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Abstract

Color image stitching is a challenging task in real-world
applications. This paper first proposes a quaternion rank-
1 alignment (QR1A) model for high-precision color image
alignment. To solve the optimization problem of QR1A, we
develop a nested iterative algorithm under the framework of
complex-valued alternating direction method of multipliers.
To quantitatively evaluate image stitching performance, we
propose a perceptual seam quality (PSQ) measure to calcu-
late misalignments of local regions along the seamline. Us-
ing QR1A and PSQ, we further propose an automatic color
image stitching (ACIS-QR1A) framework. In this frame-
work, the automatic strategy and iterative learning strategy
are developed to simultaneously learn the optimal seamline
and local alignment. Extensive experiments on challenging
datasets demonstrate that the proposed ACIS-QR1A is able
to obtain high-quality stitched images under several diffi-
cult scenarios including large parallax, low textures, mov-
ing objects, large occlusions or/and their combinations.

1. Introduction

Color image stitching refers to the generation of a large
image with a broader field of view from multiple partial
overlapped color images. As a fundamental task of image
processing, it plays a crucial role in diverse applications
such as photogrammetry in remote sensing [17], stereo-
scopic stitching in virtual reality [6] and panoramic stitch-
ing in autonomous driving [28]. However, generating high-
quality stitched images remains a challenging problem, es-
pecially in presence of large parallax, low textures, moving
objects, large occlusions or/and their combinations.

Conventionally, the image stitching process contains
three steps: first, estimate alignment models to warp in-
put images onto a common coordinate system; second, de-
tect an invisible seam in the overlapping area; third, uti-
lize an image blending technique along this seam to splice
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aligned images into a larger image. According to the align-
ment methods in the first step, image stitching works can be
broadly classified into feature-based and pixel-based.

In the feature-based methods, the development of image
stitching technologies follows two mainstreams: to devise
an optimal global alignment, and to search a local align-
ment enabling an optimal seamline. In the first mainstream,
spatially-varying warping methods were proposed to im-
prove the global alignment accuracy [8, 12, 22, 30]. They
calculated multiple local adaptive transformations over the
whole overlapping area to align images as much as possi-
ble. To maintain image naturalness, shape-preserving meth-
ods were developed by integrating homography with the
similarity transformation [3, 15, 20]. Inspired by content-
preserving warping (CPW) [23], the mesh-warping methods
were as well as adopted for local adjustments to the align-
ment accuracy and image naturalness [5, 6, 11, 32]. How-
ever, their underlying assumption is that the spatial relations
among the neighboring objects should be consistent in dif-
ferent input images. Their estimated local transformations
are varied continuously, and hence they perform very well
only in presence of small or moderate parallax.

To handle large parallax, the seam-driven strategy was
introduced in the second mainstream. The seam-driven
methods first estimated local alignment proposals and then
selected the optimal one with the best seam quality to cre-
ate the final stitching result [9, 21, 32]. It’s noteworthy that
given the same aligned area, different seam calculations
usually produce various seamlines such that the stitched im-
ages are diverse as well [14]. And the evaluation of seam
qualities directly decides the final stitched image. However,
these methods put major efforts into generating local align-
ment proposals while limited considerations on their seam-
line proposals. Therefore, the simple methods for seamline
calculation and evaluation could degrade their final stitching
performances implicitly. Additionally, most of them em-
ploy the seam quality as a metric to select ready alignment
models, instead of guiding the process of alignment model
estimation. As a result, the generated best seam from these
local alignment proposals cannot guarantee to achieve an
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optimal stitching performance.
Interestingly, we further observe a contradictory fact that

a plausible seam is usually encouraged to go through the
flat regions (e.g., sky, walls and roads) whereas the feature-
based alignment methods cannot provide the pixel-level ac-
curacy accordingly. In low-textured environments, insuffi-
cient features probably lead to the biased estimation of their
alignment models, and hence misaligned errors are gener-
ated. Such biased estimations may also occur in dynamic
scenes where features are distributed non-uniformly due to
the moving objects or occlusions. To alleviate this problem,
some works explored line features to complement point-
feature correspondences [11, 16]. However, the estimated
models still perform well in the limited scenes where suffi-
cient line segments should be captured.

To fully utilize image information, pixel-based image
alignment methods were developed [18, 19, 26]. They
aligned image backgrounds using a low-rank matrix and
modeled the misaligned differences among the foregrounds
as a sparse matrix. Benefited from this decomposition way,
these methods are robust to moving objects and occlusions.
Compared with using feature correspondences, they achieve
higher alignment accuracy when fitting the same alignment
model, especially in low-textured environments. However,
when aligning color images, they directly convert color im-
ages into grayscale images that ignores the relationship be-
tween color channels, resulting in performance degradation.

Motivated by the above limitations, in this paper we in-
troduce an automatic color image stitching method to create
high-quality stitched images under kinds of difficult scenar-
ios. Our main contributions are summarized as follows:

1. We propose a quaternion rank-1 alignment (QR1A)
model for color image alignment in the quaternion do-
main. Using the quaternion representation, QR1A is
able to fully utilize color image information and ob-
tain high-precision color image alignment results.

2. To solve the optimization problem of QR1A, we de-
velop a nested iterative algorithm under the frame-
work of complex-valued alternating direction method
of multipliers.

3. To quantitatively evaluate image stitching perfor-
mance, we propose a perceptual seam quality (PSQ)
measure to calculate misalignments of local regions
along the seamline.

4. Using QR1A and PSQ, we further propose an auto-
matic color image stitching (ACIS-QR1A) framework.
In this framework, the automatic strategy and itera-
tive learning strategy are developed to simultaneously
learn the optimal seamline and local alignment. This
offers our ACIS-QR1A the capability of performing
high-quality color image stitching automatically.

5. Extensive experiments on different challenging
datasets demonstrate that ACIS-QR1A is able to

create high-quality stitched images when facing
large parallax, low textures, moving objects, large
occlusions or/and their combinations.

The rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 proposes the QR1A
model and deduces its optimal solution. Section 4 proposes
the PSQ measure. Section 5 proposes the ACIS-QR1A
framework in detail. Section 6 presents the experiments and
comparisons. Finally, Section 7 gives the conclusions.

2. Related Work
Feature-based methods Promoted by advances in fea-

ture detection and matching, most of the current works
are feature-based. Gao et al. proposed a dual-homography
model to align images containing two predominant planes
[8]. Lin et al. computed an affine stitching field whose de-
viation from the global affine was smoothly varying [22].
Considering the affine model was unable to achieve per-
spective transformation, Zaragoza et al. proposed a moving
direct linear transformation to estimate the as-projective-
as-possible (APAP) warp which was composed of spatially
weighted homographies [30]. Li et al. proposed a robust
elastic (robust ELA) warping model that formulated the
image deformation as the thin plate spline [12]. In low-
textured environments, Li et al. proposed a dual-feature
method to estimate the warping model using both feature
points and line segments [16]. To further preserve image
structures in wide-parallax condition, Jia et al. proposed
a joint matching strategy leveraging the line-point consis-
tence (LPC) measure [11]. Nie et al. proposed an unsuper-
vised deep image stitching method to handle low-textured
images having few hand-craft features [24]. In contrast to
stressing the global alignment quality, Gao et al. first pro-
posed the seam-driven strategy to align images using a lo-
cal alignment with the best seam quality [9]. Considering
aligned image overlaps will be cut through by this seam,
perfect global alignment over the whole overlapping area is
actually not necessary. Based on this observation, Zhang
and Liu developed a parallax-tolerant method (parallax-
tolerant) that first found a local alignment enabling an opti-
mal stitching and then applied the CPW method to refine the
global alignment quality [32]. To improve seamline quali-
ties, Lin et al. devised a seam-guided scheme (SEAGULL)
that reweighted the feature correspondences iteratively to
modify their local alignment proposals [21].

Pixel-based methods Theoretically, well-aligned im-
ages of the same scene are linearly correlated and hence
a low-rank structure can be extracted. Peng et al. sought
an optimal set of alignment models by decomposing trans-
formed images into a low-rank matrix plus a sparse ma-
trix [26]. However, they solved the rank minimization prob-
lem via convex relaxation and applied it to batch images
that were fully overlapped. In the image stitching appli-
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cation, input images are usually partial overlapped and the
number of images is small such that their method performs
poorly. To fit the best geometric transformation for image
stitching, Li et al. first roughly aligned images to extract the
overlapping area where then a low-rank matrix was approx-
imated under the non-convex constraint [18]. As an exten-
sion, they further proposed a bundle robust alignment and
stitching (BRAS) algorithm in which the low-rank compo-
nent was substituted with an exact rank constraint to opti-
mize their alignment model [19]. However, they converted
color images into grayscale images such that the correlated
color information among RGB channels was lost. Consid-
ering this problem, we propose QR1A model using quater-
nion representation to fully utilize color image information
for high-precision color image alignment. To the best of our
knowledge, directly aligning color images in the quaternion
domain has not been addressed up to now.

3. Quaternion Rank-1 Alignment

This section proposes the QR1A model for robust color
image alignment. We first briefly introduce the quaternion
algebra and quaternion representation of color image. Then,
we describe the QR1A model and give its optimal solution.

3.1. Preliminaries

Quaternion Algebra As the four-dimensional extension
of complex space C, a quaternion number (q̇ ∈ H) consists
of one real part and three imaginary parts [10]. It is gener-
ally represented as:

q̇ = a0 + a1i+ a2j+ a3k, (1)

where {a0, a1, a2, a3} ∈ R and i, j,k are imaginary bases
following: ij = −ji = k, jk = −kj = i,ki = −ik =
j, i2 = j2 = k2 = ijk = −1. When a0 = 0, q̇ =
a1i + a2j + a3k is a pure quaternion number. The quater-
nion addition is simply the component-wise addition as that
in the complex space. But the quaternion multiplication
is non-commutative, i.e., q̇ṗ ̸= ṗq̇. Hence, directly mul-
tiplying quaternion vectors or matrices is intractable due
to its non-commutative property. [31] converts quaternion
matrices to pairs of complex matrices and solves them in
the complex domain. Here, we introduce several definitions
used in this paper.

Definition 1 (Complex adjoint form) Given a quaternion
matrix Q̇ = A0 + A1i + A2j + A3k ∈ Hm×n, it can be
delineated with an ordered pair of complex matrices

Q̇ = C0 +C1j, (2)

where C0 = A0 + A1i, C1 = A2 + A3i, and
C0,C1 ∈ Cm×n. Then the complex adjoint form of

(C0,C1) uniquely determines Q̇ as follows:

χQ̇ =

[
C0 C1

−C1 C0

]
∈ C2m×2n. (3)

Q̇ and χQ̇ are isomorphic [31].

Definition 2 Given a quaternion vector q̇ = c0 + c1j ∈
Hm, let q be the first column of χq̇, i.e., q = χq̇(:, 1) =
[c0;−c1] ∈ C2m. The operator ς(q) is defined as:

ς(q) =

[
cT0
cT1

]
∈ C2×m. (4)

Definition 3 (Quaternion rank [29]) The rank of a
quaternion matrix Q̇ is r if and only if Q̇ has r nonzero
singular values, and if and only if the rank of its complex
adjoint χQ̇ is 2r.

Quaternion Representation of Color Image Given a
color image I , its quaternion representation İ is defined as:

İ(x, y) = Ir(x, y)i+ Ig(x, y)j+ Ib(x, y)k, (5)

where İ(x, y) is the quaternion representation of the color
pixel located at (x, y) in the image coordinate system, Ir, Ig
and Ib denote the red, green and blue channels of the color
image I , respectively. Advantages of quaternion represen-
tation include: (1) all color components of a color image
are encoded together in the quaternion domain; (2) they are
capable of being processed simultaneously and holistically,
such that the correlated color information among different
channels can be fully utilized.

3.2. QR1A Model

Given n color images with a partial overlapping area,
their quaternion representations are denoted as {İi}ni=1. We
assume that there exist n corresponding geometric transfor-
mations {τi}ni=1 such that color images from their original
coordinate systems can be warped to a common reference
coordinate system for alignment. Let {Ḟi}ni=1 be aligned
color images, then

Ḟi(x, y) = (İi ◦ τi)(x, y), (6)

where ◦ denotes image warping and τi ∈ R8×1 is associ-
ated with an 8-parameter homography in our work. Subse-
quently, we extract n overlapped color image areas and vec-
torize them as columns to stack into a big quaternion matrix.
This process is mathematically described as follows:

Ḋ ◦ τ = [vec( ˆ̇F1), vec(
ˆ̇F2), · · · , vec( ˆ̇Fn)] ∈ Hm×n, (7)

where { ˆ̇Fi}ni=1 represents aligned image overlaps, vec(·)
denotes the operator that linearizes the matrix elements into
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a vector, Ḋ represents the big quaternion matrix constructed
by original image overlaps, τ = [τ1, τ2, · · · , τn] ∈ R8×n

and m denotes the number of pixels in the overlapping area.
We here propose a quaternion rank-1 alignment (QR1A)

model for color image stitching. The QR1A model is for-
mulated as the following optimization problem:

min
L̇,Ṡ,τ

∥Ṡ∥1

s.t. Ḋ ◦ τ = L̇+ Ṡ, rank(L̇) = 1,
(8)

where the quaternion rank-1 matrix L̇ represents the same
static backgrounds between the image overlaps (columns).
The quaternion sparse matrix Ṡ denotes the differences be-
tween their foregrounds. It stands for partial artifacts, e.g.,
moving objects, occlusions and other unavoidable misalign-
ments.

Directly solving the optimization problem in Eq.(8) is
quite difficult mainly because the constraint Ḋ ◦ τ = L̇+ Ṡ
is non-linear and the multiplication of quaternions is non-
commutative. To solve this non-linear quaternion optimiza-
tion problem, we reformulate it in the complex space:

min
χL̇,χṠ,△τ

∑
j
∥ς(Sj)∥2,1

s.t. χḊτ
+

n∑
i=1

χJ̇i
Re(△τeie

T
i ) = χL̇ + χṠ,

rank(χL̇) = 2.

(9)

where χḊτ
, χJ̇i

, χL̇ and χṠ are equivalent complex adjoint
matrices of Ḋτ , J̇i, L̇ and Ṡ. Ḋτ = Ḋ ◦ τ for brevity,
J̇i = ∂

∂ξvec(İi ◦ ξ) |ξ=τi∈ Hm×8 is the quaternion Ja-
cobian matrix of the ith color image w.r.t. its transforma-
tion parameters τi, △τ = [△τ1,△τ2, . . . ,△τn] ∈ R8×n

denotes local variations of the current τ , {ei}ni=1 are the
standard basis vectors in Rn, and Re(·) is the operator that
constrains inside variables to be real-valued. Ṡj stands for
the jth column of the quaternion matrix Ṡ, and Sj is the
first column of χṠj

.

3.3. Optimization

To solve the optimization problem in Eq.(9), we develop
a nested iterative algorithm. Specifically, we first form the
augmented Lagrangian function of Eq.(9):

Lρ(L,S,△τ,Y) =
∑

j
∥ς(Sj)∥2,1

+Re(Tr(YH [Dτ +

n∑
i=1

JiRe(△τeie
T
i )− L− S]))

+
ρ

2
∥Dτ +

n∑
i=1

JiRe(△τeie
T
i )− L− S∥2F

s.t. rank(L) = 2,

(10)

where Tr(·) means the trace of a matrix, Y ∈ C2m×2n is
the Lagrangian multiplier, ρ > 0 is the penalty parameter.
Here, we let L = χL̇, S = χṠ, Y = χẎ, J = χJ̇, and
Dτ = χḊτ

for brevity. To minimize Eq.(10), we iteratively
update each variable against the other fixed variables under
the complex ADMM framework [13]. The alternating min-
imization scheme is presented as follows:

Lk+1 = arg min
L:rank(L)=2

Lρ(L,Sk,△τk,Yk), (11)

Sk+1 = argmin
S

Lρ(Lk+1,S,△τk,Yk), (12)

△τk+1 = argmin
△τk

Lρ(Lk+1,Sk+1,△τ,Yk), (13)

Yk+1 = Yk + ρ[Dτ +

n∑
i=1

JiRe(△τk+1eie
T
i )− Lk+1 − Sk+1].

(14)

Each step in the above scheme involves solving a specific
subproblem w.r.t a certain variable. In the following, we
spell out the closed-form solution for each subproblem.

Update Lk+1: We define a quaternion rank-1 projection
operator Γ1 : Hm×n → Hm×n as:

Γ1{Q̇} = U̇1σ1V̇
∗
1, (15)

where σ1 is the largest singular value of Q̇ and U̇1 ∈ Hm,
V̇1 ∈ Hn are the corresponding left and right quaternion
singular vectors, respectively. The optimal L̇k+1 is obtained
at:

L̇k+1 = Γ1{Ḋτ +

n∑
i=1

J̇iRe(△τeie
T
i )− Ṡk+

Ẏk

ρ
}. (16)

We perform the quaternion singular value decomposition in
the complex space [4] and construct χL̇k+1

to update Lk+1.
Update Sk+1: We learn the optimum via optimizing its

independent column vectors Sj . Due to the redundant struc-
ture of the complex adjoint form, we optimize the columns
of only the front half part of the matrix:

Sj = argmin
Sj

∥ς(Sj)∥2,1 + ρ∥Sj −Rj∥22

for j = 1, 2, . . . , n.
(17)

Here, R = Dτ +
∑n

i=1 JiRe(△τkeie
T
i )−Lk+1+

Yk

ρ . To
separate Sj from the operator ς(·), we utilize the variable-
splitting technique [2] by introducing an auxiliary variable
Z = ς(Sj) to solve it as follows:

min
Sj

ρ∥Sj −Rj∥22 + ∥Z∥2,1

s.t. Z = ς(Sj).
(18)

To solve the subproblem in Eq.(18), we further form its cor-
responding augmented Lagrangian function:

Lµ(Sj ,Z,y) = ρ∥Sj −Rj∥22 + ∥Z∥2,1

+Re(yH
[
Sj − ς−1(Z)

]
) +

µ

2
∥Sj − ς−1(Z)∥22,

(19)
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where y ∈ C2m is the Lagrangian multiplier, µ > 0 is the
penalty parameter and ς−1(·) denotes the inverse operator
of ς(·): C2×m → C2m. Then, the complex ADMM itera-
tions of the sub-algorithm are devised as follows:

St+1
j = argmin

Sj

Lµ(Sj ,Z
t,yt), (20)

Zt+1 = argmin
Z

Lµ(S
t+1
j ,Z,yt), (21)

yt+1 = yt + µ
[
St+1
j − ς−1(Zt+1)

]
. (22)

Setting the derivatives of Eq. (20) w.r.t Sj to zeros, we up-
date St+1

j as follows:

St+1
j =


ρRH

j + µ
2

[
ς−1(Zt)− yt

µ

]H
ρ+ µ

2


H

. (23)

The Eq. (21) can be reduced as follows:

min
Z
∥Z∥2,1

+Re((yt)H
[
St+1
j − ς−1(Z)

]
) +

µ

2
∥St+1

j − ς−1(Z)∥22

= min
Z

1

2
∥Z− ς(St+1

j +
yt

µ
)∥2F +

1

µ
∥Z∥2,1.

(24)

Next, we update Zt+1 applying the soft thresholding ap-
proach in Lemma 1 [2, 13].

Lemma 1 Let X ∈ C be a complex-valued variable to the
problem:

min
X

1

2
∥X−B∥2F + λ∥X∥2,1. (25)

There exists optimal X̂ satisfying

X̂(:, i) =

{
∥B(:,i)∥2−λ
∥B(:,i)∥2

B(:, i), ∥B(:, i)∥2 > λ

0, otherwise.
(26)

In the Eq.(22), we can directly update yt+1 using the fixed
St+1
j and Zt+1. Once the front n column vectors are op-

timized, the latter half part of Sj(j = n + 1, . . . , 2n) can
be deduced from the structure of complex adjoint form. Se-
quentially, the optimization for Sk+1 is completed.

Update△τk+1: We calculate the optimum as follows:

△τk+1 = argmin
△τk

ρ

2
∥

n∑
i=1

JiRe(△τeie
T
i ) +Dτ

− Lk+1 − Sk+1 +
Yk

ρ
∥2F

=

n∑
i=1

Re

(
J†
i (Lk+1 + Sk+1 −Dτ −

Yk

ρ
)eie

T
i

)
,

(27)

where J†
i denotes the Moore-Penrose inverse of complex

matrix Ji.
Update Yk+1: We fix the current optimized Lk+1, Sk+1

and△τk+1 to update Yk+1 according to Eq.(14).
This alternating minimization algorithm proceeds until

the stopping criterion is met. We calculate the primal resid-
ual, i.e., rk+1 = Dτ +

∑n
i=1 JiRe(△τk+1eie

T
i )−Lk+1−

Sk+1, and the stopping criterion is satisfied when the Frobe-
nius norm of rk+1 approaches to zero. Finally, we obtain
all closed-form solutions to Eq.(10). It’s notable that the
linearization in Eq.(9) only holds locally. To learn the final
optimal transformation, we will update τ ← τ + △τ it-
eratively under the framework of ACIS-QR1A proposed in
Section 5.

4. Perceptual Seam Quality Measure

To effectively discriminate different seamlines and pre-
cisely evaluate image stitching performance, this section
proposes the PSQ measure.

To begin with, for each pixel on the seamline, we extract
a local patch (15 × 15 pixels) centered at it. Since before
image composition, the position of each patch corresponds
to two overlapped patches from input images, i.e., the ref-
erence and target image patches. Then, we calculate visible
errors between these overlapped patches to quantify the lo-
cal misalignments. Inspired by [14], we estimate these er-
rors based on human visual system in which the human’s
nonuniform attention to complex scenes and nonlinear per-
ception for color differences are investigated.

Specifically, considering pixels with higher saliency val-
ues attract more visual attention, we calculate the saliency
map for each pair of overlapped patches based on the fast
minimum barrier distance (FastMBD) transform [33]. The
value of FastMBD at the pixel p in image patch P is defined
as:

d(p) = min
ϕ∈Φ

[
n

max
k=0

P(ϕ(k))−
n

min
k=0

P(ϕ(k))

]
, (28)

where ϕ = {ϕ(0), ϕ(1), . . . , ϕ(n)} is a path composed of a
sequence of adjacent pixels, Φ is the set of paths that con-
nect the pixel p to the boundary pixels of its left neighbor
and upper neighbor, respectively. Then, the color difference
is weighted w.r.t. the corresponding pixel saliency. That
is, the color differences will be highlighted in salient re-
gions while suppressed in non-salient regions. To human
eyes, only when the stimulus is larger than a threshold can
the color difference be noticed. Besides, the sensitivity to
the perceived color difference is changed nonlinearly. As
the stimulus is enhanced, the visual discrimination will de-
crease. We characterize this nonlinear perception process as
a sigmoid curve.

Consolidating the above models, we define the percep-
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Figure 1. The proposed ACIS-QR1A framework.

tual quality of a seam as follows:

EPSQ =
1

MN

M∑
i=1

N∑
j=1

1

1 + exp(−β(Wij |Pij −Qij | − α))
,

(29)
where Wij = d(Pij)+ d(Qi,j). Wij , Pij and Qij are the
values of jth pixel in the ith patch of the saliency matrix,
reference image patch and target image patch, respectively.
M , N denote the numbers of total patches and the pixels
contained per patch, respectively. α and β are constants
controlling the thresholds of recognizing the color differ-
ence and the sensitivity stimulated by that discrimination,
respectively. We calculate α and β using the Ostu’s algo-
rithm [25]. The value of EPSQ has been normalized to the
range of [0, 1]. Generally, the smaller value indicates the
better seam quality and better stitching performance.

5. Automatic Color Image Stitching Frame-
work

As shown in Fig. 1, we utilize the QR1A model and PSQ
measure to further propose an automatic color image stitch-
ing framework called ACIS-QR1A in this section.

The essence of our framework is to accurately align a
suitable local region such that a high-quality seamline is
generated for color image stitching. To this end, we de-
velop the automatic strategy and iterative learning strategy
for this framework. In contrast to the conventional pipeline
that calculates alignment and seamline sequentially and in-
dependently, the automatic strategy argues to merge the pro-
cesses of alignment estimation and seamline detection to-
gether such that the optimal stitching performance is ob-
tained in a holistic way. Meanwhile, the iterative learning
strategy is devised to learn the optimal seamline and local
alignment simultaneously in an iterative manner.

Specifically, we first roughly align images using an ini-
tial global homography [7]. Then, the overlapping area is
extracted and partitioned into separate local regions em-
ploying the segmentation technique [1]. In each local re-

gion, we learn an alignment proposal using the QR1A opti-
mization algorithm. Next, the seam-cutting technique [14]
is carried out to generate a seamline proposal accordingly.
We use the PSQ measure to evaluate the perceptual stitch-
ing qualities of all seamline proposals. To choose a suit-
able local region for stitching, we select the alignment pro-
posal with the best PSQ and make it the initial alignment
for the next iteration. Under the guidance of PSQ, align-
ment proposals in the following iterations are optimized by
QR1A towards the direction of the best stitching perfor-
mance. Meanwhile, the PSQ values of seamline proposals
are optimized as well. In each iteration, both the current op-
timal local alignment and seamline are updated adaptively.
The iteration proceeds until the optimized seamline meets
the predetermined PSQ standard (red dots in the histogram)
or the relative difference of PSQ values between two con-
secutive iterations is lower than a threshold (10−4).

6. Experiments
We first perform an ablation study to demonstrate the ef-

fectiveness of QR1A model and the iterative learning strat-
egy in ACIS-QR1A framework, respectively. We then com-
pare the overall color image stitching performance of ACIS-
QR1A with that of the state-of-the-art methods on chal-
lenging public datasets, quantitatively and qualitatively. In
the QR1A optimization algorithm, we set initial variables
L0,S

0,Z0,△τ,Y0,y
0, k and t equal to 0, ρ and µ equal to

1.25. The stopping threshold is set to 10−5 empirically.

6.1. Ablation Study

We perform ablation experiments on the 009 dataset [32]
where parallax and moving kids exist. In ACIS-QR1A, we
segment the overlapping area into five local regions. Ac-
cordingly, five local alignment proposals and five seamline
proposals are generated in each iteration. For clarity, the
seamline color indicates images are stitched on different
local alignment proposals. To explore the iterative learn-
ing process of ACIS-QR1A, we present the intermediate
stitched results of each iteration. For comparison, the initial
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global alignment result is directly composed as the baseline.
We then construct an experiment following the traditional
step-by-step pipeline, in which images are first iteratively
aligned by QR1A, and then composed sequentially.

As shown in Fig. 2, artifacts occur easily due to the local
misaligned areas along the seamline. The stitched result us-
ing the initial global alignment in Fig. 2(a) suffers from ob-
vious artifacts in many local regions. By introducing QR1A
in Fig. 2(b), the severe artifacts are largely relieved, but
there still exist slight errors that cannot be precisely aligned
in presence of parallax. In Fig. 2(c), the iterative process of
ACIS-QR1A is illustrated and the changing seamline color
denotes that the local alignment is optimized dynamically
under the guidance of PSQ. From these magnified regions,
it can be observed that those circled artifacts are rectified
iteratively until they are totally vanished along the seam-
line. Even in the sky, the slight ghosting artifacts can also
be detected and rectified.

6.2. Performance Comparison

The overall color image stitching performance of ACIS-
QR1A is compared with the global homography (baseline)
and the state-of-the-art methods including APAP [30], ro-
bust ELA [12], LPC [11], parallax-tolerant [32], SEAG-
ULL [21] and BRAS [19]. The qualitative and quantita-
tive results are from papers or generated by their released
codes. For fairness in comparison, we uniformly adopt the
perception-based seam cutting [14] and Poisson blending
technique [27] to compose their aligned images.

Qualitative Evaluation To fully evaluate the color im-
age stitching ability, we compare different algorithms ana-
lyzing four typical challenging datasets.

1) Large Parallax: A typical example is the 025 dataset
[32] in which the spatial relations of the lorry, the chimney
and the tree are different between input images. In Fig. 3,
it can be observed that both APAP and robust ELA distort
images due to such inconsistent spatial distribution, despite
per feature correspondence established accurately. Slight
distortions and misalignments are also generated in other
methods, except the LPC and ACIS-QR1A.

2) Moving Objects: In the 071 dataset [32], the streams
of cars at the crossroads disturb the uniform distribution of
features and may also introduce inconsistent spatial distri-
bution of matched features. From Fig. 4, we can observe
that both APAP and robust ELA distort the middle and
right buildings severely. Original three lanes in input im-
ages are duplicated to four lanes in other feature-based re-
sults. BRAS suffers from slight misalignments of lines on
the roads. ACIS-QR1A is free from these artifacts.

3) Low Textures: As shown in Fig. 5, stitching images
with few textures is difficult especially for the feature-based
methods. In BRAS, slight misalignments in the shadows are
magnified. By contrast, ACIS-QR1A is able to align these

(a)

(b)

(c)

Figure 2. Stitched results using (a) the initial global alignment, (b)
QR1A, (c) the iterative learning strategy of ACIS-QR1A.

regions precisely for color image stitching.
4) Large Occlusions: In the catabus dataset [19], the

background is occluded by a moving bus such that most
feature correspondences are established among the moving
bus. That is, if the feature-based methods rely on both the
moving features and static features, distortions and artifacts
are generated easily. We can observe both APAP and robust
ELA distort images severely. Original one tree in input im-
ages is duplicated in all feature-based results. BRAS and
ACIS-QR1A are able to achieve good performance.

Quantitative Evaluation To precisely compare image
stitching performance, different algorithms are equally eval-
uated with the same PSQ metric. Table 1 records the PSQ
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Figure 3. Comparison of different algorithms on the 025 dataset
[32]: the case with large parallax.

Figure 4. Comparison of different algorithms on the 071 dataset
[32]: the case with moving objects and parallax.

Figure 5. Comparison of different algorithms on the shelf dataset
[16]: the case with low textures and parallax.

values of different algorithms on 20 challenging datasets.
The best scores are highlighted in bold. We can observe that
our ACIS-QR1A outperforms other methods almost consis-
tently. Meanwhile, the high-precision local alignment along
the seamline is demonstrated, especially in No.11 to No.15
cases (low textures and parallax). Notice that although ro-
bust ELA obtains the better PSQ in No.18 case, its stitched

Figure 6. Comparison of different algorithms on the catabus
dataset [19]: the case with large occlusions and parallax.

image suffers from severe distortions due to the moving ob-
jects and large parallax. We provide the corresponding qual-
itative results in the supplementary material.

No. Dataset Baseline [14] APAP [30] Robust ELA [12] LPC [11] BRAS [19] ACIS-QR1A

1 temple [8] 0.1388 0.1846 0.1242 0.1614 0.1089 0.0004
2 069 [32] 0.1418 0.0691 0.0849 0.0648 0.0609 0.0191
3 05 [21] 0.0625 0.0603 0.1278 0.0436 0.0417 0.0352
4 13 [21] 0.0345 0.0872 0.0706 0.0516 0.0287 0.0158
5 24 [21] 0.0923 0.1276 0.1454 0.181 0.0724 0.0326

6 025 [32] 0.0823 0.0692 0.0485 0.0647 0.0177 0.0137
7 053 [32] 0.0984 0.1092 0.099 0.1111 0.0703 0.0563
8 059 [32] 0.1134 0.0374 0.1539 0.0308 0.029 0.0107
9 073 [32] 0.0848 0.0852 0.135 0.1073 0.0895 0.0448

10 001 [32] 0.0044 0.0021 0.0022 0.0091 0.0043 0.0010

11 corner [16] 0.1452 0.3778 0.3232 0.0061 0.1268 0.0004
12 roof [16] 0.1677 0.1533 0.1046 0.0162 0.1257 0.0002
13 four [16] 0.2140 0.0974 0.4214 0.1013 0.1151 0.0742
14 cabinet [16] 0.5400 0.5685 0.4942 0.2943 0.4526 0.00003
15 window [16] 0.2279 0.4148 0.3711 0.2612 0.3664 0.00003

16 009 [32] 0.0719 0.1000 0.0561 0.0692 0.0413 0.0253
17 071 [32] 0.0968 0.1232 0.0756 0.0976 0.0528 0.0468
18 12 [21] 0.0776 0.0816 0.0185 0.0847 0.0405 0.0207
19 17 [21] 0.0200 0.0184 0.0334 0.0998 0.0259 0.0115
20 catabus [19] 0.0104 0.0159 0.0143 0.0392 0.0002 0.0001

Table 1. Comparison of stitching quality using the PSQ measure.
No.1 to No.5: small parallax. No.6 to No.10: large parallax and
occlusions. No.11 to No.15: low textures and parallax. No.16 to
No.20: moving objects, large parallax and occlusions.

7. Conclusions
In this paper, we first proposed QR1A model for high-

precision color image alignment in the quaternion do-
main. To solve the optimization problem of QR1A, we
developed a nested iterative algorithm under the complex
ADMM framework. We also proposed PSQ measure to pre-
cisely evaluate image stitching performance. Using QR1A
and PSQ, we further proposed the ACIS-QR1A frame-
work to simultaneously learn the optimal seamline and local
alignment. Extensive experiments on challenging datasets
demonstrated that the proposed ACIS-QR1A is able to cre-
ate high-quality stitched images under several difficult sce-
narios including large parallax, low textures, moving ob-
jects, large occlusions or/and their combinations.
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[27] Patrick Pérez, Michel Gangnet, and Andrew Blake. Pois-
son image editing. In ACM Transactions on Graphics, pages
313–318. 2003. 7

[28] Lang Wang, Wen Yu, and Bao Li. Multi-scenes image stitch-
ing based on autonomous driving. In IEEE Information
Technology, Networking, Electronic and Automation Control
Conference, volume 1, pages 694–698, 2020. 1

[29] Louise A Wolf. Similarity of matrices in which the elements
are real quaternions. Bulletin of the American Mathematical
Society, 42(10):737–743, 1936. 3

[30] Julio Zaragoza, Tat-Jun Chin, Michael S Brown, and David
Suter. As-projective-as-possible image stitching with mov-

19728



ing dlt. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2339–2346, 2013. 1, 2, 7, 8

[31] Fuzhen Zhang. Quaternions and matrices of quaternions.
Linear Algebra and its Applications, 251:21–57, 1997. 3

[32] Fan Zhang and Feng Liu. Parallax-tolerant image stitching.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3262–3269, 2014. 1, 2, 6, 7, 8

[33] Jianming Zhang, Stan Sclaroff, Zhe Lin, Xiaohui Shen,
Brian Price, and Radomir Mech. Minimum barrier salient
object detection at 80 fps. In IEEE International Conference
on Computer Vision, pages 1404–1412, 2015. 5

19729


