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Abstract

Autonomous driving datasets have played an important
role in validating the advancement of intelligent vehicle al-
gorithms including localization, perception and prediction
in academic areas. However, current existing datasets pay
more attention to the structured urban road, which hampers
the exploration on unstructured special scenarios. More-
over, the open-pit mine is one of the typical representatives
for them. Therefore, we introduce the Autonomous driving
dataset on the Mining scene (AutoMine) for positioning and
perception tasks in this paper. The AutoMine is collected by
multiple acquisition platforms including an SUV, a wide-
body mining truck and an ordinary mining truck, depend-
ing on the actual mine operation scenarios. The dataset
consists of 18+ driving hours, 18K annotated lidar and im-
age frames for 3D perception with various mines, time-of-
the-day and weather conditions. The main contributions
of the AutoMine dataset are as follows: 1.The first au-
tonomous driving dataset for perception and localization in
mine scenarios. 2.There are abundant dynamic obstacles of
9 degrees of freedom with large dimension difference (min-
ing trucks and pedestrians) and extreme climatic conditions
(the dust and snow) in the mining area. 3.Multi-platform
acquisition strategies could capture mining data from mul-
tiple perspectives that fit the actual operation. More details
can be found in our website(https://automine.cc).

1. Introduction
Autonomous driving has received considerable attention

in recent years and is becoming increasingly crucial in the
field of artificial intelligence. It has been established that the
public unmanned driving datasets play a role in validating
algorithms. For example, some datasets , such as KITTI [9],

*corresponding author

Figure 1. The environmental characteristics of the strip mine in-
clude rugged unstructured roads, the strong light exposure and
dust. AutoMine annotates 3D objects with 9 degrees of freedom.

Cityscapes [5], and A2D2 [10] have been stimulating re-
searchers’ interests. With the development of deep learn-
ing and other data-driven approaches, large volume datasets
like ApolloScape [12] and Waymo Open [8] emerge to as-
sist scholars to examine generalization ability of high com-
plexity models. However, the pervasive autonomous driving
datasets pursue massive redundant sensors and annotations
which ignore the applicability on special scenes, including
mines, ports, airports and so forth. Consequently, there is a
lack of representative datasets to reveal extremely compli-
cated challenges appearing on the above-ground mines. We
publish our unmanned mine dataset (AutoMine) to fill this
gap and attract attention to autonomous driving in mining
scenarios.

1.1. Characteristics

In comparison with the application of autonomous driv-
ing in urban roads, the high casualty rate and poor working
conditions in mining environment make unmanned mines
more urgently needed. Due to the difficulty of data acqui-
sition, researchers can not investigate mining scenarios and
assess model performances. AutoMine presents authentic
mining data that are available for researchers to observe,
measure the data, to locate and settle the problems, and to
score and compare the approaches. The aim of this study is
to facilitate the advancement and to contribute to the real-
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ization of unmanned mines.
To the author’s knowledge, AutoMine is the first open-

pit mines dataset for autonomous driving, embracing plenty
of attributes. In particular, the unstructured roads are preva-
lent as shown in Fig. 1, which means the lack of the texture
and fringe of the road surface, putting forward a great chal-
lenge to localization strategies based on pattern identifica-
tion. Some frameworks associated with traffic lane, reflec-
tion intensity, and drivable areas detection covering struc-
tured avenues are likely to fail in mines. In addition, the
number of dynamic targets and the richness of background
are much less than those on urban datasets, imposing a great
challenge on classification and object position. Therefore,
how to detect potential loops and to enhance positioning
and perception accuracy in scenarios lacking of abundant
features are the unique values our dataset can provide to re-
searchers.

We have discovered that the kinematic behavior of mov-
ing objects is affected considerably by the geological struc-
ture in open-pit mines. Hence, it is not appropriate to ne-
glect the roll and pitch angle of each target on rugged and
rough roads like most datasets. We precisely annotated 3D
labels with 9 freedom including position, dimension and
full-scale orientation as shown in Fig. 1. We also formulated
a new 3D object detection metrics, aiming to accommodate
the full degree of freedom outputs in mines. Through the
investigation, we notice that intelligent vehicles also face
tough weather and temperature challenges such as dust-
storm, drizzle, heavy snow, as well as extremely cold and
sunlight exposure. These types of adverse working con-
ditions request higher demand to onboard sensors. Be-
sides, the geometry discrepancies of dynamic targets (min-
ing trucks and pedestrians) and apparent long-tail distribu-
tion of object types bring potential challenges to the percep-
tion missions.

Last but not least, it should be pointed out that trucks (in-
cluding tractors and trailers), wide-body trucks and mining
trucks are usual operating platforms in strip mines. How-
ever, there is a small proportion of civilian vehicles. In order
to enhance the practical performance of the model, we ap-
ply a variety of platforms to collect mining data, including
an SUV, a wide-body truck and a mining truck (Fig. 2). This
adjustment might offer a more macroscopic perspective for
scholars to understand the mining environment. Novel ob-
ject detection metrics and repetition results of perception as
well as localization are proposed and analyzed in our paper.

1.2. Related datasets

The publicity of various types of autonomous driving
datasets have made a substantial contribution to the ad-
vancement in this area. KITTI [9] is a pioneering au-
tonomous driving dataset, providing manifold computer vi-
sion tasks on urban roads in Karlsruhe. It is composed of

Figure 2. Three collection platforms are the Volkswagen Touareg
SUV, the Tonly TLD65 mining wide-body transport truck and the
Komatsu 930-4E mining truck from left to right.

22 driving scenes with more than 15K 3D annotations by
a 64 lines lidar. Many researchers have been attracted to
submit their testing outputs on KITTI website and got feed-
back with ranking. Cityscapes [5], BDD100K [32], Map-
illary Vistas [20] have released plentiful data with segmen-
tation masks. A*3D [22] enriches the sampling time and
climate, specifically adds the dark night, rainy and snowy
scenes into the visual set. NuScenes [2] is a large-scale au-
tonomous driving dataset built by nuTonom with 40K cali-
brated frames and radar packets. Lyft Inc releases a Level 5
autonomous driving prediction dataset called Lyft L5 [11],
containing more than 1K recorded driving hours with 55K
3D labeled boxes.

Some automobile manufacturers publish datasets col-
lected by their vehicles, including H3D [21], A2D2 [10]
and the Ford Dataset [1]. H3D is offered by Honda Inc
including 1.1M labels with a complete 360-degree lidar in
the San Francisco Bay. Audi’s dataset A2D2 [10] involves
2D semantic segmentation, 3D point cloud classification,
3D border detection and bus control tasks. Ford discloses
a luxuriant dataset (approximately 1.8T), Ford Dataset [1],
covering 1K scenes, incorporating diverse seasons and con-
structed 3D maps.

Waymo [8] receives eminent popularity and outstand-
ing reputation in the self-driving community, containing
1, 150 scenes with nearly 12 million 3D boxes on point
cloud and 12 million 2D annotation boxes on images. Be-
sides, ApolloScape [12] has been continuously updating,
which now has released 147K+ labeled frames, including
100K high-resolution images with pixel-by-pixel semanti-
cally segmented information. Comma2k19 [24] is a high-
way dataset covering 33+ commuting hours on California’s
280 expressways. The ONCE dataset [18] is made up of
144 driving hours with more than 1 million lidar scenes and
7 million corresponding camera pictures. Comprehensive
comparisons between the AutoMine and other autonomous
driving datasets are characterized in Tab. 1.

2. The AutoMine dataset

Here, we describe our dataset in detail by dividing it into
several units, mining environment, collection platform, sen-
sor configuration and synchronization, task partitioning, an-
notation statistics, localization and detection.
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Scenes Time Frame Location Road 3D-boxes Night Rain/Dust Classes 9-freedom Platform Attribute
KITTI [9] 22 1.5 15K Yes Str 200K Non Non/Non 8 Non Single Urban

Cityscapes [5] - - 25K Non Str - Yes Yes/Non 23 Yes Single Urban
nuScenes [2] 1K 5.5 40K Yes Str 330K Yes Yes/Non 23 Non Single Urban
A2D2 [10] - - 12K Yes Str - Non Yes/Non 14 Non Single HW/Ur

Lyft L5 [11] 170K 1K - Yes Str - Yes Yes/Non 14 Non Single Urban
A*3D [22] - 55 39K Yes Str 230K Yes Yes/Non 7 Non Single Urban

ApolloScape [12] - 100 144K Yes Str 70K Yes Yes/Non 35 Non Single Urban
BDD100K [32] 100K 1K 100K Non Str - Yes Yes/Non 10 Non - Urban

H3D [21] 160 0.77 27K Non Str 1.1M Non Non/Non 8 Non Single Urban
Argoverse [4] 113 0.6 22K Yes Str 993K Yes Yes/Non 15 Non Single Urban

Mapillary Vistas [20] - - 25K Non Str - Yes Yes/Yes 66 Non Multi Urban
Waymo Open [8] 1K 10 200K Yes Str 12M Yes Yes/Yes 4 Non Single Urban
Comma2k19 [24] 1K 5.5 200K Yes Str 12M Yes Yes/Non 4 Yes Multi HW
Ford Dataset [1] 1K 5.5 200K Yes Str 12M Yes Yes/Non 4 Non Single Urban
PandaSet [30] 103 - 16K Yes Str - Yes Non/Non 28 Non Single Urban
ONCE [18] - 5.5 1M Yes Str 417K Yes Yes/Non 5 Non Single Urban
AutoMine 70 6.0 18K Yes Unstr 90K Yes Yes/Yes 9 Yes Multi Mine

Table 1. Comparisons with other public autonomous driving datasets. HW/Ur represents HighWay/Urban.

Environment We captured 18+ driving hours’ data with
70 scenarios, utilizing three acquisition platforms (an SUV,
a wide-body truck and a mining truck) at five strip min-
ing sites in Inner Mongolia and Shaanxi province of China.
Due to the scarcity of road features in mining environment
and specific requirements, we require the route of the plat-
forms to contain at least one global or partial loop of min-
ing roads. In this way, we expect feature retrieval based
localization algorithms with loop closure detection can be
tested on our dataset to reduce the loss rate on unstructured
roads. In practice, trucks commute between the excavating
site and the dumping site alone the same route which further
justifies the necessity of incorporating loops in the dataset,
which elucidates our precondition is theoretically meaning-
ful. Furthermore, unlike the climate conditions of urban,
drivers sometimes experience extreme weather in mining
areas, so we intentionally chose to collect data with dis-
tinctive weather conditions (snowstorms, dusty and sand-
storms).

Collection platforms In order to satisfy the actual min-
ing demand and the practicability of research, we choose
three mobile acquisition platforms, which is one of the
bright spots compared with other autonomous driving
datasets with a single collection platform. We utilized a
Touareg SUV, a Tonly TLD65 mining wide-body transport
truck and a Komatsu 930-4E mining truck. The wide-body
and mining truck are two of the practical operation vehicles
in mines. These vehicles’ appearance can be seen in Fig. 2
and their dimension values are in Tab. 3. Each collection
vehicle contains at least one front lidar, an inertial naviga-
tion system, and two monocular cameras. There is growing
evidence that the larger volume of trucks, the higher risk of
self-driving operation has, so these types of acquisition plat-
forms were equipped with multiple low-line lidars or light
complement radars and millimeter wave radars. See Fig. 3

Figure 3. Sensor setup for the wide-body truck.

for sensor placement on the wide-body transport truck.
Sensor configuration Two FLIR industrial cameras

were mounted on the top of three acquisition platforms
with 55Hz capture frequency, 1/1.8” anamorphic format,
2048×1536 resolution, 70 degrees Field of View (FOV).
The Velodyne HDL-32E has 32 beams, 20Hz capture fre-
quency, 360° horizontal FOV (only 180° valid), -30° ∼
+10° vertical scan scope, 70m range, ±2cm accuracy, up
to 1.4M points per second and the Ouster-II-64 lidar has
64 beams with -7.9° ∼ +7.9° vertical angles, 20Hz, 150m
range, up to 1.3M points per second. The inertial naviga-
tion system updates it’s frequency in 10Hz. Tab. 2 shows
models of other core sensors.

Sensor synchronization We adopted hard synchroniza-
tion on the SUV to achieve sensor time calibration. To meet
acceptable cross-modality data alignment between the lidar
and the main camera sensor (left), the exposure of a camera
was triggered when the main lidar swept across the center of
the camera’s FOV. The pose from left camera to front lidar
(reference) was measured by mapping point cloud to corre-
sponding pictures in the static situation. When the vehicle
was moving, its speed was controlled below 20km/h and the
fused data frequency was 5Hz. In addition, the main lidar
is set as the reference of each platform, and the position as
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The SUV The Wide-Body Truck The Mining Truck
Main Lidar Ouster OS-2-64 * 1 Velodyne HDL-32E * 1 Velodyne HDL-32E * 1

Camera BFS-U3-31S4C-C *2 BFS-U3-31S4C-C *2 BFS-U3-31S4C-C *2
Inertial Navigation System DAISCH * 1 DAISCH * 1 DAISCH * 1

Solid Laser - Livox MID-40 Livox MID-40
Edge Lidar - Velodyne VLP-16 * 3 Velodyne VLP-16 * 3

Blind Spot Lidar - RS-Bpearl * 3 RS-Bpearl * 3
Radar - ARS408-21 * 1 ARS408-21 * 3

Table 2. The sensors employed on three collection platforms.

Target Name Dimension
Height Width Length

The SUV 1.65 1.74 4.69
The Wide-Body 3.95 3.47 9.10

The Mining Truck 7.40 8.72 15.03
Truck 4.87 3.80 11.9

Tractor 4.86 3.81 4.92
Trailer 4.86 3.81 9.85

Excavator 5.93 4.78 12.82
Pushdozer 3.37 4.45 8.31

Wide-Body Truck 4.06 3.55 9.53
Mining Truck 7.75 8.82 15.39

Civilian Vehicles 1.77 1.90 4.78
Pedestrian 1.81 0.75 0.89

Table 3. Our three different collection platforms’ dimension and
the average dimension value of dynamic objects.

well as pose of other sensors in this coordinate system are
deduced by the calibration procedure to accomplish space
synchronization.

Task partitioning At present, AutoMine supports two
major autonomous driving tasks: localization and percep-
tion. Raw data is split into 70 independent streams, each of
which lasts for 10 ∼ 30 minutes. Then by down sampling
and semi-manually selection step, high quality data frames
with more objects are served as the perception data. In the
future, more enjoyable tasks such as segmentation and pre-
diction will be taken into account in our dataset.

Data annotation For localization, the data includes po-
sition information (longitude, latitude and altitude) pro-
vided by the GPS and kinematic information (the speed and
acceleration) supported by the inertial measure unit (IMU)
of the collection vehicles. Perceptual annotation data con-
sists of targets’ 2D bounding boxes on image coordina-
tion, 3D properties with location (x,y,z), dimension (h,w,l),
and rotation (roll,pitch,yaw), classification including trucks,
tractors, trailers, wide-body trucks, mining trucks, excava-
tors, pushdozers, civilian vehicles and pedestrians.

Annotation statistics We analyzed the relative elevation

difference, data distribution and characteristics in the Au-
toMine. The duration of each piece of data is 15 minutes on
average with an average of 50m in elevation difference, that
reflects the prominent characteristics of roads in the mining
area. More than 18K perception frames are annotated with
90K bounding boxes. The targets classification rotation dis-
tribution are shown in Fig. 4.

Localization Like most existing datasets, we offer the
abundant vehicle location information based on the GPS
and IMU. We recommend users to utilize the lidar-based,
lidar-inertia SLAM(Simultaneous Localization and Map-
ping), pure vision, vision-inertia SLAM and fusion SLAM
methods on our dataset. The purpose of whole process is to
make full use of information to avoid localization loss and
to boost the accurate rating on unstructured roads.

Detection There are 18K frames of data in the whole per-
ception dataset (including multiple platforms). We divided
it into training and testing set by 70% and 30%, and the an-
notated data provides roll and pitch angles, especially pitch
angles, which often exists in the large uphill and downhill
roads in mines. We hope that researchers can explore all
the 9 DoF (degrees of freedom), with special attention to
roll and pitch, which is essential for safe driving in strip
mines rather than just the yaw angle. In addition, a truck
with trailer is split in a head and a trailer to handle with the
ambiguity when it turns a corner.

3. Task Metrics
3.1. Detection

The detection task for our AutoMine is divided into the
2D and 3D cases, both of which evaluate bounding boxes
for 9 categories. To evaluate the inference results from the
deep learning models, the outputs are sorted and catego-
rized first by confidence and intersection values. Then the
calculation strategy of 3D-AP is applied in accordance with
based our newly proposed three-view perspectives, as op-
posing to the traditional Bird-Eye View only perspective in
order to better evaluate the 3D detection models. Finally,
we proposed a new metric called Detection Score (DS) with
the intention of combining every individual score of 9 DoF.
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Average Precision We employ the Average Precision
(AP) metrics [9] [2] to assess 2D detection performances on
the threshold by Intersection over Union (IoU) between pre-
dicting and ground truth bounding boxes on camera plane.
To mitigate the impact of wide difference on dimension
among different targets, We implement diverse IoU thresh-
olds, {0.7, 0.6, 0.5} for the trucks categories (including ex-
cavator, pushdozers and mining trucks), civilian vehicles
and pedestrians. Predicted items with IoU under thresholds
would be determined as false positive.

Moreover, We group object detection results in several
sub-intervals by depth because we affirm remote objects
in the mines are neither important nor easy to detect. The
defined sub-intervals are [0, 10], [10, 20], [20, 35], [35, 60],
[60, inf ]. Consequently, separated by the recall rates r from
0 to 1 at the step 0.05, the AP could be obtained by sum-
mation of the weighted sub-interval area from drawing each
precision-recall curve p(r). αdi is the weight to indicate the
importance of each depth intervals. Adding the weights is
motivated by the analysis that numerous targets are concen-
trated at short range, so the evaluation favors the detection
algorithm with accurate detecting capability to these targets
within short ranges. Overall, the AP could be defined as:

AP =
∑

d∈([0,10],[10,20]··· )

αdi

∫
p(r)dr (1)

3D Average Precision There have been a number of au-
tonomous driving studies involving Bird’s Eye View (BEV)
that have rendered effective on 3D perception. However,
unlike other datasets only with single yaw orientation, our
AutoMine’s orientation information is composed of three
classes, and these discrepancies exhibit complicated charac-
teristics, requiring comprehensive measurement from mul-
tiple views besides BEV. For instance, Two completely
overlapping boxes from the top view may have diverse pitch
angles. Therefore, we use the mean IoU as the true positive
metrics during 3D evaluation.

It must also be mentioned that when two boxes exist in-
teraction on primary, top, and left views, it makes sense
to calculate the 3D IoU score. Taking the pitch orienta-
tion observation into account, targets with large pitch angles
on complex mining roads will generate upright rectangles
which are much larger than the actual size, so contrary to
straightway mapping 2D boxes from 3D, we firstly trans-
fer the representation of the target’s 3D attributes from the
camera coordinate system to the local coordinate. Then the
annotated pitch angle of each associated ground truth boxes
would be eliminated that means various real boxes will be-
come horizontal rectangles, and finally the coordinate sys-
tem should be converted back after above elimination op-
eration of the pitch angle. To meet the light computation
requirement, rolling direction would not be converted, be-
cause the tiny rolling angle (less than 5 degrees generally)

makes us conclude that the impact on the IoU is negligible.
The mean IoU is defined as

mIoU =
IoUma + IoUlef + IoUtop

3
(2)

Eq. (2), IoUma, IoUlef and IoUtop donate the IoU of
the primary, left and top view respectively. According to
Eq. (2), we utilize the same thresholds as 2D-AP men-
tioned above to distinguish positive samples from candi-
dates. Then the AP3D formula is shown as:

AP3D =
∑

d∈([0,10],[10,20]··· )

αdi

∫
p(r)dr (3)

In contrast to the BEV score, the AP3D in our met-
rics represents the combination result from multiple dimen-
sions, especially the pitch angle from the left view. αdi is
the weight as we mentioned in Eq. (1).

Besides the AP3D, the independent metric of each de-
gree of freedom in 3D space could assist researchers to ex-
plore partial advantages of the perception algorithm. Based
on the matched positive samples, we define center distance,
yaw, pitch, roll similarity and scale similarity. Consider-
ing center distance, since the dimension of the 3D bounding
box from ground truth is basically similar to that from the
associated corresponding prediction bounding box, and the
distance between these boxes should be less than the sum-
mation by the range from the center point of each box to the
boundary point. Take the ratio of the linear range between
two centers to the summation as below:

Cd = 1− 1

N (r1 + r2)

N∑
d=1..N

di (4)

di represents the rectilinear distance between two cen-
ters, and r1, r2 are the range between the center point of
each 3D box to the vertex of it. Due to the reciprocal and
subtraction operation, the center distance value is converted
into [0, 1]. N donates the matched positive candidates num-
ber.

Yaw orientation is essential for 3D perception, Similar
with yaw similarity mentioned in [9], it represents the nor-
malized difference between the yaw angle of predicting and
ground truth bounding boxes. Our yaw similarity only con-
siders true positive samples.

Y S =
1

N

N∑
d=1..N

1 + cos(△Y aw)

2
(5)

The formulations of pitch PS and roll RS indicators are
similar to the yaw similarity, and we decouple them in or-
der to verify the learning ability of different algorithms for
various DoF in mines.
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The size similarity evaluates the 3D dimensions includ-
ing length, width, height of the true positive detection and
gx, px represent the ground truth as well as the prediction
candidate.

SS =
1

3N

N∑
d=1..N

∑
x∈{l,w,h}

min

(
px
gx

,
gx
px

)
(6)

Detection Score Inspired by detection score in [5], we
design a more comprehensive score through multiplying
3D-AP and the summation of these sub-items.

DS = AP3D ∗ 3Cd+ Y S + PS +RS + 3SS

9
(7)

According to this formula, the DS receives the constraint
by 3D-AP because the latter part of equation only takes true
positive samples into account. Furthermore, on the basis of
requirements of decoupled, we evenly distribute equivalent
weights for the nine DoF and calculate the average.

3.2. Localization

In AutoMine localization task, we can divide it into vi-
sual and lidar localization, treating the GPS data as ground
truth. In order to intuitively display the fault, we appraise
the translational and rotational error.

ATE We use the Absolute Trajectory Error (ATE) to
evaluate localization performance. ATE evaluates the ab-
solute distance between the estimated and the ground truth
trajectory, representing the global consistency of them. Be-
cause all tracks are in different coordinate frames, we need
to map the estimated trajectory P1:n to the ground truth
Q1:n through rigid transformation S. Therefore, the ATE
at the time step i is defined as

Fi := Qi
−1SPi (8)

We adopt the root mean squared error of the translation
or rotation components at each moment.

ATEtrans =

√√√√ 1

n

n∑
i=1

||trans (Fi)| |22 (9)

RPE The Relative Pose Error (RPE) measures the dis-
crepancy of the pose change within a fixed time interval
∆, which is suitable for estimating the drift of track. Af-
ter aligning the timestamps, the relative pose error at time
step i is the deviation between the estimated and the ground
truth pose change within the time interval ∆. Therefore, the
RPE at time step i is defined as

Ei := (Qi
−1Qi+∆)

−1
(Pi

−1Pi+∆) (10)

2D-AP YS 3D-AP DS
PointPillar [14] 67.72 77.35 39.18 33.92
Second [31] 65.81 77.72 40.27 33.71
Second-IoU [31] 68.69 77.41 45.75 37.78
PointRCNN [27] 70.44 79.52 50.10 40.98
PointRCNN-IoU [27] 70.10 77.83 48.16 39.14
Part-Aˆ2-Free [28] 73.85 80.26 52.90 41.77
Part-Aˆ2-Anchor [28] 73.92 80.48 52.93 41.97
PV-RCNN [26] 77.39 76.02 54.59 46.87
Voxel R-CNN [6] 81.14 88.93 55.37 47.11
MonoGRNet [23] 55.81 64.02 4.66 4.09
SMOKE [17] 56.32 66.80 5.53 4.97
Stereo-RCNN [15] 60.49 70.57 8.92 7.47
YOLOStereo3D [16] 62.36 70.91 9.25 8.00

Table 4. The testing results of point cloud, monocular and binocu-
lar vision of trucks based perception algorithms on our dataset.

If the total number of pose sequences is n and the time
interval is ∆, we can get m = n − △ independent rela-
tive pose errors. We employ the root mean square error to
compute the relative pose error as

RPEtrans =

√√√√ 1

m

m∑
i=1

||trans (Ei)| |22 (11)

4. Experiments
In this section we reproduce classical approaches for 3D

object detection and localization tasks on the AutoMine.
We also describe experimental results and attempt to ana-
lyze essential characteristics.

4.1. Baselines

First of all, we carried out a series of representative per-
ception and localization algorithms for the baseline, catego-
rized into lidar and visual based.

Lidar detection baseline For lidar based 3D detec-
tion tasks, we reimplemented two stages methods including
PointRCNN [27], Part-Aˆ2 [28], PV-RCNN [26], Voxel R-
CNN [6] and one stage such as PointPillar [14], Second [31]
on OpenPCDet [29]. All of these strategies are prevalent
in academia as well as industry. For evaluation on 2D-AP,
predictions with confidence scores lower than 0.3 will be
ignored, and we set the IoU threshold to 0.7 to identify pos-
itive/negative samples. We introduce yaw similarity (YS)
which is similar with AOS indicators in KITTI, only consid-
ering matching boxes bias. In addition, the cosine similarity
of the two additional angles is calculated, and the average
angle cosine similarity consists of above direction elements
by weighted combination. We define 3D-AP, generated by
mIoU, the average Intersection over Union on the proposed
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Trans[m] Rot[deg]
ATE RPE ATE RPE

LOAM [33] 10.42 0.80 94.49 1.68
A-LOAM1 19.13 0.86 64.05 1.13
Lego-LOAM [25] 20.95 0.87 93.41 2.65
HDL [13] 11.86 0.94 76.28 1.42
ORB-SLAM2 [19] 23.06 3.01 115.09 5.05
ORB-SLAM3 [3] 24.75 2.14 117.64 5.11
DSO [7] 18.60 9.87 117.02 8.72

Table 5. The testing results of lidar-based and monocular vision
localization algorithms in AutoMine.

three views (primary, top and left), to distinguish positive
boxes from entire results. During the experiments, we refer
the mean dimension in Tab. 3 to set anchor sizes.

The performance results for the lidar based algorithms
are reported in Tab. 4, which only considered the truck cat-
egory. It indicates that Voxel R-CNN outperforms other
methods with 55.37%, 47.11% on 3D-AP and DS. Compar-
ing with 95.11% in KITTI testing set for Voxel R-CNN, the
81.14% in 2D-AP suggests that the model’s manifestation
capability needs to be further improved on our dataset.

Monocular 3D detection baseline Recent years monoc-
ular 3D detection is favored by numerous scholars because
of its low dependence on sensor. We employed MonoGR-
Net [23] and SMOKE [17] on AutoMine. According to
Tab. 4, the unsatisfactory results (56.32% of 2D-AP and
5.53% of 3D-AP) of trucks from these methods illustrates
a few challenges that cannot be tackled with monocular de-
tection algorithms in mining areas.

Stereo 3D detection baseline Stereo 3D detection de-
velops from binocular reconstruction, which extracts con-
junct information adopting optical parallax volume. We
used Stereo-RCNN [15] and YOLOStereo3D [16] as detec-
tion architectures. Experimental results in Tab. 4 demon-
strate the baseline of Stereo-RCNN with 8.92% and 7.47%
in 3D-AP and DS. Compared to monocular detection, the
binocular detection improves up to 4% in 3D, however, it
still requires further efforts and attention to achieve better
performance.

Visual localization baselines In order to illustrate the
properties of visual localization methods in AutoMine, we
evaluated ORB-SLAM2 [19], ORB-SLAM [3] and DSO [7]
in VO (visual odometry). We adjusted parameters to avoid
loss of track in localization. Monocular SLAM has a con-
siderable degree of scale drift, so we carried out scale align-
ment in the evaluation. As the experiments illustrates in
Tab. 5, the baseline of ORB-SLAM2, ORB-SLAM3 and
DSO are 23.06, 24.75 and 18.60 meters in ATE of trans-
lation. We conclude that the performance of them in Au-
toMine is much lower than that in KITTI, and the visual
localization of AutoMine is more challenging.

Figure 4. The distribution of categories, depth, yaw and pitch an-
gle among whole targets in AutoMine.

Lidar localization baselines To demonstrate the prop-
erties of lidar localization algorithms on AutoMine, we
reimplemented LOAM [33], A-LOAM1, Lego-LOAM [25],
HDL [13], and evaluated the performance in LO (lidar
odometry). HDL took one lidar and GPS data as input,
while other algorithms only used single lidar data. As
shown in Tab. 5, four models perform poorly on AutoMine.
Considering only the translational error, LOAM outper-
forms other strategies with 10.42, 0.8 meters on ATE and
RPE. While, in the case of rotational error, A-LOAM has
the better effect with values of 64.05 and 1.13 deg in ATE
and RPE respectively, which is significantly ahead of other
methods.

4.2. Analysis

Following the aforementioned benchmark, we analyze
the crucial characteristics and difficulties that influence the
indicators performance on our dataset.

Lidar VS. Camera The majority of the mining scenes
in our dataset are monotonous on the point cloud from lidar
and images from cameras. The feature extractors based on
deep convolutional neural networks may produce confusion
and generate unsatisfactory results. The aeolian landform
and the dust raised by vehicles will create a large number
of noise points. In addition, because of the particularity of
mining roads, it is difficult to discern foreground objects on
unstructured roads. It is clear that visual perception models
are less effective than lidars, but under the mining environ-
ment, the gap has been widened. On the basis of whole
dataset, we explore a number of images which are difficult
to recognition like bright light exposure, giant halos, seri-
ous truncation especially the large size objects, and pixels

1 https://github.com/HKUST-Aerial-Robotics/A-LOAM
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2D-AP 3D-AP DS
VoxelRCNN 81.14 55.37 47.11
Replace Pit 82.75 57.74 47.29
Replace Yaw 81.26 55.50 47.13
Replace Dim 81.82 55.96 47.46
Excav only 75.41 52.10 46.22
Pedes only 50.17 37.58 32.54
Car only 62.31 41.73 37.99
Pedes/Truck 37.40/81.12 31.49/55.30 29.73/47.10

Table 6. We employed the ablation experiments on the angle and
scale with replacing the truth to outputs, and different categories.

fuzzy from violent shaking. Except for cases mentioned
above, two consecutive scenes from the dataset are captured
at night and since the lack of illumination system in mining
areas, it is extremely hard to identify objects in such black
background images with only headlights. This is one of the
most major reasons for weak visual detection accuracy.

Pitch & Roll Experimental algorithms only comprise 7
DoF for 3D detection, ignoring the pitch and roll, which
seems to be reasonable in common rural roads, but these
types of angle change dramatically when vehicles drive in
uphill and downhill ways in mines. We replaced the anno-
tated pitch orientation value to measured data for matched
forecast objects and it is noteworthy that there are 2.37%
and 0.18% increase of 3D-AP and DS respectively in Tab. 6.
The benchmark model achieves a 3D-AP increase of 0.13%
for substituting the rolling angle. This is consistent with
the observation from the indistinctive distribution of rolling
angles in Fig. 4.

Large size & Small size In order to estimate the effect
of dimensions of targets, a series ablation experiments were
conducted. Specific details are shown in Tab. 6. When the
dimension was substituted with ground truth values, a small
increase (0.59%, 0.35%) appears in the 3D-AP and DS.
Moreover, when the performance of algorithms is assessed
on the civilian vehicles and pedestrians, the accuracy de-
creases greatly, which is mainly related to the long-tail dis-
tribution of objects and sparse point cloud within targets in
the dataset. In the multiple categories training, the detection
accuracy of pedestrians further decreases because of inap-
propriate voxel resolution. The behavior of the dimension
difference makes us conclude that the perception model or
architecture applying in mines requires improvement to be
compatible with various objects scales.

Unstructured scenes The topography of the open-pit
mine is constantly changing as the excavation progresses,
the trajectory of operating vehicles is not fixed, it is unnec-
essary and impossible to construct tarmac roads in mines.
Therefore, the majority of the path is composed of soft sand
and gritty soil, which lacks obvious curbs, lanes and fea-
tures. These types of roads have an adverse effect on ma-

jority localization methods requiring more similar feature
points between adjacent frames such as ORB-SLAM2 [19]
and ORB-SLAM3 [3]. That is one of the dominant factors
for low feature matching rates and high cumulative errors.
It is worthwhile mentioning that few localization method is
validated on unstructured roads, which impedes people to
find out problems in these scenarios. We outline a possible
solution, utilizing map matching at first and updating long-
term map constantly in localization.

Sparse point clouds As shown in Tab. 5, the perfor-
mances for lidar-based localization algorithms are not sat-
isfactory. By analysing the data, we found that it is mainly
due to the sparse point clouds in open-pit mines. The bump-
ing and shaking exacerbate this undesirable situation when
the main lidar is installed on the front of the trucks. There-
fore, the combination of multiple lasers like edge lidars of-
fers opportunities to mitigate the problem of data sparsity.
In addition, we reckon that the ground modeling, normal
vector analysis and other mathematical methods are sup-
posed to play the key role in solving limited input data, and
they would have more prospects in mining localization.

Multi-sensor fusion We believe that the multi-sensor fu-
sion technology will boost the unmanned driving in mines.
Our dataset currently involves vision and lidar data as in-
put. However, the truck contains three extra low-line lidars,
light complement and millimeter wave radars as shown in
Tab. 2, and the data from these sensors can supplement the
information of the blind area around the vehicle. Moreover,
more ground points can be captured by these sensors, and as
a result, they are likely to enrich input data of localization
methods. Also, further features on targets’ surface would be
detected, thereby increasing the average precision. We aim
to facilitate researchers by providing more data from vari-
ous of sensors besides lidar and camera to tackle the driving
safety issues in mines.

5. Conclusion
In order to solve the difficulties of autonomous driv-

ing vehicles on unmanned mines, we release the first au-
tonomous driving dataset AutoMine for open-pit mines,
which includes 3D object detection and localization tasks
in mining areas with novel metrics, baselines and results.
We expect our work to boost the research and development
in unmanned mining.
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