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Figure 1. Bi-level Neural Volume Fusion (BNV-Fusion) incrementally integrates noisy depth images to a global model of geometry.

Abstract

Dense 3D reconstruction from a stream of depth images

is the key to many mixed reality and robotic applications.

Although methods based on Truncated Signed Distance

Function (TSDF) Fusion have advanced the field over the

years, the TSDF volume representation is confronted with

striking a balance between the robustness to noisy mea-

surements and maintaining the level of detail. We present

Bi-level Neural Volume Fusion (BNV-Fusion), which lever-

ages recent advances in neural implicit representations and

neural rendering for dense 3D reconstruction. In order to

incrementally integrate new depth maps into a global neu-

ral implicit representation, we propose a novel bi-level fu-

sion strategy that considers both efficiency and reconstruc-

tion quality by design. We evaluate the proposed method on

multiple datasets quantitatively and qualitatively, demon-

strating a significant improvement over existing methods.

1. Introduction

Dense 3D reconstruction from images is one of the

most long-standing tasks in the computer vision commu-

nity. While there is a large body of research focusing on

reconstruction using RGB-only images [13,15], the increas-

ing popularity of depth sensors in commodity devices (e.g.

Microsoft Kinect [45], Apple LiDAR scanner [1]) has en-

abled researchers to develop reconstruction algorithms tak-

ing advantage of depth maps [9, 26, 33].

However, the representation used in these methods –

Truncated Signed Distance Function (TSDF) Volume – is

known to lose fine details at sub-voxel scale (e.g. thin sur-

faces) [3, 41] because it discretizes the scene geometry at a

pre-defined resolution. In addition to the limitation of the

representation, each depth measurement is integrated into

the volume independently using voxel-wise weighted aver-

aging without any local context, which makes the fusion

process vulnerable to noisy depth measurements.

In contrast, emerging neural implicit representations,

which show promising results in novel view synthesis [25],

and shape modelling [24,29,31], have the potential of being

a better alternative to TSDF volume-based reconstruction in

an online setting. In essence, these representations are deep

neural networks that map continuous 3D coordinates to a

task-dependent scene property, such as the color or the dis-

tance to the nearest surface. As a result, a surface can be

extracted at any resolution given the implicit function rep-

resented by the network, without any increase in memory
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usage. Another advantage of neural implicit representations

is that the network can be trained as a generative model to

capture prior knowledge of a family of surfaces. These ap-

pealing aspects of the neural implicit representations have

motivated recent works [2, 3, 17] to develop surface recon-

struction methods in an offline setting. Nonetheless, while

TSDF volume-based methods [26, 33] have demonstrated

voxel-wise weighted averaging is real-time capable, how to

incrementally integrate new depth measurements using neu-

ral implicit representations is still an open question.

Inspired by traditional volumetric fusion approaches, we

present Bi-level Neural Volume Fusion (BNV-Fusion) for

high-quality and online 3D reconstruction in this paper.

Given a sequence of depth maps and the associated poses,

BNV-Fusion incrementally integrates depth measurements

into a global neural volume. The novelty of BNV-Fusion

is the combination of a local-level fusion and a global-level

fusion. At the local level, a new depth map is first mapped to

latent codes, each representing local geometry in the latent

space. They are then fused into the global neural volume

by weighted averaging, which resembles the efficient up-

date in traditional volumetric fusion methods. However, the

local-level fusion is susceptible to depth outliers as it only

integrates the measured surfaces and their surroundings to

the volume. Furthermore, although several works on shape

modelling [12, 43] suggest that arithmetic operations in the

latent space correspond to the actual geometry change to

some degree, updating the global representation in the la-

tent space using an additive scheme does not always lead

to correct geometry. To this end, we propose to optimize

the global volume using neural rendering, where we penal-

ize the discrepancies between the SDFs extracted from the

global volume and those of depth measurements. This opti-

mization is coined as global-level fusion as it encourages a

coherent reconstruction globally.

Overall, the key realization in BNV-Fusion is that the

local- and global-level fusions are complementary. While

the local-level fusion efficiently integrates new information

and initializes the global-level fusion, the reconstruction

quality is improved significantly by the global-level fusion.

To summarize, our contributions are threefold:

• We propose BNV-Fusion, a novel and state-of-the-art

dense 3D reconstruction pipeline that represents the

geometry of a scene by an implicit neural volume.

• We design a novel bi-level fusion algorithm that effi-

ciently and effectively updates the neural volume given

new depth measurements.

• We conduct extensive experiments, including an evalu-

ation on 312 sequences of various indoor environments

in ScanNet [8], to validate that BNV-Fusion improves

existing approaches significantly and is truly general-

izable to arbitrary scenes.

2. Related Work

Neural implicit representations can be categorized into

global and local representations. In Sec. 2.1, we provide an

overview of both categories with a focus on the latter one as

the neural implicit volume in this work is inspired by meth-

ods in this category. We then, in Sec. 2.2, introduce pre-

vious works in dense 3D reconstruction and describe how

our method is different from existing approaches that also

leverage neural implicit representations.

2.1. Neural Implicit Representations

Global representations. DeepSDF [29], Occupancy Net-

works [24], and IM-Net [5] are pioneering works in neu-

ral implicit representations for object shapes. Follow-up

works [27, 37] remove the requirement of 3D ground-truth

supervision. They train their network by minimizing the

discrepancies between input images and color (and depth)

images rendered from the implicit representation. Milden-

hall et al. [25], a seminal work in novel view synthesis us-

ing a neural implicit representation, takes a step further by

representing the geometry and appearance of a scene as a

Neural Radiance Field (NeRF). It learns to map 3D coordi-

nates and viewing directions to occupancy and RGB values.

The idea of using neural rendering as a supervision signal

to learn a neural implicit representation has inspired subse-

quent works in 3D reconstruction [2, 40], including ours.

Local representations. Recent advances on implicit repre-

sentations suggest that using an MLP to represent the ge-

ometry of a scene or an object is not scalable, and the prior

knowledge at the object level is not generalizable [3, 17].

Therefore, they propose to learn neural implicit representa-

tion for local geometry structures, which is easily general-

izable to objects of novel categories. The geometry of an

entire scene can be decomposed into a grid of local latent

codes, each of which represents the geometry in the local

region. Similarly, Genova et al. [11] propose a network to

predict both a set of local implicit functions and their 3D

locations when given a set of depth maps for object recon-

struction. In the application of novel view synthesis, Liu et

al. [21] also show that decomposing a scene into a set of

local latent codes, arranged in an Octree volume, improves

rendering quality and speed. Our neural implicit volume

is inspired by the work of Jiang et al. [17] and Chabra et

al. [3]. While they are designed to map a complete point

cloud of a scene to a set of latent codes, we can update the

volume when given new information. More importantly,

their frameworks do not handle outliers explicitly as they

try to fit all observed surfaces to local latent codes. We in-

stead filter out outliers in the proposed global-level fusion.

2.2. Dense 3D Reconstruction

Traditional approaches. The seminal work by Curless and

Levoy [7] presents the idea of “TSDF Fusion”, which fuses
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Figure 2. The architecture of BNV-Fusion. At frame t, BNV-Fusion first maps a depth map Dt to a single-view neural volume V
s

ct
, where

each voxel contains a latent code that represents the local geometry in a latent space (Sec. 3.2). BNV-Fusion then integrates the single-view

neural volume into the global neural volume using the proposed bi-level fusion (Sec. 3.3). At the local level, V s

ct
is integrated into the

global volume Vw using running average weighted by W
s

ct
. At the global level, we iteratively optimize the global volume by minimizing

the discrepancies between the SDFs decoded from the volume si and the actual measurements s̄i along a camera ray.

depth maps into a TSDF volume by averaging. KinectFu-

sion [26] revisits and extends this idea to develop a real-time

dense SLAM system with commodity-level depth cameras,

such as Microsoft Kinect [45]. Subsequent works [9,10,18,

23, 28, 33, 35, 38] improve scalability, reconstruction qual-

ity, loop closure and various aspects in the fusion pipeline.

Apart from the methods based on TSDF volume, several

works [32, 36, 39, 42, 44] resort to surface-based represen-

tations that only model the surface of geometry for map

compression. These classic approaches have promoted the

development of 3D reconstruction in the past decades.

Reconstruction with neural implicit representations.

Azinović et al. [2] use an MLP to represent the geometry

of a scene and train the MLP by comparing the rendered

and input RGBD images. Sucar et al. propose iMAP [40],

a dense SLAM system using a single MLP as the only

representation for both mapping and tracking. Despite

shrinking the training time from days as in Azinović et

al. [2] to near real-time performance, the limitations of

iMAP are as follows. First, the reconstruction does not

scale well to the size of a scene and tends to lose details.

This is because, although the MLP converges quickly to

low-frequency shapes, it takes a much longer time to at-

tend to high-frequency details, as noted by the authors of

iMAP [40]. Second, they train a new MLP for each scene,

thereby being inefficient and prone to noise in depth mea-

surements. The proposed method circumvents these issues

by using a volume of latent codes that encode local geome-

try in a shape embedding. The volume-based representation

can improve the level of detail in reconstruction because

the MLP that is conditioned on a latent code only needs to

learn local surface patterns rather than the geometry of a

scene. Moreover, by only optimizing the latent codes while

freezing the MLP’s parameters in the global-level fusion,

we effectively leverage prior knowledge of local geometry

embedded in MLP.

More closely related to our work as to representation are

NeuralFusion [41] and DI-Fusion [16], both of which rely

on a grid of latent codes. However, our work differs sig-

nificantly from these methods in updating the latent codes

given new measurements. Instead of only integrating new

measurements in the domain of latent codes, we achieve a

more globally consistent reconstruction by also optimizing

the latent codes via neural rendering.

To summarize, although there are pioneering works [16,

40,41] that try to apply neural implicit representations to re-

construction in an online setting, they improve efficiency at

a great cost of reconstruction quality. Instead, the proposed

method can reconstruct fine details that even traditional vol-

umetric fusion approaches tend to miss while running in

near real-time (∼ 2 Hz without proper code optimization).

3. Method

Given a sequence of depth maps {D0, ..., Dn} and the

associated extrinsic parameters {Tw
c0
, ...,Tw

cn
} (Tw

cn
denotes

a rigid transformation from camera cn to the world coor-

dinate), BNV-Fusion aims to reconstruct the geometry of a

scene represented by a global implicit neural volume Vw

(defined in Sec. 3.1). BNV-Fusion processes each depth

map in three main steps, as outlined in Fig. 2. The encoding

step converts a depth map into a single-view neural volume

that comprises a set of latent codes in an embedding of lo-

cal shapes (Sec. 3.2). The single-view neural volume is in-
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tegrated into the global volume using the proposed bi-level

fusion (Sec. 3.3).

3.1. Implicit Neural Volume

An implicit neural volume contains a set of local latent

codes spatially organized in a grid structure. Specifically,

the implicit neural volume takes the following form: V =
{v = (p, l)}, where each voxel v contains its 3D position in

the space p, and a latent code l that implicitly represents the

local geometry in an embedding of local shapes. To recover

the Signed Distance Function (SDF) value of a 3D point

x from the volume, we first retrieve 8 neighboring voxels

v0...7 in the volume and transform x to the local coordinate

with respect to each neighboring voxel: x̄i = x−pi. Given

the latent code and the local coordinate, a shape decoder

D(·, ·) predicts the SDF value as follows.

s =

N=7∑

i=0

w(x̄i,pi)D(li, x̄i), (1)

where w(·, ·) is the weight of trilinear interpolation. A mesh

depicting the geometry of a scene can be extracted using

the Marching Cubes algorithm [22] given the SDFs decoded

from the volume.

3.2. Learning the Local Shape Embedding

The key of the implicit neural volume to represent geom-

etry effectively is a data-driven embedding of local shapes,

which we learn using an AutoEncoder-like network. Tech-

nically, a depth encoder E , which is modified from Point-

Net [34], takes as input a point cloud unprojected from a

depth map and extracts deep features of each point by ag-

gregating information within a local region. These features

are then mapped to a set of latent codes in the embedding.

The decoder D is a Multilayer Perceptron (MLP) with 4
fully connected layers. It takes a latent code and a 3D co-

ordinate as input and predicts the input coordinate’s SDF

value.

Training. We train the encoder and decoder jointly in a su-

pervised manner using object CAD models in ShapeNet [4].

The loss function given a pair of training sample (p,x) is

L(θE , θD) = ∥DθD (EθE (p),x)− sgtx ∥1, (2)

where p is a local point cloud with normals of a local sur-

face patch, and x is a sampled point around the surface with

its ground-truth SDF value sgtx . We further detail the train-

ing process in Sec. 3.4.

Inference. At frame t, the depth map Dt is first unpro-

jected to a 3D point cloud using the known intrinsic param-

eters. The point cloud is then segmented into overlapping

local point clouds {p0,p1, ...,pn}, each of which is taken

Encoder . . .

Latent codes

Figure 3. Encoding a depth map to the embedding of local shapes.

A 3D point cloud, unprojected from a depth map, is segmented

into local point clouds (bounded by 3D cuboids). The depth en-

coder takes as input a local point cloud and predicts a latent code.

by the encoder to map to a latent code l = E(p), as shown

in Fig. 3. The latent codes are aggregated into a single-view

implicit volume V s
ct

that represents Dt in the domain of la-

tent space. The implicit volume is accompanied by a weight

volume W s
cn

, where the values are set to the number of 3D

points associated with a voxel.

3.3. Bi­level Fusion

Given a single-view neural volume, the global volume is

updated sequentially by running the local- and global-level

fusions. The latent codes in the single-view neural volume

are first integrated into the global volume by weighted av-

eraging at the local level. After the local update, the global

volume is optimized via neural rendering to ensure a glob-

ally consistent reconstruction. We detail the bi-level fusion

in the rest of this section.

Local-level fusion. At frame t, the single-view neural vol-

ume V s
ct

is transformed to the world coordinate using the

camera extrinsic parameters: V s
w = Tw

ct
V s
ct

. The compu-

tation flow in the local-level fusion is similar to that of the

traditional volumetric Fusion [7] except we are averaging

latent codes rather than TSDF values, as shown below:

V t
w =

W t−1V t−1

w +W s
ct
V s
w

W t−1 +W s
ct

, (3)

W t = W t−1 +W s
ct
, (4)

where Vw and W denote the global implicit volume and its

weight respectively. The superscript t−1 and t means prior

update and post update.

Global-level fusion. Although the local update is efficient,

it is susceptible to outliers in measurements. Moreover,

arithmetic operations in the latent space do not align per-

fectly with the actual geometry changes. To resolve these

problems, we enforce a global consistency of geometry by

rendering SDF values from the global volume and compare

them with depth measurements. The discrepancies between

the rendered values and the actual observations are then
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used as supervision signals to optimize the global volume

iteratively. At each iteration, we randomly sample a set of

pixels in a depth map. Along the ray unprojected from each

sampled pixel, we sample N 3D points {x0,x1, ...,xn} us-

ing a hierarchical sampling strategy inspired by Mildenhall

et al. [25] where we sample more 3D points that are closer

to the measured surface. The projective TSDF of each 3D

point given a depth measurement p on a ray is computed

as: s̄i = min(max(∥p− xi∥2,−δ), δ), where δ is the trun-

cation threshold. After transforming the 3D points to the

world coordinate, the SDF values of these points can be ex-

tracted using Eq. (1). Lastly, the optimization objective

becomes:

argmin
Vw

Σn
i=0

∥si − s̄i∥1, (5)

where si is the SDF value decoded from the neural volume

Vw using Eq. (1).

3.4. Implementation Details

Implicit neural volume. The voxel resolution is 2 cm (i.e.

a latent code represents the geometry of a 2cm3 volume

around its position), and the dimension of the latent codes

is set to 8.

Network training. We train the depth encoder and shape

decoder using object CAD models from two categories

(chairs and lamps) in ShapeNet [4]. To generate the input

point clouds for the encoder, we first render 20 depth maps

from random viewpoints for each CAD model. A depth map

is unprojected to a 3D point cloud. We then randomly select

2000 seed points in each point cloud. A local point cloud

is created by retrieving neighboring points within a local re-

gion centered at each seed point. We apply a Gaussian noise

on the surface points and perturb their normal directions to

simulate noise in depth measurements. We also randomly

sample 1000 training points and calculate their SDF in the

local region in order to train the decoder. The encoder con-

tains 4 fully connected layers with sizes [128, 128, 128, 8],

which are interconnected by ReLu except for the last layer.

We aggregate information within a local region using an av-

erage pooling layer. The decoder is an MLP with 4 fully

connected layers with sizes [128, 128, 128, 1].

Global-level fusion. We sample 5000 pixels per image in

each iteration. For each camera ray unprojected from a sam-

pled pixel, we sample 5 3D points per meter at the coarse-

level sampling, and 20 3D points at the fine-level sampling.

Latent codes in the global neural volume are optimized by

the Adam optimizer [20] in Pytorch [30] for 5 iterations for

each image.

4. Experiments

4.1. Datasets and Metrics

We evaluate the proposed method extensively on three

datasets: 3D Scene Dataset [6], ICL-NUIM RGBD bench-

mark [14] (under the Creative Commons 3.0 license), and

ScanNet [8] (under the MIT license). These datasets cover

both synthetic scans with ground-truth 3D models, and real-

world scans with pseudo ground-truth 3D models. To eval-

uate reconstruction quality, we uniformly sample 100, 000
points from the ground-truth meshes and reconstructed

meshes, respectively, then report the following metrics. Ac-

curacy (denoted as Accu. in tables) measures the fraction

of points from the reconstructed mesh that are closer to

points from the ground-truth mesh than a threshold distance,

which is set to 2.5 cm. Completeness (denoted as Comp. in

tables) calculates the fraction of points from the ground-

truth mesh that are closer to points from the reconstructed

mesh than 2.5 cm. F1 score (denoted as F1 in tables) is the

harmonic mean of accuracy and completeness, which quan-

tifies the overall reconstruction quality. When reporting per-

sequence quantitative results on ICL-NUIM [14] and the 3D

Scene dataset [6], we run experiments 5 times using differ-

ent frames and sample surface points twice independently

to ensure the quantitative results are statistically significant.

4.2. Baselines

In the following experiments, we demonstrate the effec-

tiveness of BNV-Fusion by comparing against three strong

baseline methods that use traditional TSDF fusion or build

upon modern neural implicit representations.

“TSDF Fusion” in this section denotes an implementa-

tion of TSDF Fusion in the Open3D library [46] based on

KinectFusion [26]. “DI-Fusion” [16] is a reconstruction

pipeline using a volumetric neural implicit representation.

We use the code published by the authors in our experi-

ments. “iMAP” is our reimplementation of the paper iMAP

from Sucar et al. [40] because we do not have access to

the official implementation at the time of submission. Run-

ning our system on their dataset is not preferable since they

use synthetic depth maps without noise in evaluation, which

have a domain gap to real-world scans. To isolate the map-

ping components in all compared methods, we use camera

poses provided by the datasets and take the same images as

input in the evaluation.

4.3. Evaluation on 3D Scene Dataset

The 3D Scene dataset, which comprises several real-

world RGBD sequences, is a popular benchmark in the

reconstruction community. Unlike synthetic datasets (e.g.

the ICL-NUIM dataset), where ground-truth 3D models are

available, in order to provide a quantitative comparison, we

follow a common practice in prior art [3, 41]. Specifically,
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Figure 4. Qualitative comparison on the Scene3D dataset [6]. The proposed method can reconstruct more fine details accurately than

previous traditional and learning-based methods. Notably, in the scene on top (the “Lounge” scene), our method can reconstruct some

leaves and branches of the plants, which even the ground-truth mesh provided by the dataset fails to reconstruct (highlighted by the cyan

bounding boxes in the reference RGB image). Compared to other methods in the scene at the bottom (the “Burghers” scene), our method

can faithfully reconstruct the statue’s face. The differences are more visible when zooming in.

Lounge CopyRoom CactusGarden StoneWall Burghers

Method Accu. / Comp. / F1 Accu. / Comp. / F1 Accu. / Comp. / F1 Accu. / Comp. / F1 Accu. / Comp. / F1

TSDF Fusion [46] 86.16 / 93.46 / 89.66 89.88 / 90.22 / 90.05 75.62 / 94.17 / 83.84 88.73 / 94.34 / 91.45 72.78 / 82.35 / 77.26

iMAP [40] 85.76 / 87.98 / 86.85 83.94 / 80.22 / 82.04 73.04 / 85.01 / 78.57 85.82 / 85.83 / 85.82 70.23 / 71.71 / 70.96

DI-Fusion [16] 67.76 / 79.09 / 72.98 85.24 / 78.22 / 81.58 58.00 / 68.70 / 62.90 82.36 / 89.97 / 85.90 63.10 / 65.90 / 64.47

BNV-Fusion (Ours) 87.53 / 94.77 / 91.01 88.56 / 90.32 / 89.43 78.62 / 94.33 / 85.75 92.57 / 94.19 / 93.37 75.98 / 82.44 / 79.08

Table 1. Quantitative evaluation on the 3D Scene Dataset [6]. Our BNVF shows superior performance over the state-of-the-arts.

we consider the reconstructions provided by the dataset as

ground truth. Since those models are created by running

a TSDF Fusion method on all available frames in each se-

quence with post-processing, we take only every 10th frame

as input images when running compared methods in the

evaluation.

Tab. 1 quantifies the reconstruction quality on 5 scenes

in the 3D Scene dataset, from which it is clear that our

method outperforms other methods in all sequences. We

highlight the differences in reconstructions produced by dif-

ferent methods in Fig. 4. Although DI-Fusion [16] is able

to reconstruct smooth surfaces given noisy depth measure-

ments, it fails to capture any fine details. This suggests

that integrating depth measurements in the latent space only

does not utilize the depth measurements effectively. While

decreasing the voxel size in DI-Fusion seems to be an al-

ternative to facilitate accurate reconstruction, we present an

ablation study on voxel size in Sec. 4.6 to show that there is

a problematic trade-off if reducing voxel size. iMAP [40],

another method based on a neural implicit representation,

is unable to attend to details either because they use a sin-

gle MLP to represent the entire scene. It is also visible in

Fig. 4 that iMAP is more susceptible to noise in depth maps

than both our method and DI-Fusion. This is due to the

lack of prior knowledge since they train a new network for

each scene. Compared to the TSDF-Fusion approach, our
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Livingroom0 Livingroom1 Office0 Office1

Method Accu. / Comp. / F1 Accu. / Comp. / F1 Accu. / Comp. / F1 Accu. / Comp. / F1e

TSDF Fusion [46] 54.66 / 62.52 / 58.31 60.13 / 72.19 / 65.28 49.21 / 53.71 / 51.41 56.61 / 59.18 / 57.79

iMAP [40] 61.23 / 62.31 / 61.76 65.12 / 65.40 / 62.25 47.26 / 47.18 / 47.22 64.96 / 59.91 / 57.33

DI-Fusion [16] 61.52 / 64.43 / 62.55 69.69 / 67.81 / 68.00 50.06 / 48.99 / 49.79 54.53 / 50.41 / 52.36

BNVF (Ours) 71.26 / 73.86 / 72.54 80.01 / 81.94 / 81.02 58.17 / 60.33 / 59.23 63.93 / 63.89 / 63.91

Table 2. Comparison of accuracy (Accu.), completeness (Comp.) and F1 score (F1) on the augmented ICL-NUIM dataset [6]. The proposed

BNV-Fusion outperforms all methods by a large margin in all metrics in 4 sequences except the accuracy in the “Office1” sequence.

Methods Thresholds Every xth frames @ 2.5cm Estimated Poses

1cm 5cm x = 1 x = 30

TSDF [46] 33.63 90.87 85.26 79.81 55.20

iMAP [40] 28.43 89.72 82.07 74.12 55.96

DI-Fusion [16] 23.53 88.83 74.40 73.81 58.33

Ours 35.34 93.29 87.60 80.57 61.07

Table 3. F1 scores under various experimental settings.

method reconstructs challenging structures more accurately,

such as thin leaves, fingertips, and human faces. Further-

more, by referring to the RGB images, it is encouraging

to see that our method can even reconstruct thin structures

(highlighted in the cyan bounding boxes in Fig. 4) that the

ground-truth meshes miss. Note that 10× more depth im-

ages are used to generate the ground-truth meshes. In ad-

dition, Tab. 3 evaluates the methods under different exper-

iment settings (e.g. using SLAM to track camera, different

thresholds, different frame rates).

4.4. Evaluation on ICL­NUIM Dataset

The ICL-NUIM dataset is a synthetic dataset with

ground-truth 3D models. We use the synthetic sequences

rendered by Choi et al. [6] because their rendering con-

siders a more comprehensive noise model (e.g. disparity-

based quantization, realistic high-frequency noise, and low-

frequency distortion based on real depth cameras) to simu-

late the noise in real depth images. Our reconstructions are

more accurate and complete, supported by the high accu-

racy and completeness in Tab. 2. Similar to the results in

the 3D Scene Dataset, both DI-Fusion [16] and iMAP [40]

struggle to reconstruct fine details in the geometry. We out-

perform TSDF-Fusion [46] by a larger margin than what

we have in the 3D Scene Dataset. We believe this is be-

cause the synthetic noise in ICL-NUIM dataset is higher

than the actual noise in a real depth sensor for large depth

values, which indicates that our method is robust to greater

noise in measurements. We present qualitative results of all

compared methods in the supplementary material.

4.5. Evaluation on ScanNet

Both the ICL-NUIM and 3D Scene datasets have only a

handful of sequences, which might not be diverse enough to

test the generalization of a learning-based method. To this

end, we evaluate our method on the validation set of Scan-

Net [8], comprising 312 sequences captured in diverse in-

Method Accu. Comp. F1

TSDF Fusion [46] 73.83 85.85 78.84

iMAP 68.96 82.12 74.96

DI-Fusion 66.34 79.65 72.97

BNVF (Ours) 74.90 88.12 80.56

Table 4. Comparison between our proposed BNV-Fusion and

TSDF-Fusion on ScanNet [8]. It demonstrates that the proposed

method can generalize well to various scenes.

Method Accu. Comp. F1

w/o global-level fusion 30.29 39.64 34.31

w/o local-level fusion 33.61 38.50 36.55

Ours (local + global) 68.34 70.01 69.17

Table 5. A quantitative comparison of different fusion algorithms.

The bi-level fusion significantly outperforms both baselines.

door environments, such as living rooms, conference rooms,

and offices. Since ScanNet also does not have ground-truth

models of the scenes, we again use every 10th frame as

input and consider the meshes provided by the dataset as

pseudo ground truth. The quantitative comparison is sum-

marized in Tab. 4. Outperforming TSDF Fusion in various

scenes in ScanNet demonstrates the excellent generalization

of the proposed method. We present a few example recon-

structions in the supplementary material.

4.6. Ablation studies

The proposed method differs from previous online re-

construction frameworks that use neural implicit represen-

tations thanks to the combination of the local- and global-

level fusion. Therefore, we present more analysis on the

bi-level fusion in this section using sequences in the aug-

mented ICL-NUIM dataset [6].

Global-level fusion. Compared to prior art [16, 41] that

only fuses information in the latent space, we optimize the

global volume using neural rendering to achieve consistent

reconstruction. In addition to the comparison against prior

art reported in Tab. 1 and Tab. 2, we validate the necessity

of the global-level fusion by disabling it in our system.

The quantitative comparison is reported in Tab. 5, and

the contrast is visualized in Fig. 5. Using local-level fu-

sion only with small voxel size suffers from depth outliers
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Ours ( local + global)
Increasing voxel size

Local-level fusion only

Figure 5. A visual comparison between local-level fusion only and the proposed method. Reconstructions using local-level fusion only

clearly suffer from outliers and missing structures. Increasing the size of implicit voxels, from 5 cm to 20 cm with a step size 5 cm, as

shown in the figure, reduces outliers at the cost of losing even more details.

Figure 6. Improvement in completeness as the global-level fusion

progresses. The global-level fusion initialized by the local-level

fusion (shown in orange line) converges in 5 iterations. In contrast,

the global-level fusion initialized randomly (shown in blue line)

takes a much longer time to converge, and it is still not as good as

the proposed method even after 20 iterations.

because it updates each implicit voxel independently in the

domain of latent codes. We also test an approach used in

DI-Fusion [16], which is increasing the voxel size. How-

ever, as shown in Fig. 5, this is also undesirable since more

details are lost as the voxel size increases.

Local-level fusion. One of the key contributions of the

local-level fusion is to initialize the global-level fusion.

We compare our method against a baseline that initializes

the global-level fusion randomly. Fig. 6 illustrates that

the baseline requires more iterations to converge that our

method. We also quantitatively compare the reconstructions

of the baseline and that of our method by running the same

number of iterations in Tab. 5, which clearly shows that the

local-level fusion is crucial for dense reconstruction in an

online setting.

4.7. Runtime analysis

We break down the runtime of each component as fol-

lows. Encoding a depth map to the latent space and the

local-level fusion takes 0.1 seconds in total, the majority of

which is taken by the encoding step. Running the global-

level fusion for 2 iterations takes 0.5 seconds. Mesh ex-

traction is excluded since it can be run on a separate thread.

Overall, BNV-Fusion runs at almost 2 frames per second

(fps) on a 1080Ti GPU. DI-Fusion [16] runs at 10 fps on

the same device. iMAP [40] is not real-time capable be-

cause we run on all frames rather than selected keyframes

in the original paper.

4.8. Limitations

There are two limitations to be considered. First, the

proposed method is still slower than traditional volumetric

fusion approaches, which are heavily engineered. For in-

stance, InfiniTAM v3 [19] can easily run at over 30 fps on

a mobile device. Future research will need to be done to

develop a neural-implicit-based reconstruction pipeline that

can be run as fast as the traditional approaches. Second, se-

vere noise in depth measurements sometimes causes discon-

tinuities between neighboring implicit voxels, even though

we try to improve the border consistency by using trilinear

interpolation among neighboring implicit voxels.

5. Conclusion

We present BNV-Fusion, a novel online approach that

effectively uses implicit neural volumes to represent geom-

etry, for 3D reconstruction. The core of BNV-Fusion is

the bi-level fusion algorithm: 1) The local-level fusion effi-

ciently fuses new depth maps into the global volume; 2) The

global-level fusion, framed as neural rendering, facilitates

a consistent reconstruction. We evaluate BNV-Fusion in

multiple reconstruction benchmarks, where it shows signif-

icant improvements in accuracy and completion over both a

traditional volumetric fusion approach and recent learning-

based approaches. This verifies BNV-Fusion’s capability

of reconstructing the geometry faithfully. Furthermore, we

justify the bi-level fusion in the ablation studies. Despite

limitations discussed in Sec. 4.8, the superior performance

of BNV-Fusion is still encouraging, hence we believe this

work shows notable progress in dense 3D reconstruction.
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[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface

reconstruction. arXiv preprint arXiv:2104.04532, 2021. 2, 3

[3] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.

Deep local shapes: Learning local sdf priors for detailed 3d

reconstruction. In European Conference on Computer Vi-

sion, pages 608–625. Springer, 2020. 1, 2, 5

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 4, 5

[5] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 5939–5948, 2019. 2

[6] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Ro-

bust reconstruction of indoor scenes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2015. 5, 6, 7

[7] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In Proceedings

of the 23rd annual conference on Computer graphics and

interactive techniques, pages 303–312, 1996. 2, 4

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 5828–5839, 2017. 2, 5, 7

[9] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
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