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Abstract

Action recognition models have shown a promising ca-
pability to classify human actions in short video clips. In a
real scenario, multiple correlated human actions commonly
occur in particular orders, forming semantically meaning-
ful human activities. Conventional action recognition ap-
proaches focus on analyzing single actions. However, they
fail to fully reason about the contextual relations between
adjacent actions, which provide potential temporal logic
for understanding long videos. In this paper, we propose
a prompt-based framework, Bridge-Prompt (Br-Prompt), to
model the semantics across adjacent actions, so that it si-
multaneously exploits both out-of-context and contextual
information from a series of ordinal actions in instruc-
tional videos. More specifically, we reformulate the indi-
vidual action labels as integrated text prompts for super-
vision, which bridge the gap between individual action se-
mantics. The generated text prompts are paired with cor-
responding video clips, and together co-train the text en-
coder and the video encoder via a contrastive approach.
The learned vision encoder has a stronger capability for
ordinal-action-related downstream tasks, e.g. action seg-
mentation and human activity recognition. We evaluate the
performances of our approach on several video datasets:
Georgia Tech Egocentric Activities (GTEA), 50Salads, and
the Breakfast dataset. Br-Prompt achieves state-of-the-art
on multiple benchmarks. Code is available at: https:
//github.com/ttlmh/Bridge—Prompt.

1. Introduction

Recent years have witnessed the flourish of video anal-
ysis. Understanding human actions is the key to analyz-
ing massive amounts of video data, which is conducive to
a wide range of applications including video retrieval [8],
video captioning [28] and video summarization [2]. Among
the many sub-topics in action analysis, action recognition is

T Corresponding author.

39 g N
taking putting ch H iding may i |_’g ]
bread on bread and d i (il oeis) i

(a) Discrete class-ID

(c) Text prompt representations

)
{ This video contains four actions in total.

Firstly, the person ism g bread.

At!ter that, he/she is :
l‘en, the step isjadding mayonnaise and mustard
@, put the bread on cheese and bread.

Text prompts G
Text embeddings

4

3 3 5
OO 00

(b) Graph-based class-ID

Graph

Figure 1. Comparisons of conventional representations and
Bridge-Prompt representations for ordinal actions. The human ac-
tivity of making cheese sandwich contains four actions. Suppose
the final action putting the bread on cheese and bread is unseen
in training set. Conventional approaches in (a) and (b) are unable
to depict the intra-semantics and inter-relations of all four actions,
while our Bridge-Prompt representations in (c) is able to capture
the full semantic information.

a basic and core issue, which has made remarkable progress
under various well-designed models [3,5, | 1].

Meanwhile, the current research trend of video analy-
sis is experiencing a transition from understanding single-
semantics short video clips to longer and more complex
videos [38]. The increased attention on instructional video
analysis has shown the significance of understanding se-
mantically rich video contents [29, 38,46]. From the per-
spective of action analysis, conventional action recognition
approaches focus on classifying the single action being per-
formed in a short video clip [5, 36]. In contrast, instruc-
tional video analysis methods need to study a series of ac-
tions being performed in longer time duration. In order to
analyze instructional videos, we do not only need to un-
derstand the semantics of individual actions, but are also
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required to learn the semantic relations between contextual
actions. Recently, some works have studied the mutual in-
formation between correlated actions in instructional videos
using graph-based models [15, 30,43]. The common ap-
proach is to regard each kind of action as a single node on
a graph, where the edges between the nodes represent the
contextual relations between adjacent actions.

However, the graph-based approaches are transductive,
which are limited by the prior knowledge of input nodes
and/or edges. Therefore, graph-based approaches are un-
able to address unknown types of nodes and thus are hard
to extend and transfer. Moreover, under the existing frame-
work of action recognition, the current way of depicting hu-
man actions is to allocate individual annotations to every
single action, where different actions are treated as sepa-
rate class IDs. This is practicable for recognizing separate
actions, yet it is unable to depict the contextual relations
between ordinal actions since individual class IDs cannot
provide contextual information. The example of (a) and (b)
in Figure 1 further illustrates the limitations of conventional
class-ID-based approaches.

In this paper, we discover that human language is a pow-
erful tool to depict the ordinal semantics between correlated
actions. Human language is able to describe multiple se-
quentially occurred events based on ordinal numerals and
specific sentence patterns. For example, ordinal relations
between faking bottle and pouring water can be described
in:“the person firstly takes (the) bottle, and then pours wa-
ter (into it)”. The language naturally bridges the semantics
between ordinal actions. In certain circumstances, even the
textual descriptions of actions themselves can provide con-
textual information. For example, the ordinal relationship
between actions of taking bread, putting cheese on bread
and putting bread on cheese and bread is easy to be deduced
literally. Moreover, language can intuitively extrapolate to
unknown types of action. Given a new expression putting
bread on bread, its semantics can be inferred from the ex-
pressions of known types of action. Figure 1(c) illustrates
the effectiveness of language representations.

To this end, we propose a text-based learning method,
Bridge-Prompt, for instructional video analysis. Motivated
by the recent advances of prompt-based learning approach
in Natural Language Processing (NLP) [25] and visual
recognition [3 1], we introduce a three-plus-one-level design
of text prompts to analyze the video clips containing a series
of ordinal actions. Figure 1 shows the comparisons between
conventional and Bridge-Prompt representations of ordi-
nal actions. More specifically, we develop a prompt-based
learning framework to jointly co-train the video and text
encoders based on a specially designed video-text fusion
module, so that we simultaneously exploit out-of-context
and contextual action information towards a more compre-
hensive understanding of instructional videos. Our work

digs deeper into the further potential of prompt-based learn-
ing approaches towards ordinal action understanding and
instructional video analysis. Extensive experimental re-
sults on three benchmark datasets illustrate that the Bridge-
Prompt-based approaches have achieved promising perfor-
mances, and reach state-of-the-art on several benchmarks
with the help of the prompt-based learning framework.

2. Related Work

Action analysis on instructional videos. Instructional
video analysis is an increasingly popular trend in the field of
video understanding. A wide variety of instructional video
datasets have been proposed in recent years [29,38,45,47].
Instructional videos include profuse semantic information
of human activities. The conventional approaches on ac-
tion recognition [ 1,26,35,39] mainly focus on the datasets
of trimmed video clips containing a single action in each
video clip [5, 36]. Based on the existing studies of action
recognition, several works have extended the action anal-
ysis methods to instructional videos by paying attention
to the relations between ordinal actions. GTRM [15] uti-
lizes a graph-based structure to depict the ordinal actions,
and analysis is based on Graph Convolutional Networks
(GCNs) [20]. GHRM [43] also represents ordinal actions
as a graph, while focusing on the long-term action recogni-
tion task. Besides, Shao et al. [33] proposed the TransParser
method for intra- and inter-action understanding via tempo-
ral action parsing. Different from the previous solutions, we
make use of human language as a powerful semantic tool for
analyzing ordinal actions in instructional videos.

Prompt-based learning on computer vision. Prompt-
based learning approaches have been extensively studied
in NLP [25,32,34]. The pioneer language model as GPT-
3 [4] has shown its great few-show or zero-shot potential
across various tasks. The core of prompt-based learning
is to modify the input sample as a prompted version and
embed the expected output information as an unfilled slot
inside the prompt. CLIP [31] introduces the prompt-based
learning approach into the image recognition task by em-
bedding the textual labels of the to-be-recognized objects
into descriptive texts, and the classification procedure can
be transformed into a video-text matching problem. Fol-
lowing the prompt-based design, ALIGN [19] scales up the
vision-language model by training on over one billion noisy
image-text pairs and achieves better prompt-based predic-
tion performances than CLIP. CoOp [44] utilizes learnable
tokens as textual prompts and gains a promotion on few-
shot image classification. CLIP-Adapter [|2] combines the
adapted features generated by the designed feature adapter
with the CLIP feature to fit the few-shot classification. The
prompt-based learning approach has not been widely devel-
oped on video understanding. ActionCLIP [40] proposes a
specially designed prompt-based paradigm for action recog-
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Figure 2. Overview of Bridge-Prompt pipeline. Bridge-Prompt takes the video cuts from minute-long raw inputs. After the special prompt
engineering procedure, four types of text prompts are generated. Vision and text information are integrated both in the fusion module and
during the video-text contrastive learning process. The proposed pipeline is able to capture the relations between ordinal actions.

nition, but it mainly focuses on recognizing single actions
in short video clips. Our proposed Bridge-Prompt aims at
analyzing instructional videos, which is more challenging
but more conducive to understanding human behaviors.

3. Method

In this section, we introduce the overall pipeline design
of Bridge-Prompt. The pipeline of our approach is illus-
trated in Figure 2.

3.1. Prompt Engineering

Prompt engineering refers to the design of an input text
template that embeds the expected output strings as fill-
in-the-blank formats [4] (e.g., cloze test). The objective
of our prompt engineering procedure is to design specific
forms of text prompts to describe groups of ordinal actions
in instructional videos. Suppose a series of single actions
(A ={ay,aq,...,ax }) composes a specific kind of human
activity. An easier way to design the prompts is to pose
a blank-filling problem for every single action. For exam-
ple, the prompt format as “the person is {vp;} right now”
(vp; refers to the verb-phrase description for action a;) can
be used to abstract the semantics for each separate action
of the character. However, since each action is still treated
as an independent prompt instance, this strategy is unable
to depict the contextual semantics between adjacent ordinal
actions. For example, within the human activity of scram-
bling egg, the stir-frying egg action can only happen after
cracking egg. A better form of text prompts towards ordinal
action analysis should not only capture the out-of-context

semantics of each separate action, but also bridge the gap
between contextually related actions, and depict the overall
semantics of the series of actions.

To better represent the series of actions in the Bridge-
Prompt framework, we propose a three-plus-one-level de-
sign of prompt engineering for instructional videos: sta-
tistical prompt, ordinal prompt, semantic prompt, and in-
tegrated prompt. Considering the input video cut with K
consecutive actions:

1) Statistical prompt captures the total count information
for the series of actions. We use the format as “this video
clip contains {num(K)} actions in total”. The statistical
prompt is denoted as ys¢q¢.

2) Ordinal prompt captures the positional information for
each action. We use the format as “this is the {ord;} action

in the video”. The ordinal prompt is denoted as y’, ;. The
ordinal prompt set for x is denoted as:

Vord = [y(l;rda [X3) y({fnd] (1

3) Semantic prompt is the core of prompt design, which
captures the semantic information of the actions. To in-
tegrate both out-of-context and contextual action informa-
tion, we merge the ordinal information into the semantic
prompts to create a multi-prompt format. We use the for-
mat as “{ord; }, the person is performing the action step of
{vp;}” for action a;. The semantic prompt set for x can be
denoted as:

Vsem = [yslerrw cey yfc:m] (2)

3+1) Integrated prompt captures the overall information
for video z. The integrated prompt is formed by the integra-
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Figure 3. Detailed illustration of prompt formats and fusion en-
coder. The fusion encoder takes the encoded frame-wise features
and the ordinal prompt embeddings as inputs. It employs a learn-
able count token to analyze the statistical information. We adopt
an ordinal-attention manner, meaning that the module only focuses
on a single action with respect to a particular ordinal each time.
The integrated semantics is extracted by mean-pooling operation.

Secondly, he/she
is { label 2 }.

Thirdly, the action
is { label 3 }.

This video has { num } actions.

tion of all semantic prompts Vse,,. The integrated prompt
Yinteg Can be denoted by:

1 2 K
yinteg = Ysem D Ysem D..O Ysem (3)
where @ refers to the string concatenation operation.

3.2. Bridge-Prompt: Framework

Sampling for raw videos. The raw instructional video
sample xy € REF0O3XHXW contains Ly RGB frames of
size H x W. Usually, Lg is different for each raw video.
Moreover, suppose K actions are contained in x(, and K
is also unequal for different activities. Within each video,
the duration of each action is unevenly distributed. We pro-
pose a sampling strategy by generating random video cut
x € RE3XHXW from raw videos of a fixed length L,
to extract useful information while improving training effi-
ciency. Each cut x may contain a single action or several
successive actions, where K denotes the action count for x.
The prompt engineering is conducted on those video cuts
to generate the corresponding prompted text pair y. The
sampling operation actually limits the temporal reception
field of the model to a more localized range. The advantage
of such a sampling strategy is to force the Bridge-Prompt
model to focus more on the logical connections both within
and between locally related actions.

Pre-training pipeline. = The sampled video cut = with
L. frames [f1,..., fr.] firstly passes through a frame-wise
image encoder F; to generate the frame-level features
[Fi(f1), .., F1(fr,)]. Meanwhile, according to the prompt

rules, a set of textual prompts {Ystat, Vord, Vsems Yinteg }
can be generated for . A text encoder Fr is
introduced to extract the textual prompt embeddings
{Zstat, Zords Lsem, Zinteg } respectively. The frame-level
features are then passed through a fusion encoder Fr to-
gether with ordinal prompt embeddings to extract the clip-
level feature z. = Fp(Fr(f1), ..., Fr(fr.), 2, ) for the
i-th action of x. The design for the fusion module is the
key to understanding both intra-action and inter-action in-
formation in . We propose a Transformer-based structure
for fusion. The information of ordinal prompt 3’ _, is fused
into the fusion encoder to provide instructive information.
We also embed a count token inside Fr to collect the quan-
titative information to be matched with statistical prompt
Ystat- The details of the fusion approach for Bridge-Prompt
pre-training will be discussed in the following sub-section.
The clip-level feature is jointly learnt with both semantic
prompts Vsen, and integrated prompt %;y,tcqy under a con-
trastive vision-text learning pattern.

Fusion module.  The fusion encoder extracts the core
information from the consecutive frame-level features. In
other words, it tries to abstract the series of actions that
occur in the input video clip. We utilize an ordinal-
attention manner for the fusion module, i.e., each time the
fusion module only focuses on the action of a specific lo-
cation. The ordinal-attention mechanism is implemented
by adding the i-th ordinal prompt embeddings z’ , to the
fusing inputs, which is an early-fusion strategy. We uti-
lize a Transformer-Encoder structure for the fusion module.
The input tokens of the fusion encoder include a learnable
count token [CNT], z_, as a token [ORD], a split token
[SEP], and L, visual tokens representing frame-level fea-
tures. [ORD] indicates which number of actions the fusion
encoder is focusing on. The encoded representations of L,
frame-level features are mean-pooled to represent the clip-
level feature. Besides, we added a learnable count token to
learn additional quantitative information of actions. The en-
coded representation zjcy7) for [CNT] will pass through
the same contrastive vision-text learning framework with
statistical prompt embeddings z;4; as a clip-level feature.

Joint vision-text representation learning. The joint
vision-text representation learning maximizes the similar-
ity between the encoded vision features and text features.
A video clip x and its text description y can be encoded
respectively with a video encoder and a text encoder, gen-
erating the clip representation z, and the text representation
z,. The similarity between z,, and z, can be defined as their
cosine distance:

Zy - Zy

2] 2y

“4)

5(2s,2y)

For a batch of the clip features Z, and its corresponding
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batch of text features Z,, the batch similarity matrix S is:

S(Zrlvzm) S(Z-T17ZyB)

S(24,2y) = : : 4)
S(ZJCB ’ ZZ/1) S(ZQTB ’ ZyB)

where B is the batch size. A text-wise/clip-wise softmax-
normalization function can be applied respectively along
rows/columns on S(Z,, Z,), generating St (2, Z,) and
Sv (24, 2,). A ground truth batch similarity matrix GT" is
defined where the similarity score of positive pair equals to
1, while negative pair equals 0. Our objective is to maxi-
mize the similarity between S and GT'. We define the Kull-
back-Leibler (KL) divergence for matrices as the multi-
modal contrastive loss:

Dk (P||Q) = (6)

where P and Q are N x N matrices. The contrastive loss
for video-text pair can be defined as:

L= [DKL(ST”GT) + Dk (Sv|GT)] @)

Under the Bridge-Prompt framework, there are three parts
of video-text contrastive losses in total:
i) z! fused by the i-th ordinal token with z¢,,, of corre-
spondlng ordinal prompt, notated as £%,,,,;
ii) mean-pooled Z. fused by all ordinal tokens with Z;;,s¢,
notated as Linieq;
iii) mean-pooled Zjcy7] With Zs;4, notated as Lgats
The overall loss objective for the Bridge-Prompt pre-
training framework is as follows:

L= Z ACsem + )\1 integ + )\2£stat (8)

where A1 and )\, balance the three losses.
3.3. Prompt-Based Inference

The “pre-train, prompt, and predict” paradigm in NLP
has suggested that prompt-based design has the superiority
of combining the objectives of downstream tasks into the
pre-training procedure. The Bridge-Prompt framework has
the capability of recognizing a series of actions by solving
prompt-based cloze tests as “this video clip contains __ ac-
tions in total” or “__, the person is performing the action
of __”. In practice, we first generate the text features for all
relevant ordinal prompts, statistical prompts, and semantic
prompts by the pre-trained text encoder. For each test video,
we extract the clip-wise features embedded by different or-
dinal prompts z, and the average statistical representation
ZjcnT) using the pre-trained image encoder and fusion en-
coder. At first, we find the most matched embedding of

statistical prompts with Zjc 7] to determine the total count
of actions. Then, we find the most matched embedding of
semantic prompt with each ordinal prompt-embedded clip-
wise feature z!, to determine each ordinal action one by one.
As for the prompt variants, we vote among all variant for-
mats to get the most matched prompt during inference stage.

4. Experiments
4.1. Datasets

We evaluate our proposed model on three challenging
datasets. S0Salads [37] contains 50 top-view 30-fps in-
structional videos regarding salad preparation. Totally 19
kinds of actions are contained in all videos. The 5-fold
cross-validation is performed for evaluation, and the aver-
age results are reported. Georgia Tech Egocentric Activ-
ities (GTEA) [10] contains 28 egocentric 15-fps instruc-
tional videos of daily kitchen activities. Totally 74 classes
of actions are summarized from all videos. We use the 4-
fold cross-validation to evaluate the performances, and the
average results are reported. Breakfast [21] contains 1,712
third-person 15-fps videos of breakfast preparation activi-
ties. 48 types of different actions are included in all 10 dif-
ferent kinds of breakfast activities. For evaluation, we use
the train-split setting as proposed in [16], with 1357 videos
for training and 355 videos for testing.

4.2. Implementation Details

Sampling strategy. The video cut sampling strategy
is adjusted concerning frame rates and scales of different
datasets. In general, we adopt a 16-frame window for each
video cut. For GTEA dataset, we adopt multiple downsam-
pling rates as 1, 2 and 4 respectively corresponding to the
window striding rates of 2, 1 and 0.5. For 50Salads dataset,
we use higher 24 and 32 downsampling rates with window
striding rate of 1. For the Breakfast dataset, we a employ
downsampling rate of 16 with a window striding rate of 2.

Bridge-Prompt architectures. For the image and text
encoders, we follow the setups as CLIP [31] and Action-
CLIP [40]. We adopt ViT-B/16 [7] as the image encoder
Fr1, which is a 12-layer Transformer with input patch sizes
of 16. The output representation for [CLS] token is re-
garded as the image feature. The text encoder Fr is also
a 12-layer Transformer with the width of 512 and 8 atten-
tion heads. The output representation for [EOS] token is
regarded as the text feature. The output frame-wise feature
of the image encoder is a 768-dimensional vector, which is
mapped to a 512-dimensional latent vector to match the em-
bedded text features. For the fusion module Fr, we employ
a Transformer-Encoder-based structure to fuse the informa-
tion of both image and text features. The fusion module
contains 6 layers. As for the details of the prompt engi-
neering procedure, we utilize an invariant prompt format
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for ordinal prompts and statistical prompts. With respect to
the semantical prompts (which also contribute to integrated
prompts), we adopt 19 variant prompt formats (9 short vari-
ant versions for integrated prompts) to describe the action
semantics. The average similarity of all variants are com-
puted during the prompt-based inference stage.

Training details. The image encoder and text encoder are
together pre-trained on Kinetics-400 [5] by [40] before our
training. We adopt AdamW [27] optimizer with the base
learning rate of 5 x 1075 with a 0.2 weight decay. The
first 10% of training epochs are set as a warm-up phase,
and the learning rate gradually decays down to zero during
the remaining epochs under a cosine schedule. The spatial
resolution of the input video is 224 x 224. For the loss
function, we simply set A\; = Ao = 1. The model is trained
for 50 epochs on GTEA and 50Salads, and 35 epochs on
Breakfast. We use the batch size of 12 during training.

4.3. Results on Action Segmentation

The objective of action segmentation is to classify the
action that occurs in each frame of a video [22]. Dif-
ferent from action recognition, action segmentation pro-
cesses videos with multiple action instances. In conse-
quence, action segmentation approaches should not only
understand the out-of-context semantics for each separate
action, but also be aware of the logical relations between
adjacent actions. Several works have been conducted, and
have achieved promising segmentation results. Most of
the current SOTA approaches on action segmentation uti-
lize the frame-wise I3D [5] features pre-trained on Kinet-
ics extracted by [9], since the videos used for action seg-
mentation are generally long videos that are hard to con-
duct direct analysis based on raw data. Bridge-Prompt uti-
lizes a video cut-based approach to learn the contextual re-
lations between adjacent actions locally, which is feasible
on long videos. Since our approach is not specially de-
signed for end-to-end action segmentation, we mainly adopt
the Bridge-Prompt pre-trained image encoders to generate
frame-wise features for raw videos. We test the action seg-
mentation results based on current segmentation backbones.
Evaluation metrics. To evaluate the action segmentation
results, we adopt several metrics including frame-wise ac-
curacy (Acc), segmental edit distance, and the segmental
F1 score at overlapping thresholds {10%, 25%, 50%}, de-
note by F1@{10,25,50}. The frame-wise accuracy is the
most direct and frequently used metric, whereas it is unable
to penalize the over-segmentation errors in long-duration
actions. The segmental edit distance and segmental F1
score [22,23] are proposed to handle over-segmentation er-
rors and measure the segmentation quality.

Comparisons with the state-of-the-art.  We compare
the segmentation performances based on Bridge-Prompt-
encoded frame-wise features with previous state-of-the-art

Table 1. Action segmentation results on GTEA dataset.

GTEA F1@{10,25,50} | Edit | Acc
BCN [41] 88.5 87.1 773 | 84.4|79.8
MS-TCN++ [24] 88.8 857 76.0 | 83.5 | 80.1
ASRF [18] 894 878 79.8 | 83.7| 713
G2L [13] 809 873 758 | 84.6| 785
SSTDA [6] 90.0 89.1 78.0 | 86.2 | 79.8
SSTDA+HASR [1] 90.9 88.6 764 | 87.5 | 78.7
ASFormer (I3D) [42] 90.1 88.8 79.2 | 84.6 | 79.7
ASFormer (ViT) 88.5 86.2 77.6 | 87.1 | 75.6
Br-Prompt+ASFormer | 94.1 92.0 83.0 | 91.6 | 81.2

Table 2. Action segmentation results on 50Salads dataset.

50Salads F1@{10,25,50} | Edit | Acc
MS-TCN++ [24] 80.7 785 70.1 | 74.3 | 83.7
BCN [41] 823 813 74.0 | 743 | 844
SSTDA [6] 83.0 815 738 | 758 | 832
ASRF [18] 849 835 773|793 | 845

ASFormer (I3D) [42] 85.1 834 76.0 | 79.6 | 85.6
ASFormer+ASRF (I3D) | 85.1 854 79.3 | 819 | 859
SSTDA+HASR [1] 86.6 857 785 | 81.0 | 839
Br-Prompt+ASFormer | 89.2 87.8 81.3 | 83.8 | 88.1

methods. We use the ASFormer [42] as the backbone model
for proceeding action segmentation. Bridge-Prompt is used
as the pre-training approach to train the frame-wise image
encoder (ViT). The output 768-dimensional frame-wise rep-
resentations are regarded as the training inputs for the ac-
tion segmentation backbone. In comparison, the previous
state-of-the-art approaches use 2048-dimensional 13D fea-
tures as training inputs. We conduct action segmentation on
the GTEA dataset and the 50Salads dataset.

Table 1, 2 compare the quantitative results of our ap-
proach. Specifically, we predict the 11 verbs of actions in
GTEA for fair comparisons, and our method outperforms
current state-of-the-art approaches under all five evalua-
tion metrics. For comparison, we also evaluate the perfor-
mances using raw features of ViT pre-trained by [40], which
are inferior to the results using I3D-pre-trained features.
However, after the ViT image encoder is further trained by
Bridge-Prompt, the performances get obvious boosts. The
performance of our approach also precedes previous state-
of-the-art results on 50Salads. Figure 4 shows the qualita-
tive illustration of action segmentation on both datasets.

4.4. Results on Long-Term Activity Recognition

A series of ordinal actions in instructional videos gen-
erally form a high-level semantics of human activity. The
objective of long-term activity recognition is to classify the
types of activities in long videos. Recognizing a high-level
activity requires understanding the basic relations and tem-
poral evolution of its ordinal sub-actions. Since Bridge-
Prompt aims to study the relations between ordinal actions,
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Figure 4. Qualitative results for action segmentation task on (a) 50Salads, and (b) GTEA dataset. Part of the actions are annotated on the
color bar. The Br-Prompt pre-trained representation has greater potential on action segmentation task.

Table 3. Human activity recognition results on Breakfast dataset.

Method \ Acc(%)
Kinetics pre-trained 13D

13D [5] 58.61
ActionVLAD [14] 65.48
Timeception [16] 67.07
VideoGraph [17] 69.45
GHRM [43] 75.49
Breakfast fine-tuned

13D (fine-tuned) [43] 74.83
Br-Prompt (fine-tuned) 80.00

it is also capable of long-term activity recognition. To
adapt our framework for long-term action recognition, we
first pre-train the frame-level encoder based on the Bridge-
Prompt framework, and extract the frame-wise features for
each video. Then, we uniformly sample 64 segments in
each video with 8 frames per segment as in [16]. We use a
simple Transformer-Encoder as a fusion module to respec-
tively integrate segment-wise frames and different segments
to generate video-wise representations. Then the human ac-
tivities are predicted using prompt-based inferences.

Comparison with the state-of-the-art. The performances
are evaluated on the Breakfast dataset as in Table 3. The
performance of Bridge-Prompt fine-tuned features precedes
13D fine-tuned features. Since Bridge-Prompt is not a spe-
cially designed architecture for activity recognition, our
straightforward prompt-based recognition approach may be
inferior to more complicated recognition backbones based
on fine-tuned I3D (e.g. GHRM [43]). The performance can
be further improved by combining Bridge-Prompt represen-
tations with other high-level backbones.

Table 4. Comparisons of different fusion strategies for Bridge-
Prompt by action segmentation results on GTEA dataset (split #1).

Fusion strategy F1@{10,25,50} | Edit | Acc
(a) Vision-only 90.3 874 765 | 86.2 | 81.0
(b) Pos-embeddingi. | 89.1 86.2 77.5 | 84.8 | 80.0
(b) Pos-embedding ii. | 88.7 87.3 76.4 | 84.0 | 79.5
(c) Weights for avg. 91.8 88.1 79.1 | 86.5 | 83.7
(d) Early-fusion 91.0 89.6 82.1| 88.7 | 81.2

4.5. Ablation Studies

We perform several ablation studies on the GTEA
dataset. Several adjustments have been conducted to evalu-
ate the influence of different settings.

Fusion approaches. We have studied more kinds of fusion
strategies to integrate statistical or ordinal information into
frame-wise features. They are listed as follows:

(a) Vision-only fusion. Within the vision-only fusion, only
the frame-wise features are regarded as inputs of the fu-
sion Transformer. The output clip-wise features are con-
trastively learned together with statistical prompts, seman-
tical prompts, and integrated prompts.

(b) Ordinal prompt fused as positional embedding. The
ordinal prompt embedding can be linearly projected as an
embedded vector with its length equal to the clip length.
Then it is added to the input frame-wise features as part of
the positional embedding after a mapping operation. There
are two ways of mapping: i. repeating the embedded vector
along the width dimension; ii. computing the outer product
between the embedded vector and ordinal prompt embed-
ding. The output clip-wise features are contrastively learned
together with all formats of text prompts as (a).
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Table 5. Comparisons of different loss choices for Bridge-Prompt
by action segmentation results on GTEA dataset (split #1).

Loss components F1@{10,25,50} | Edit | Acc
Lsem 874 825 70.6 | 819 | 79.5
Lsem+Linteg 88.6 83.6 77.1 | 83.3 | 81.2
Lsem+LintegtLstar | 91.0 89.6 82.1 | 88.7 | 81.2

(c) Ordinal prompt fused as weights of average. The
ordinal prompt embedding can be linearly projected as a
weight vector with its length equal to the clip length. Then
it is served as the weights of pooling operation for the input
frame-wise features. The output weights are punished by an
L2 loss function to avoid acquiring impulse-shape weights.
The output clip-wise features are contrastively learned to-
gether with all formats of text prompts as (a) and (b).
(d) Early-fused ordinal prompts with a learnable count
token. This is the fusion strategy adopted in our framework.
The action segmentation performances of different fu-
sion strategies for Bridge-Prompt are evaluated on GTEA
(split #1). Table 4 shows the quantitative results, which in-
dicates that the fusion module is significant for improving
the learning effectiveness of Bridge-Prompt. By merging
ordinal information into the fusion module, the learned rep-
resentations possess the focused information for each or-
dinal action. The fusion strategy (b) and (c) are more di-
rect ways to integrate ordinal prompts, however, the ordi-
nal prompt embeddings are not cross-attentioned with vi-
sion features. Specifically, the strategy (b) and (c) learn the
information like “where may the first action be in any 16-
frame video clip?”, while (d) focuses on “where is the first
action among all the actions in this video?”. The location
for each ordinal action also depends on other adjacent ac-
tions, which makes the early-fusion way more convincible.
Choice for loss functions. In our design, we consider three
main components in the loss function: semantics, integrated
semantics, and statistics. We perform ablation experiments
to test the effectiveness of all three loss components. Ta-
ble 5 shows the quantitative results, which indicates that all
three losses make positive contributions to the final perfor-
mance. It is reasonable since all the three text components
are combined to depict both contextual and out-of-context
semantics for a series of ordinal actions.
Transferability studies. Text is a flexible and extensible
form of supervision. Different from class IDs, knowledge
in texts can be transferred to unseen forms of script based
on the generalization ability of pre-trained language mod-
els. To verify the transferability of Bridge-Prompt, we con-
duct a test on the prompt-based ordinal action inferences.
For humans, action knowledge can be transferred between
similar activities. As an example, a person can possibly
learn how to make tea if he/she knows how to make coffee,
since the sub-actions of the two activities are highly simi-
lar. For a class ID-based model, it is unable to transfer the

Table 6. Prompt-based inference accuracies on GTEA. (coffee2tea
refers to transferring the knowledge of making coffee to making
tea, and so forth; AKL refers to training with all-knowing labels.)

coffee2 cofhoney2 hotdog2 peanut2 | overall
tea tea pealate pealate | (AKL)
38.8 41.7 15.5 24.6 54.5
74.4 81.3 45.1 54.8 ‘ 90.9

Trans-type

top-1 Acc(%)
top-5 Acc(%)

knowledge between similar activities without manual inter-
ventions. Under prompt-based inferences, it is as simple
as replacing the filling-in words in prompts. To quantita-
tively explain the transfer effects, we conduct experiments
by training the framework on one human activity and eval-
uating the prompt inference accuracy on another one. The
results are displayed in Table 6, which indicate that Bridge-
Prompt has a promising zero-shot transferability.

5. Conclusion and Discussion

In this paper, we have focused on the issue of ordinal ac-
tion analysis in instructional videos. We proposed a prompt-
based learning framework, Bridge-Prompt, which models
the semantic relations across ordinal actions. To capture
both out-of-context and contextual information of ordinal
actions, text prompts are designed to integrate statistical,
ordinal, and semantic information. Further experiments are
conducted on two downstream tasks including action seg-
mentation and long-term action recognition. The results
have demonstrated that Bridge-Prompt has strong capability
in the analysis of ordinal actions.

Limitations. Language can abstract the semantics from raw
tedious videos. Although it is appealing to conduct large-
scale vision-language pre-training on massive instructional
video datasets such as HowTol00M [29], we are limited by
the computing resources. Fortunately, we find that the man-
ual label is a more accurate and concise form of semantic
abstraction. With the help of pre-trained language models,
we are able to learn the semantics of ordinal actions in a
more efficient and accurate way based on text supervision.

Social impact. Despite the adaptiveness and convenience
of the prompt-based approach to collaborate with vision
models, it also means that fake labels are easier to cre-
ate. To protect the vision-language model from poten-
tial attacks, label-filtering mechanisms and model self-
inspections should be considered in practical applications.
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