold. AutoML-Zero (AML), CSE-

Autoloss with CE initialization (CSE) and random initialization

(CSE-RandInit) are re-implemented according to their papers.

Dataset Cityscapes VOC

Network R101-DLv3+ R50-DLv3+ R101-PSP

Loss Function mIoU BF1 mIoU BF1 mIoU BF1

Cross Entropy 80.0 62.2 76.2 61.8 77.9 64.7

mIoU
ASL [31] 80.7 66.5 78.4 66.9 78.9 65.7

Ours 80.4 63.8 78.0 62.8 78.5 64.9

BF1
ASL [31] 6.7 78.0 1.4 70.8 1.6 71.8

Ours 16.0 77.5 10.4 79.2 11.5 76.4

Table 3. Generalization of the searched loss functions for semantic

segmentation among different datasets and networks. The losses

are originally searched for DeepLabv3+ [8] with ResNet-50 [24]

on PASCAL VOC [17]. “R50” and “R101” are the abbreviations

of ResNet-50 and ResNet-101, respectively. “DLv3+” and “PSP”

denote the DeepLabv3+ and PSPNet [65], respectively.

network. We search for loss functions of the 4 branches

simultaneously from scratch. Following [52], we use the in-

tersection, union and enclosing areas between the predicted

and ground-truth boxes as the regression loss inputs.

During the search, we train the network with 1/4 of the

COCO data for 1 epoch as the proxy task. We further sim-

plify the network by only using the last three feature levels

of FPN, and reducing the channels of the detection head by

half. After the search procedure, we re-train the detection

network with the searched loss functions. The re-training

hyper-parameters are the same as the default settings of

Loss Function
mAP

ClsRPN RegRPN ClsRCNN RegRCNN

CE L1 CE L1 37.3

CE L1 CE IoULoss [63] 37.9

CE L1 CE GIoULoss [52] 37.6

CE L1 CSE-Auto-A [37] 38.5

CE L1 CSE-RandInit 0.0

CE L1 Ours 38.0

Ours 38.1

Table 4. Object detection results of ResNet-50 [24] on

COCO [34]. Cls and Reg are the classification and regression

branches, respectively, where the subscripts RPN and RCNN
denote the RPN [51] sub-network and Fast R-CNN [19] sub-

network, respectively. CSE-RandInit denotes our implementation

of CSE-Autoloss [37] that initializes from random loss function

instead of CEI [37] and GIoU [52] losses.

Dataset COCO VOC

Network ResNet-101 ResNet-50

Loss Function mAP mAP

CE + L1 + CE + IoULoss [63] 39.7 80.4

Ours 39.9 80.6

Table 5. Generalization of the searched losses for object detec-

tion among different datasets and networks. The loss is originally

searched for ResNet-50 [24] on COCO [34].

MMDetection [6]. More details are in Appendix A.2.

Results. Table 4 compares our searched loss functions

with the handcrafted loss functions and the searched func-

tion by [37]. The effectiveness of our method is verified for

searching on only the 2 branches of the Fast R-CNN [19]

sub-network, and on all of the 4 branches. Results show

that our searched losses are on par with the existing hand-

crafted and searched loss functions. Note that [37] de-

signs the search space and strategies specifically for ob-

ject detection, and fails to find any reasonable loss func-

tions without hand-crafted initialization, while AutoLoss-

Zero is a general framework that searches for loss functions

from scratch; [31] constructs the search space by param-

eterizing the evaluation metrics, which can hardly be ap-

plied to mAP due to the complicated matching and rank-

ing processes. The formulas of the discovered loss func-

tions are presented in Appendix B. The searched loss func-

tion for bounding box regression shares a similar expression

with the GIoULoss [52], confirming the effectiveness of the

handcrafted loss function.

Generalization of the searched functions. We verify

the generalization ability of the searched loss function in

Table 5. The loss is originally searched on COCO [34]

with ResNet-50 [24], and is used for training networks

with different backbone (i.e., ResNet-101) and on differ-

ent dataset (i.e., PASCAL VOC [17]). The results show that

our searched loss functions can generalize well to different

object detection networks and datasets.

1015

4.3. Instance Segmentation

Settings. Instance segmentation is the task of detecting

the segmentation masks and categories of instances. We

also conduct experiments on COCO [34], except that the

target metric is mAP with IoU defined on masks.

Mask R-CNN [23] with ResNet-50 [24] and FPN [32] is

used as the network. We search for all the 5 loss branches

simultaneously. The proxy task is the same as for object de-

tection. We use the default hyper-parameters of MMDetec-

tion [6] for re-training. More details are in Appendix A.3.

Results. Table 6 (a) summarizes the results. The loss func-

tion searched from scratch by AutoLoss-Zero is on par with

the existing manually designed loss functions. The discov-

ered loss functions are presented in Appendix B.

4.4. Pose Estimation

Settings. Pose estimation is the task of localizing human

keypoints. Experiments are conducted on COCO [34].

We use [62] with Resnet-50 [24] as the network. Follow-

ing [12], person detection results provided by [62] are uti-

lized. During search, we train the network for 4 epochs as

the proxy task. We re-train the network after the search with

the searched loss functions using the default training set-

tings of MMPose [12]. More details are in Appendix A.4.

Results. Table 6 (b) compares our searched loss function

with the widely used MSE loss. Starting from randomly ini-

tialized loss functions, our searched loss function is slightly

better than the MSE loss, demonstrating the effectiveness

of AutoLoss-Zero. Appendix B presents the formulas of

the discovered loss functions. The searched function learns

a regularization term to punish too large prediction values.

Loss Function mAP

CE + L1 + CE + L1 + CE 34.6

CE + L1 + CE + IoULoss [63] + CE 34.4

CE + L1 + CE + GIoULoss [52] + CE 34.7

Ours 34.8

(a) Instance Segmentation

Loss Function mAP

MSE 71.5

Ours 72.0

(b) Pose Estimation

Table 6. Instance segmentation and pose estimation results of

ResNet-50 [24] on COCO [34]. In the first three rows of (a), the

five losses correspond to the ClsRPN, RegRPN, ClsRCNN, RegRCNN

and Mask branches, respectively. “MSE” in (b) denotes the mean

square error loss used by [62].

4.5. Search Efficiency

We ablate the search efficiency of AutoLoss-Zero on se-

mantic segmentation with the mIoU metric and object de-

tection with the mAP metric. Figure 4 shows the search pro-

cess, and Table 7 shows the re-training results. Due to the

high sparsity of our search space and the restricted search

cost (300 candidate loss function evaluations), no reason-

able loss functions can be discovered with random search.

Table 8 further presents the number of loss functions ex-

plored in 48 hours by AutoLoss-Zero. Over 106 loss func-

0 100 200 300 400
Proxy Task Evaluations

0.00

0.20

0.40

0.60

Se
ar

ch
ed

 m
Io

U

Random Search
+Naïve Evolution
+Loss Rejection
+Equivalence Check

(a) Semantic Segmentation

0 100 200 300 400
0.00

0.02

0.04

0.06

0.08

Se
ar

ch
ed

 m
AP

Proxy Task Evaluations

Random Search
+Naïve Evolution
+Loss Rejection
+Equivalence Check

(b) Object Detection

Figure 4. Ablation study on search efficiency. Each curve presents

the averaged scores over the top-5 losses in the current population.

Loss Function mIoU

Random Search 2.2

Ours 80.7

(a) Semantic Segmentation

Loss Function mAP

Random Search 0.0

Ours 38.1

(b) Object Detection

Table 7. Re-training results of random search and our algorithm.

Speed-Up # Explored Losses

Naı̈ve Evolution 1× ∼300

+ Loss-Rejection Protocol ∼700× ∼2.1×105

+ Gradient-Equivalence-Check Strategy ∼1000× ∼3.2×105

+ †Stop Training for Invalid Loss Values ∼5000× ∼1.5×106

Table 8. Search speed of degenerated variants of AutoLoss-Zero

on object detection. “# Explored Losses” demonstrates the number

of losses that can be explored in 48 hours. † “Stop Training for

Invalid Loss Values” means that the network training is stopped in

the first 20 iterations due to invalid loss values (i.e., NaN and Inf).

tions can be explored, ensuring that AutoLoss-Zero can ex-

plore the huge and sparse search space within a reasonable

time. More discussions are presented in Appendix C.

5. Conclusion

AutoLoss-Zero is a general framework for searching loss

functions from scratch for generic tasks. The search space

is composed only of basic primitive operators. A variant

of evolutionary algorithm is employed for searching, where

a loss-rejection protocol and a gradient-equivalence-check

strategy are developed to improve the search efficiency.

AutoLoss-Zero can discover loss functions that are on par

with or superior to existing loss functions on various tasks

with minimal human expertise.

Limitations. AutoLoss-Zero still requires certain times of

evaluations on the proxy tasks, and the performance may

degrade without enough search time. Future work may ex-

plore more efficient algorithms to reduce the search time.

Potential Negative Societal Impact. Our search on GPUs

may consume lots of electricity and cause increased carbon

emissions. Similar to the limitation of search time, this issue

can be also alleviated with more efficient search algorithm.

Acknowledgments The work is supported by the Na-

tional Key R&D Program of China (2020AAA0105200),

Beijing Academy of Artificial Intelligence and the Institute

for Guo Qiang of Tsinghua University, in part by the Gen-

eral Research Fund through the Research Grants Council

of Hong Kong under Grants (Nos. 14204021, 14207319,

14203118, 14208619), in part by Research Impact Fund

Grant No. R5001-18, and in part by CUHK Strategic Fund.

1016

References

[1] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh

Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and

Yoshua Bengio. An actor-critic algorithm for sequence pre-

diction. arXiv preprint arXiv:1607.07086, 2016. 2

[2] Maxim Berman, Amal Rannen Triki, and Matthew B

Blaschko. The lovász-softmax loss: A tractable surrogate

for the optimization of the intersection-over-union measure

in neural networks. In CVPR, 2018. 1, 2, 7

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high

quality object detection and instance segmentation. TPAMI,

2019. 1

[4] Francesco Caliva, Claudia Iriondo, Alejandro Morales Mar-

tinez, Sharmila Majumdar, and Valentina Pedoia. Distance

map loss penalty term for semantic segmentation. In MIDL,

2019. 1, 2, 7

[5] Kean Chen, Weiyao Lin, John See, Ji Wang, Junni Zou, et al.

Ap-loss for accurate one-stage object detection. TPAMI,

2020. 2

[6] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-

heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,

Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,

Chen Change Loy, and Dahua Lin. MMDetection: Open

mmlab detection toolbox and benchmark. arXiv preprint

arXiv:1906.07155, 2019. 7, 8, 11, 12, 13

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. TPAMI, 2017. 1

[8] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, 2018. 6, 7, 11

[9] Cityscapes. https://www.cityscapes-dataset.com/license/.

https : / / www . cityscapes - dataset . com /

license/. 13

[10] Creative Commons. Creative commons attribution 4.0 inter-

national public license. https://creativecommons.

org/licenses/by/4.0/legalcode. 13

[11] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and

benchmark. https : / / github . com / open -

mmlab/mmsegmentation, 2020. 13

[12] MMPose Contributors. Openmmlab pose estimation tool-

box and benchmark. https://github.com/open-

mmlab/mmpose, 2020. 8, 12, 13

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 2, 6, 13

[14] Gabriela Csurka, Diane Larlus, Florent Perronnin, and

France Meylan. What is a good evaluation measure for se-

mantic segmentation? In BMVC, 2013. 6, 11

[15] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In CVPR, 2019. 1, 2, 3

[16] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-

jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew

Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe

search using neural acquisition function. arXiv preprint

arXiv:2006.02049, 2020. 1, 2, 3

[17] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-

pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. IJCV,

2015. 2, 6, 7, 11, 13

[18] Flickr, Inc. Flickr terms & conditions of use. https://

www.flickr.com/help/terms, 2020. 13

[19] Ross Girshick. Fast r-cnn. In ICCV, 2015. 1, 2, 6, 7, 11

[20] David E Goldberg and Kalyanmoy Deb. A comparative anal-

ysis of selection schemes used in genetic algorithms. In

Foundations of genetic algorithms. Elsevier, 1991. 4, 6, 11

[21] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. In ICCV, 2011. 6, 11

[22] Tamir Hazan, Joseph Keshet, and David A McAllester. Di-

rect loss minimization for structured prediction. In NeurIPS,

2010. 2

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017. 1, 8, 12

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6, 7, 8, 11, 12

[25] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A sur-

vey of the state-of-the-art. arXiv preprint arXiv:1908.00709,

2019. 2

[26] Thorsten Joachims. A support vector method for multivariate

performance measures. In ICML, 2005. 2

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 12

[28] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order

potentials for enforcing label consistency. IJCV, 2009. 6, 11

[29] Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized

single-stage detector. In AAAI, 2019. 1, 2

[30] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu,

Junjie Yan, and Wanli Ouyang. Am-lfs: Automl for loss

function search. In ICCV, 2019. 1, 3, 4

[31] Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao

Huang, and Jifeng Dai. Auto seg-loss: Searching metric sur-

rogates for semantic segmentation. In ICLR, 2021. 1, 2, 3,

4, 6, 7, 11

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 6, 8, 11, 12

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017. 1, 2

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

1017

ECCV, 2014. 2, 6, 7, 8, 11, 12, 13

[35] Hanxiao Liu, Andrew Brock, Karen Simonyan, and Quoc V

Le. Evolving normalization-activation layers. In NeurIPS,

2020. 1, 2, 3, 4, 5, 6

[36] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2018. 1, 2, 3

[37] Peidong Liu, Gengwei Zhang, Bochao Wang, Hang Xu, Xi-

aodan Liang, Yong Jiang, and Zhenguo Li. Loss function

discovery for object detection via convergence-simulation

driven search. In ICLR, 2021. 1, 2, 3, 4, 5, 6, 7, 11, 12

[38] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In 3DV, 2016. 1, 2, 7

[39] Pritish Mohapatra, Michal Rolinek, CV Jawahar, Vladimir

Kolmogorov, and M Pawan Kumar. Efficient optimization

for rank-based loss functions. In CVPR, 2018. 2

[40] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan

Kalkan. A ranking-based, balanced loss function unify-

ing classification and localisation in object detection. In

NeurIPS, 2020. 2

[41] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameters

sharing. In ICML, 2018. 1, 2, 3

[42] Hieu Pham and Quoc V Le. Autodropout: Learning

dropout patterns to regularize deep networks. arXiv preprint

arXiv:2101.01761, 2021. 1, 2, 3

[43] Qi Qian, Lei Chen, Hao Li, and Rong Jin. Dr loss: Improving

object detection by distributional ranking. In CVPR, 2020. 1,

2

[44] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,

Masood Dehghan, and Martin Jagersand. Basnet: Boundary-

aware salient object detection. In CVPR, 2019. 1, 2, 7

[45] Md Atiqur Rahman and Yang Wang. Optimizing

intersection-over-union in deep neural networks for image

segmentation. In ISVC, 2016. 1, 2

[46] Mani Ranjbar, Tian Lan, Yang Wang, Steven N Robinovitch,

Ze-Nian Li, and Greg Mori. Optimizing nondecomposable

loss functions in structured prediction. TPAMI, 2012. 2

[47] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and

Wojciech Zaremba. Sequence level training with recurrent

neural networks. arXiv preprint arXiv:1511.06732, 2015. 2

[48] Yongming Rao, Dahua Lin, Jiwen Lu, and Jie Zhou. Learn-

ing globally optimized object detector via policy gradient. In

CVPR, 2018. 2

[49] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-

zero: Evolving machine learning algorithms from scratch. In

ICML, 2020. 3, 4, 5, 6, 7

[50] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,

Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehen-

sive survey of neural architecture search: Challenges and so-

lutions. arXiv preprint arXiv:2006.02903, 2020. 1

[51] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. arXiv preprint arXiv:1506.01497, 2015.

1, 6, 7, 11

[52] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir

Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-

tersection over union: A metric and a loss for bounding box

regression. In CVPR, 2019. 1, 2, 7, 8, 11

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 1, 2, 7

[54] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu,

Maosong Sun, and Yang Liu. Minimum risk training for neu-

ral machine translation. arXiv preprint arXiv:1512.02433,

2015. 2

[55] Yang Song, Alexander Schwing, Raquel Urtasun, et al.

Training deep neural networks via direct loss minimization.

In ICML, 2016. 2

[56] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose esti-

mation. In CVPR, 2019. 1

[57] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-

mann, Yasemin Altun, and Yoram Singer. Large margin

methods for structured and interdependent output variables.

JMLR, 2005. 2

[58] Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, and

Tao Mei. Loss function search for face recognition. In ICML,

2020. 1, 3, 4

[59] Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan

Liu. A study of reinforcement learning for neural machine

translation. arXiv preprint arXiv:1808.08866, 2018. 2

[60] Lijun Wu, Li Zhao, Tao Qin, Jianhuang Lai, and Tie-Yan Liu.

Sequence prediction with unlabeled data by reward function

learning. In IJCAI, 2017. 2

[61] Zifeng Wu, Chunhua Shen, and Anton van den Hengel.

Bridging category-level and instance-level semantic image

segmentation. arXiv preprint arXiv:1605.06885, 2016. 1, 2

[62] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines

for human pose estimation and tracking. In ECCV, 2018. 8,

12

[63] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and

Thomas Huang. Unitbox: An advanced object detection net-

work. In ACM MM, 2016. 1, 2, 7, 8

[64] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten

Joachims. A support vector method for optimizing average

precision. In SIGIR, 2007. 2

[65] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, 2017. 1, 6, 7

[66] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang

Ye, and Dongwei Ren. Distance-iou loss: Faster and better

learning for bounding box regression. In AAAI, 2020. 1, 2

[67] Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rong-

guang Ye, Qinghua Hu, and Wangmeng Zuo. Enhancing

geometric factors in model learning and inference for ob-

ject detection and instance segmentation. arXiv preprint

arXiv:2005.03572, 2020. 2

[68] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 1, 2, 3

1018

