
Brain-inspired Multilayer Perceptron with Spiking Neurons

Wenshuo Li1, Hanting Chen1,2, Jianyuan Guo1, Ziyang Zhang1, Yunhe Wang1∗

1Huawei Noah’s Ark Lab.
2Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.

liwenshuo@huawei.com, yunhe.wang@huawei.com

Abstract

Recently, Multilayer Perceptron (MLP) becomes the
hotspot in the field of computer vision tasks. Without in-
ductive bias, MLPs perform well on feature extraction and
achieve amazing results. However, due to the simplic-
ity of their structures, the performance highly depends on
the local features communication machenism. To further
improve the performance of MLP, we introduce informa-
tion communication mechanisms from brain-inspired neu-
ral networks. Spiking Neural Network (SNN) is the most
famous brain-inspired neural network, and achieve great
success on dealing with sparse data. Leaky Integrate and
Fire (LIF) neurons in SNNs are used to communicate be-
tween different time steps. In this paper, we incorporate
the machanism of LIF neurons into the MLP models, to
achieve better accuracy without extra FLOPs. We pro-
pose a full-precision LIF operation to communicate be-
tween patches, including horizontal LIF and vertical LIF
in different directions. We also propose to use group LIF
to extract better local features. With LIF modules, our
SNN-MLP model achieves 81.9%, 83.3% and 83.5% top-
1 accuracy on ImageNet dataset with only 4.4G, 8.5G and
15.2G FLOPs, respectively, which are state-of-the-art re-
sults as far as we know. The source code will be available at
https : //gitee.com/mindspore/models/tree/master/
research/cv/snn mlp.

1. Introduction

With the help of inductive bias, convolution neural net-
work (CNN) has become the most popular algorithm in
several computer vision tasks, including image classifica-
tion [19], semantic segmentation [52] and object detec-
tion [4, 18]. CNN is easier to train and has fewer parame-
ters compared with MLP, but inductive bias also limits its
learning ability. Nowadays, CNNs are facing challenges
from new types of vision backbones, like Transformers and

∗Corresponding author

MLPs. Transformers [47] are initially proposed in the area
of Nature Language Process (NLP), and researchers find
that the self-attention machenism is also suitable for com-
puter vision tasks [11]. MLP receives wide-spread atten-
tion in academics, researchers find that easy operations like
MLPs are as good as self-attention module. Without in-
ductive bias, MLPs show better learning ability on larger
datasets. The key point to utilize Transformers and MLPs is
to divide images into patches and then apply the calculation
to each patch. At present, one of the hotspots of research
is how to communicate between patches. Permutation [22]
and shift operation [30, 56] are the most common choice,
and they all achieve admirable results.

In terms of information communication, SNN [34] has a
mature mechanism to deal with it. SNN is a kind of brain-
inspired neural networks, and are frequently used to deal
with sparse data, such as dynamic vision sensor (DVS) [28].
The energy efficiency of SNN is highly competitive while
SNN suffers from accuracy loss compared with CNN. The
transformation from CNN/ANN to SNN often means up
to 10% accuracy drop on ImageNet and large time steps
up to hundreds and thousands. Recently, the researches
on SNN have been developed into two tracks. One shows
how to transform CNN to SNN more efficiently and loss-
less [40, 41]. The other shows how to train SNN directly
to achieve comparable accuracy with CNN [50, 59]. Now
state-of-the-art ANN-SNN conversion could adapt to clas-
sic CNN models with only 1%-2% accuracy drop while the
time step is larger than 1000 [41]. And state-of-the-art SNN
training method could achieve 5%-8% accuracy drop with
less than 10 time steps [50, 59]. More time steps mean
larger latency, so the performance of SNNs on general vi-
sion dataset like ImageNet is still not satisfying.

As we mentioned before, spiking neuron is used to com-
municate between different time step. In this paper, we
introduce the brain-inspired spiking neurons (i.e. the LIF
module in our paper) to communicate the information be-
tween patches in the MLP models. We utilize LIF neuron
in a full-precision manner to keep the information from the
input patches. Moreover, we propose the horizontal LIF and

783



(a) (b)

Figure 1. (a) FLOPs-Accuracy Pareto frontier. (b) Throughput-Accuracy Pareto frontier. The proposed SNN-MLP achieves the best results
among these MLPs on both FLOPs-Accuracy and Throughput-Accuracy trade-off.

vertical LIF to inhert the knowledge in different directions
and the group LIF to extract better local features. Exper-
iments on classification, segmenation and detection show
that the proposed SNN-MLP models can achieve the state-
of-the-art performance among existing MLPs. Especially,
the proposed model achieves 81.9%, 83.3% and 83.5% top-
1 accuracy on ImageNet dataset with only 4.4G, 8.5G and
15.2G FLOPs, respectively. The FLOPs-Accuracy Pareto
frontier is shown in Figure 1.

2. Related Works

2.1. Spiking Neural Networks

Spiking neural networks are a kind of brain-spired neural
networks. There are multiple spiking neural models, such
as leaky integrate and fire (LIF) [10], Hodgkin-Huxley (H-
H) [21] and Izhikevich [25]. The LIF model is most com-
monly used because it is simple and efficient to implement.

Different from CNNs, SNNs are not originally designed
with gradient-based supervised learning at first. Traditional
ways to train SNNs are spike timing dependent plasticity
(STDP) [35], which is a unsupervised learning method.
The main disadvantage of STDP is that global informa-
tion could not be used, which restrict the speed of con-
verge. This leads to the difficulty of its application on large
models. Therefore, several gradient-based training meth-
ods for SNN are proposed. Wu et al. propose explicitly
iterative LIF neuron [50] to make a faster and better train-
ing. Zheng et al. [59] propose threshold-dependent batch
normalization and further improve the direct training pro-
cess. The strength of gradient-based training method is that
the trained SNN only requires a few time steps, like t = 6
or t = 10, so the latency is acceptable. Unfortunately, al-
though many efforts have been made, there is still a signifi-
cant accuracy gap between direct-trained SNNs and CNNs.

Another way to obtain an SNN model is to convert
the well-trained ANNs/CNNs into SNNs. This conversion
can almost maintain the accuracy of original ANNs/CNNs.
Non-spiking ANNs/CNNs are trained normally at first and

then converted to spiking neurons [40, 41] by counting the
fire rate. Recently, there are some work to combine con-
version and training process, such as progressive conver-
sion [42] and conversion as an initialization [39]. However,
to compensate for the loss of accuracy in converting from
full precision to binary output, this conversion process al-
ways requires large time steps, so it is difficult to achieve
satisfying latency. Besides, the conversion algorithm has
poor performance on extra deep neural networks. To al-
leviate these problems, Li et al. [29] propose a calibration
method to improve the accuracy of converted SNN under
fewer steps, like T = 128 or T = 256. Even though, SNN
suffers from 7% accuracy loss on deep neural network Mo-
bileNet with T = 128.

With the development of training or conversion tech-
niques, the application range of SNNs is gradually ex-
panded. Some researchers have been exploring the possi-
bility of applying SNNs to various computer vision tasks,
including segmentation [27, 37] and detection [26]. In the
biomedical field, SNNs have received extensive attention
on tasks like MRI image segmentation [1] and ECG classi-
fication [54]. Meantime, there are many works on hardware
platforms of SNN, like TrueNorth [2] and Loihi [9]. Though
many efforts have been made, the accuracy of SNN is still
not the state-of-the-art.

2.2. Transformers and MLPs

Transformers [47] are widely used in NLP tasks, since
they can be highly parallelized. Vision Transformer
(ViT) [11] first introduces Transformer to classification
task and applies the Transformer Encoder to extrace fea-
tures. Transformers are soon used in various computer vi-
sion tasks, including detection [61] and low-level vision
tasks [3]. DeiT [46] proposes to use distillation to improve
the training process on the basis of ViT. TNT [16] proposes
to model the inner information of patches by embedding
Transformers into Transformers. Light-weight transformers
are also attracting attention, such as Lite-Transformer [51]
and ViT-Lite [17]. The latest researches, like CvT [49] and

784



P
at

ch
 E

m
b

e
d

d
in

g

LI
F 

M
o

d
u

le

M
LP

 M
o

d
u

le

x N

FF
N

P
at

ch
 M

e
rg

in
g

LIF Module

MLP+dwconv

VLIF HLIF

MLP MLP

MLP

LIF Block

MLP

MLP

MLP Module

(3, 224, 224)

(n, 224/p, 224/p)

(8n, 28/p, 28/p)

Figure 2. Framework of our proposed SNN-MLP.

Patch H

Patch W

Embedded
size Step 1

Step 2

Step 3

Step 4

Vertical LIF

Step 1 Step 2 Step 3 Step 4

Horizontal LIF

Step 2

Group Horizontal LIF

Step 1 Step 2Step 1

Figure 3. How we apply LIF neurons to the feature maps.

CMT [14], focus on merging CNN and Transformer to ab-
sorb the advantage of both architectures.

At the same time, the researchers find that replacing
complex multi-head self-attention operations with MLP
yields excellent results. In 1980s, MLPs were once all
the rage. Now MLPs are different from the older ones,
since they need to embed images to patches and then ex-
tract features on these patches. MLP-mixer [44] takes the
lead to claim that MLPs work as well as Transformers.
They use a permutation operation to communicate between
patches. The general structure of MLPs usually contains
two main parts, channel mixing module and token mixing
module (permutation, shift and etc.). The following works
are concentrating on improving the token mixing process.
ViP [22] permutes on H-C and W-C dimention to extract
features. S2-MLP [56], cycle-MLP [7] and AS-MLP [30]
use shift operation to interleave information from different
patches. Recently researchers are raising more new ideas
to aggregate token information better, like hierarchical re-
arrangement [15] and phase-aware representation [43]. As a
summary, the information communication mechanisms be-
tween tokens are important for the performance of MLP
models.

3. Proposed Method
3.1. Framework

Here we first present the framework of our SNN-MLP
model, which is shown in the left of Figure 2. The detailed
structure of each module will be presented in the following
sections. The input image X is divided into patches with

size 3×p×p, in which p represents the height and width of
patch images, and then a following MLP layer embeds each
patch to an n dimension vector. Finally we get a n× H

p ×W
p

feature map. The feature map is fed into our four-stage LIF
blocks. One LIF block contains one LIF module and one
MLP module. In the LIF block, the LIF module is in charge
of the token mixing job while an MLP block is in charge
of the channel mixing job. If it is the last block of last three
stages, there is also a patch merging module which splits the
features of each 2×2 neighboring patches to four channels,
concatenates them, and then uses a linear layer to reduce
the number of channels to a half. Finally, the size of feature
maps become n× H

p×23 ×
W

p×23 . The classifier then generates
the probability vector from the final feature map.

The variants of SNN-MLP has different embedded di-
mensions and number of blocks. The embedded dimensions
n of tiny, small and base model are 96, 96, 128, respectively.
The number of blocks of stage 1, 2 and 4 is 2 for all vari-
ants, while the number of blocks of stage 3 is 6, 18, 18 for
different sizes.

3.2. Full-precision LIF

In this section, we give a brief introduction of the tradi-
tional LIF neuron and our modification on that. The behav-
ior of classical LIF model can be modeled as follows

o = 0,τ
du

dt
= −u+ I, u < Vth (1)

o = 1,u = ureset, u ≥ Vth (2)

where u is the membrane potential, I is the input from the
upper layers, τ is a time co-efficient, o is the output and Vth

785



is the fire threshold of this neuron. While a spiking is fired,
the membrane potential u is reset to ureset.

Many efforts have been made to apply LIF neurons to
deep neural networks, the most successful trial is iterative
LIF [50].

ynt+1 =
∑

WTx, (3)

un
t+1 = τun

t (1− ont ) + ynt+1, (4)
ont+1 = un

t+1 > Vth. (5)

The subscript t represents the time step and superscript
n represents the layer index. The element W , x and y rep-
resents the weight, input and output, respectively. In this
paper, we want to adopt LIF machenism as a kind of to-
ken mixing method. Different from the accumulation on the
time domain in the traditional LIF neurons, we accumulate
and fire on the spatial domain instead. The t in the formula
represents the index of patches instead of time steps in our
design. Since the input feature is full-precision, we prefer a
full-precision output to keep the information in the patches.
To meet our needs, we propose the following full-precision
LIF function:

o = 0,τ
du

dt
= −u+ I, u < Vth (6)

o = u,u = ureset, u ≥ Vth (7)

We replace the output 1 with u, so the full-precision
information is reserved. Applying our full-precision LIF
model to the iterative LIF and then we get:

ynt+1 =
∑

WTx, (8)

un
t+1 = τun

t (1− ont ) + ynt+1, (9)
ont+1 = un

t+1 > Vth, (10)
rnt+1 = max(un

t+1, Vth). (11)

Noted that, rnt+1 is the final full-precision output of t+1
step and ont+1 is only a temporary variable to record the
output state of t + 1 step. The coefficient τ and Vth are
learnable. We discuss the initialization of τ and Vth in Sec-
tion 4.4. Then we get a full-precision iterative LIF neu-
ron which can communicate between patches since differ-
ent patches are regarded as different time steps.

With this explicitly iterative LIF neuron, the backpropa-
gation process can be finished by chain rule.

∂L

∂τ
=

∂L

∂rnt+1

∂rnt+1

∂un
t+1

t−1∑
i=0

(
∂un

t+1−i

∂τ
·

t+1∏
j=t+2−i

∂un
j

∂un
j−1

)

=
∂L

∂rnt+1

ont+1

t∑
i=0

(un
t−i(1− ont−i)

t+1∏
j=t+2−i

τ(1− onj−1)).

(12)

∂L

∂Vth
=

∂L

∂rnt+1

∂rnt+1

∂Vth
=

∂L

∂rnt+1

· (1− ont+1). (13)

∂L

∂ynt+1

=

end∑
i=t+1

∂L

∂ri

∂ri
∂ui

∂un
t+1

∂ynt+1

i∏
j=t+2

∂un
j

∂un
j−1

=

end∑
i=t+1

∂L

∂rni
· oni ·

i∏
j=t+2

τ(1− onj−1).

(14)

3.3. LIF Module

Algorithm 1 PyTorch-like code of SNN-MLP

def lif(x, dir=2):
for step in range(groups):

if dir == 2:
u, o, x[:,:,step::groups,:] =

lif(u, o, x[:,:,step::groups,:])
else:

u, o, x[:,:,:,step::groups] =
lif(u, o, x[:,:,:,step::groups])

return x
def lif_module_forward(x):

x = gelu(norm(mlp(x)))
x = gelu(norm(dwconv(x)))
x_v = gelu(mlp(vlif(x)))
x_h = gelu(mlp(hlif(x)))
x = mlp(norm(x_v + x_h))
return x

def mlp_module_forward(x):
x = dropout(gelu(mlp(x)))
x = gelu(mlp(x))
return x

def SNN_MLP_forward(x):
x = patch_embed_forward(x)
for i in range(4):

for j in range(block_num[i]):
x = lif_module_forward(x)
x = mlp_module_forward(x)
if j == 0 and i < 3:

x = patch_merging_forward(x)
x = classifier(x)
return x

Finally we give an introduction of our LIF module. The
structure of our LIF module is shown in Figure 2. Different
from AxialShift block, we add a dwconv after the first MLP
layer and replace the shift operations with our LIF neurons.
Since the iterative LIF neuron is essentially an activation
function, it is necessary to add a dwconv layer to the front
of the iterative LIF neuron.

The next problem is to determine the order to commu-
nicate between different patches. Following the ideas of
previous work [30], we communicate information on two
directions: vertical and horizontal. The way how Vertical
LIF and Horizontal LIF neuron work is shown in Figure 3.

786



Table 1. Comparison with state-of-the-art Transformer-based and
MLP-based models. Top-1 means the top-1 accuracy on Ima-
geNet1k dataset. The input resolution of all models is 224× 224.

#Param #FLOPs Top-1 (%)
gMLP-S [31] 20M 4.5G 79.4

ResMLP-S24 [45] 30M 6.0G 79.4
DeiT-S [46] 22M 4.6G 79.8

ViP-Small/14 [22] 30M - 80.5
Swin-T [32] 29M 4.5G 81.3

AS-MLP-T [30] 28M 4.4G 81.3
CvT-13 [49] 20M 4.5G 81.6

CycleMLP-B2 [7] 27M 3.9G 81.6
SNN-MLP-T(ours) 28M 4.4G 81.9

MLP-Mixer-B/16 [44] 59M 11.7G 76.4
S2-MLP-deep [56] 51M 10.5G 80.7

CvT-21 [49] 32M 7.1G 82.5
ViP-Medium/7 [22] 55M - 82.7

Swin-S [32] 50M 8.7G 83.0
CycleMLP-B4 [7] 52M 10.1G 83.0
AS-MLP-S [30] 50M 8.5G 83.1

SNN-MLP-S(ours) 50M 8.5G 83.3
S2-MLP-wide [56] 71M 14.0G 80.0
ResMLP-B24 [45] 116M 23.0G 81.0

gMLP-B [31] 73M 15.8G 81.6
DeiT-B [46] 86M 17.5G 81.8

ViP-Large/7 [22] 88M - 83.2
CycleMLP-B5 [7] 76M 12.3G 83.2

Swin-B [32] 88M 15.4G 83.5
AS-MLP-B [30] 88M 15.2G 83.3

SNN-MLP-B(ours) 88M 15.2G 83.5

The dimension of feature maps are (N,C,H,W ), while C
refers to the embedded dimension of each patch and H/W
refer to the height/width of patches. The middle and right
subfigures show our Vertical LIF and Horizontal LIF pro-
cess. Taking VLIF as an example, the first row is referred
as yn in formula (6). Then un

1 equals to yn and we get on1 by
compare un

1 with Vth. The output rn1 is only related to un
1

and Vth and the tensor on1 is just used to determine whether
un
1 is accumulated to un

2 . For the second step, we conduct
the same operation on the second row. The only difference
is that un

2 has accumulated values from part of un
1 which is

less than Vth. Repeat these steps and we get the final results.
The processing of HLIF is the same, except that the accu-
mulated vectors become column vectors. A PyTorch-style
code of our SNN-MLP model is shown in Algorithm 1. In
practice, we apply GroupNorm following [30].

3.4. Group LIF

For traditional SNNs, excessive time steps may lead to
the bad performance [20]. In our practice, we also find that
the global LIF performs bad sometimes, and we think this
may be due to the introduction of long-distance information

with weak correlations. Moreover, excessive time steps may
affect the efficiency of parallel computing. To avoid this
problem, we divide the feature maps into several groups and
apply LIF neurons to each group. With group LIF neurons,
closer patterns can communicate with each others. A simple
example of group = 2 horizontal LIF is shown in the right
of Figure 3. The 2nth column, n ∈ N, is sent to the LIF neu-
ron first. The values larger than Vth are to be retained, and
the others are set to Vth while their values are accumulated
to the corresponding element in the next column.

4. Experiments

We conduct experiments on classification, detection and
segmentation tasks to show the effectiveness of our SNN-
MLP models. All codes are implemented with Python-3.6,
PyTorch-1.7 [36] and MindSpore-1.5 [24].

4.1. Classification

We report our experimental results on ImageNet-1k
dataset. ImageNet-1k contains about 1.28M training im-
ages and 50K validation images, which are divided into
1000 classes. These images are all RGB images with vari-
ous shapes. We follow the general input transformations to
resize the shorter side to 256 and then crop the whole image
to 224× 224.

Our training strategy follows Swin Transformer [32].
We use AdamW [33] optimizer to train our model for 300
epochs. The initial learning rate is 0.001 with cosine de-
cay. The first 20 epochs are used to warm up the training
process. The models are trained on 8 GPUs with batch size
1024. The weight decay is set as 0.05. We also apply label
smooth and drop path techniques during the training pro-
cess.

We evaluate our models (SNN-MLP-T, SNN-MLP-S
and SNN-MLP-B) on ImageNet1k. The results are shown
in Table 1. We divide models into three groups according
to their parameters and FLOPs. For the tiny models, the
number of paramters and FLOPS is below 30M and 6.0G,
respectively. Our SNN-MLP-T model achieves 81.9% top-
1 accuracy, which beats other models including gMLP-S,
ResMLP-S24, ViP-Small/14, AS-MLP-T and CycleMLP-
B2. For the small models, the number of parameters and
FLOPs is below 60M and 12.0G. Our SNN-MLP-S model
also beats other models with 83.3% top-1 accuracy. For the
large models, our SNN-MLP-B model achieves 83.5% top-
1 accuracy. Compared with AS-MLP models, the number
of FLOPs and parameters is all the same since our frame-
work is almost the same as AS-MLP models and the LIF
modules introduce little extra computing, but the accuracy
is improved by 0.6%, 0.2% and 0.2% for tiny, small and
base model, respectively.

787



Table 2. Results on COCO datasets

Method Backbone APb APb
50 APb

75 APm APm
50 APm

75 #Param #FLOPs

Mask
R-CNN [18]

ResNet-50 [19] 41.0 61.7 44.9 37.1 58.4 40.1 44M 260G
PVT-Small [32] 43.0 65.3 46.9 39.9 62.5 42.8 44M 245G

Swin-T [32] 46.0 68.2 50.2 41.6 65.1 44.8 48M 264G
AS-MLP-T [30] 46.0 67.5 50.7 41.5 64.6 44.5 48M 260G

SNN-MLP-T 46.0 67.9 50.9 41.6 64.9 44.7 48M 261G
ResNet-101 [19] 42.8 63.2 47.1 38.5 60.1 41.3 63M 336G

PVT-Medium [32] 44.2 66.0 48.2 40.5 63.1 43.5 64M 305G
Swin-S [32] 48.5 70.2 53.5 43.3 67.3 46.6 69M 354G

AS-MLP-S [30] 47.8 68.9 52.5 42.9 66.4 46.3 69M 346G
SNN-MLP-S 48.0 69.1 52.6 42.8 66.2 46.3 69M 346G

Cascade
Mask

R-CNN [4]

DeiT-S [46] 48.0 67.2 51.7 41.4 64.2 44.3 80M 889G
ResNet-50 [19] 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G

Swin-T [32] 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G
AS-MLP-T [30] 50.1 68.8 54.3 43.5 66.3 46.9 86M 739G

SNN-MLP-T 50.3 68.9 54.6 43.6 66.5 47.1 86M 739G
ResNeXt101-32 [53] 48.1 66.5 52.4 41.6 63.9 45.2 101M 819G

Swin-S [32] 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G
AS-MLP-S [30] 51.1 69.8 55.6 44.2 67.3 48.1 107M 824G

SNN-MLP-S 51.4 70.0 55.6 44.4 67.3 48.3 107M 825G

4.2. Detection

We evaluate our models on COCO dataset, which con-
tains 118K training data and 5K validation data. We imple-
ment our models with mmdet-v2.11 [5] framework and we
evaluate our backbone on two famous detection methods:
Mask R-CNN [18] and Cascade R-CNN [4]. To compare
fairly, we train our models with the same training strategies
as AS-MLP models. We use AdamW optimizer with 0.0001
initial learning rate, and the batch size is set as 2× 8 GPUs.
The weight decay is 0.05. We also apply the multi-scale
training strategy to scale the shorter side between 480 and
800 and the longer side at most 1333. For evaluation, we
use single scale (800, 1333) without flipping. Pre-trained
models on ImageNet-1k are used to initialize the backbones
and then models are trained 36 epochs on COCO training
sets (3x schedule).

The results are shown in Table 2. Our SNN-MLP mod-
els have almost the same #FLOPs and #Param as AS-
MLP models. Our SNN-MLP-T and SNN-MLP-S achieve
46.0 APb / 41.6 APm and 47.9 APb / 42.7 APm with
Mask R-CNN method, and achieve 50.3 APb / 43.6 APm

and 51.4 APb / 44.4 APm with Cascade Mask R-CNN
method, respectively. We can find that our SNN-MLP
backbones achieve better results than AS-MLP models, and
are also comparable with state-of-the-art backbone Swin-
Transformer.

4.3. Sementic Segmentation

We conduct experiments on the ADE20K, which is a
widely-used semantic segmentation dataset. ADE20K con-
tains 20K training images and 2K evaluation images. We

choose UperNet method to compare with AS-MLP and im-
plement with mmseg-v0.11 [8] framework. Same as AS-
MLP, we use AdamW optimizer, 6e−5 initial learning rate
2 × 8 GPUs and 0.01 weight decay. For data aumenta-
tion, we apply random resize with ratio range (0.5, 2.0),
random flip with probability 0.5, random crop with max ra-
tio 0.75 and photo metric distortion. The input images are
finally cropped as the 512 × 512 resolution. While eval-
uating, we apply multi-scale augmentation and the ratios
are set as (0.5, 0.75, 1.0, 1.25, 1.5, 1.75). we train the mod-
els for 160K iterations and ImageNet-1k pre-trained models
are used to initialize the backbones.

The results are shown in Table 3. Our SNN-MLP-T,
SNN-MLP-S and SNN-MLP-B models achieve 46.5, 49.0
and 49.4 multi-scale mIoU, which is comparable with AS-
MLP models. Besides, our models achieve 45.6, 48.1 and
48.4 single-scale mIoU, which is obviously better than the
Swin Transformer backbone.

4.4. Ablation Study

In this section, we explore the best settings of hyper-
parameters, including group of LIF neurons, LIF parameter
Vth and τ . The effectiveness of our LIF module is also eval-
uated. All experiments are based on SNN-MLP-T model.

We train and evaluate four types of models, shown in
Figure 4, and the results are shown in Table 5. The orig-
inal AS-MLP-T model achieves only 81.3% Top-1 accu-
racy, while the dwconv+shift module (Figure 4(b)) achieves
81.66%. We can find that our dwconv and LIF neurons to-
gether achieve the best accuracy 81.87%, which validates
the effectiveness of both of them.

The comparison of different τ and Vth settings is shown

788



Table 3. Results on ADE20K datasets

Method Backbone Val #Param #FLOPsms mIoU ss mIoU
DANet [12]

ResNet-101 [19]

45.2 - 69M 1119G
Dlab.V3+ [6] 44.1 - 63M 1021G
ACNet [13] 45.9 - - -
DNL [55] 46.0 - 69M 1249G

OCRNet [57] 45.3 - 56M 923G
UperNet [52] 44.9 - 86M 1029G
OCRNet [57] HRNet-w48 [48] 45.7 - 71M 664G
DLab.v3+ [6] ResNeSt-101 [58] 46.9 - 66M 1051G
DLab.v3+ [6] ResNeSt-200 [58] 48.4 - 88M 1381G

SETR [60] T-Large 50.3 - 308M -

UperNet [52]

DeiT-S [46] 44.0 - 52M 1099G
Swin-T [32] 45.8 44.5 60M 945G
Swin-S [32] 49.5 47.6 81M 1038G
Swin-B [32] 49.7 48.1 121M 1188G

AS-MLP-T [30] 46.5 - 60M 937G
AS-MLP-S [30] 49.2 - 81M 1024G
AS-MLP-B [30] 49.5 - 121M 1166G

UperNet [52]
SNN-MLP-T 46.5 45.6 60M 937G
SNN-MLP-S 49.0 48.1 81M 1025G
SNN-MLP-B 49.4 48.4 121M 1167G

Table 4. Comparison with traditional SNN models

Model Method Activation Timestep #param FLOPs Accuracy
ResNet-34 [19] ANN-SNN conversion [23] binary 768 22M 3.7G 71.6%
ResNet-34 [19] Hybrid Training [39] binary 250 22M 3.7G 61.5%
ResNet-34 [19] STBP-tdBN [59] binary 6 22M 3.7G 63.7%
ResNet-34 [19] Calibration [29] binary 256 22M 3.7G 74.6%

RegNetX-4GF [38] Calibration [29] binary 256 21M 4.0G 77.5%
SNN-MLP-T - fp32 - 28M 4.4G 81.9%

Table 5. Ablation study of LIF neuron
Index Dwconv AxialShift FP LIF Accuracy

(a)
√

81.3% [30]
(b)

√ √
81.66%

(c)
√

81.56%
(d)

√ √
81.87%

Table 6. Ablation study of τ and Vth

Learnable Init Top-1 Accuracy
τ Vth

× 0.25 0 81.49
× 0.25 0.25 80.98√

0.25 0 81.68√
0.25 0.25 81.87√
0.5 0.5 81.52

in Table 6. We can see that learnable τ and Vth are signif-
icantly better than unlearnable ones. For learnable values,
reasonable initial values also make differences on the final
results. From the results of our experiments, the initial value
0.25 for both τ and Vth is better than others. We apply 0.25
/ 0.25 to all our classification, detection and segmentation
experiments.

Table 7. Comparison of different LIF groups
LIF groups 2 4 7 Inf

Accuracy (%) 81.60 81.87 81.68 81.53

We also explore the optimal hyper-parameter g, which
represents the group number of LIF neuron. We evaluate the
results under several different g and the results are shown in
Table 7. The Inf in the table means that we apply global
LIF instead of group LIF. We can find that the performance
of global LIF significantly worse than group LIF, and the
highest accuracy shows when g = 4. So we adapt g = 4 in
all other experiments.

4.5. Comparison with SNNs

Here we also make a brief comparison between our
SNN-MLP models and traditional SNN models, shown in
Table 4. As we mentioned in Section 2.1, conversion-based
methods, including ANN-SNN conversion [23] and calibra-
tion [29], may achieve acceptable accuracy while large time
steps (over 250 steps) are required. This leads to the unac-
ceptable latency. Another way is to train the SNN models
directly, like STBP series, which requires less time steps but

789



MLP+dwconv

VLIF HLIF

MLP MLP

MLP

MLP+dwconv

Vshift HShift

MLP MLP

MLP

MLP

Vshift HShift

MLP MLP

MLP

MLP+dwconv

MLP MLP

MLP

(a) (b) (c) (d)
Figure 4. Modules compared in the ablation study.

get worse performance on accuracy. Compared with tradi-
tional SNN methods, at the cost of using full-precision ac-
tivations instead of binary activations, our SNN-MLP mod-
els achieve much better accuracy without the requirement
of time steps.

4.6. Discussion of Various LIF Modules
Table 8. Comparison of various LIF modules

Method Add LIF Sub GELU Sub AS
Accuracy 81.38% 81.21% 81.87%

We also make attempts to incorporate LIF neurons with
MLP in different ways. We try to directly add LIF neurons
to the end of each stage of AS-MLP models or subtitute
GELU activations in MLP modules. Both choices are not
as good as our final models, which actually replace the ax-
ial shift modules. A comparison experiment based on AS-
MLP-T model is shown in Table 8. We can find that add
LIF neurons and substitute GELUs only achieve 81.38%
and 81.21%, respectively, which is much lower than our fi-
nal choice.

4.7. Visualization

We provide some visualization results to help understand
our design. The leaky-fire process actually removes some
noise and unimportant information, and the integrate pro-
cess makes some compensations to avoid the complete loss
of information. From Figure 5, we can find that the LIF
neurons extract better texture features compared with Ax-

ialShift modules, and the AxialShift modules just make it
more like the original images.

5. Conclusions

In this paper, we incorporate the machanism of LIF neu-
rons into the MLP models to further improve their accu-
racies. We propose a full-precision LIF operation to com-
munication between patches, in which we replace the time
step with the spatial patches. Besides, we propose the group
LIF to extract better local features. With these methods,
we design the LIF module which contains horizontal LIF
and vertical LIF to deal with features in different direc-
tions. We evaluate our methods on different computer vi-
sion tasks, including classification, detection and semen-
tic segmentation. On ImageNet-1k dataset, our SNN-MLP
models achieve 81.9%, 83.3% and 83.5% top-1 accuracy
for different scales, and all of them are higher than the
base AS-MLP models. For detection and sementic seg-
mentation tasks, we evaluate on the COCO and ADE20k
dataset respectively, and all achieve comparable results with
state-of-the-art backbones, including AS-MLP and Swin-
Transformer. Finally, we conduct several ablation studies to
show the effectiveness of our methods.

In the future, we would continue to explore and improve
the utility of our LIF neurons in various vision tasks includ-
ing detection and sementic segmentations. And we would
also try to incorporate LIF neurons with more MLP and
Transformer backbones.

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Visualization results. (a) Original image. (b)(c) Feature maps of the 1st/2nd blocks of AS-MLP-T model. (d)(e) Feature maps of
the 1st/2nd blocks of SNN-MLP-T model. (f)(g) GradCAM results of AS-MLP-T and SNN-MLP-T.

790



References
[1] Mohsen Ahmadi, Abbas Sharifi, Shayan Hassantabar, and

Saman Enayati. Qais-dsnn: tumor area segmentation of mri
image with optimized quantum matched-filter technique and
deep spiking neural network. BioMed Research Interna-
tional, 2021, 2021. 2

[2] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo
Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yu-
taka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth:
Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems,
34(10):1537–1557, 2015. 2

[3] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2

[4] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping
Shi, Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4974–
4983, 2019. 1, 6

[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, et al.
MMDetection: Open mmlab detection toolbox and bench-
mark. arXiv preprint arXiv:1906.07155, 2019. 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 7

[7] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping
Luo. Cyclemlp: A mlp-like architecture for dense prediction.
arXiv preprint arXiv:2107.10224, 2021. 3, 5

[8] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 6

[9] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham
Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Di-
mou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi:
A neuromorphic manycore processor with on-chip learning.
Ieee Micro, 38(1):82–99, 2018. 2

[10] Peter Dayan, Laurence F Abbott, et al. Theoretical neuro-
science: computational and mathematical modeling of neural
systems. Journal of Cognitive Neuroscience, 15(1):154–155,
2003. 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2

[12] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene
segmentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3146–
3154, 2019. 7

[13] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jin-
hui Tang, and Hanqing Lu. Adaptive context network for
scene parsing. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6748–6757,
2019. 7

[14] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang,
Chunjing Xu, and Yunhe Wang. Cmt: Convolutional
neural networks meet vision transformers. arXiv preprint
arXiv:2107.06263, 2021. 2

[15] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han
Wu, Chao Xu, Chang Xu, and Yunhe Wang. Hire-mlp:
Vision mlp via hierarchical rearrangement. arXiv preprint
arXiv:2108.13341, 2021. 3

[16] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. arXiv preprint
arXiv:2103.00112, 2021. 2

[17] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escaping the
big data paradigm with compact transformers. arXiv preprint
arXiv:2104.05704, 2021. 2

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1,
6

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6, 7

[20] Weihua He, YuJie Wu, Lei Deng, Guoqi Li, Haoyu Wang,
Yang Tian, Wei Ding, Wenhui Wang, and Yuan Xie. Compar-
ing snns and rnns on neuromorphic vision datasets: similar-
ities and differences. Neural Networks, 132:108–120, 2020.
5

[21] Alan L Hodgkin and Andrew F Huxley. A quantitative de-
scription of membrane current and its application to con-
duction and excitation in nerve. The Journal of physiology,
117(4):500–544, 1952. 2

[22] Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng,
Shuicheng Yan, and Jiashi Feng. Vision permutator: A per-
mutable mlp-like architecture for visual recognition. arXiv
preprint arXiv:2106.12368, 2021. 1, 3, 5

[23] Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep
residual network. arXiv preprint arXiv:1805.01352, 2018.
7

[24] Huawei. Mindspore. https://www.mindspore.cn/,
2020. 5

[25] Eugene M Izhikevich. Simple model of spiking neurons.
IEEE Transactions on neural networks, 14(6):1569–1572,
2003. 2

[26] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh
Yoon. Spiking-yolo: Spiking neural network for energy-
efficient object detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 11270–
11277, 2020. 2

791



[27] Youngeun Kim, Joshua Chough, and Priyadarshini Panda.
Beyond classification: Directly training spiking neural
networks for semantic segmentation. arXiv preprint
arXiv:2110.07742, 2021. 2

[28] Youngeun Kim and Priyadarshini Panda. Optimizing deeper
spiking neural networks for dynamic vision sensing. Neural
Networks, 144:686–698, 2021. 1

[29] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and
Shi Gu. A free lunch from ann: Towards efficient, ac-
curate spiking neural networks calibration. arXiv preprint
arXiv:2106.06984, 2021. 2, 7

[30] Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-
mlp: An axial shifted mlp architecture for vision. arXiv
preprint arXiv:2107.08391, 2021. 1, 3, 4, 5, 6, 7

[31] Hanxiao Liu, Zihang Dai, David R So, and Quoc V Le. Pay
attention to mlps. arXiv preprint arXiv:2105.08050, 2021. 5

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 5, 6, 7

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[34] Wolfgang Maass. Networks of spiking neurons: the third
generation of neural network models. Neural networks,
10(9):1659–1671, 1997. 1

[35] Timothée Masquelier and Simon J Thorpe. Unsupervised
learning of visual features through spike timing dependent
plasticity. PLoS computational biology, 3(2):e31, 2007. 2

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[37] Kinjal Patel, Eric Hunsberger, Sean Batir, and Chris Elia-
smith. A spiking neural network for image segmentation.
arXiv preprint arXiv:2106.08921, 2021. 2

[38] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020. 7

[39] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini
Panda, and Kaushik Roy. Enabling deep spiking neural net-
works with hybrid conversion and spike timing dependent
backpropagation. arXiv preprint arXiv:2005.01807, 2020.
2, 7

[40] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu,
Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven
networks for image classification. Frontiers in neuroscience,
11:682, 2017. 1, 2

[41] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and
Kaushik Roy. Going deeper in spiking neural networks: Vgg
and residual architectures. Frontiers in neuroscience, 13:95,
2019. 1, 2

[42] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J
Verzi, and James B Aimone. Training deep neural networks
for binary communication with the whetstone method. Na-
ture Machine Intelligence, 1(2):86–94, 2019. 2

[43] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li,
Chao Xu, and Yunhe Wang. An image patch is a wave:
Phase-aware vision mlp. arXiv preprint arXiv:2111.12294,
2021. 3

[44] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-
mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021. 3, 5

[45] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Armand Joulin,
Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou.
Resmlp: Feedforward networks for image classification with
data-efficient training. arXiv preprint arXiv:2105.03404,
2021. 5

[46] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 2, 5, 6, 7

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 1,
2

[48] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE transactions on
pattern analysis and machine intelligence, 2020. 7

[49] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021. 2, 5

[50] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-
ing Shi. Direct training for spiking neural networks: Faster,
larger, better. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 33, pages 1311–1318, 2019. 1,
2, 4

[51] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. Lite transformer with long-short range attention. arXiv
preprint arXiv:2004.11886, 2020. 2

[52] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 1, 7

[53] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 6

[54] Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Energy effi-
cient ecg classification with spiking neural network. Biomed-
ical Signal Processing and Control, 63:102170, 2021. 2

[55] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,
Stephen Lin, and Han Hu. Disentangled non-local neural net-
works. In European Conference on Computer Vision, pages
191–207. Springer, 2020. 7

792



[56] Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li.
S2-mlp: Spatial-shift mlp architecture for vision. arXiv
preprint arXiv:2106.07477, 2021. 1, 3, 5

[57] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16,
pages 173–190. Springer, 2020. 7

[58] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu,
Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller,
R Manmatha, et al. Resnest: Split-attention networks. arXiv
preprint arXiv:2004.08955, 2020. 7

[59] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-
works. arXiv preprint arXiv:2011.05280, 2020. 1, 2, 7

[60] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, et al. Rethink-
ing semantic segmentation from a sequence-to-sequence per-
spective with transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6881–6890, 2021. 7

[61] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

793


