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Figure 1. Contextual outpainting: given foreground contents, synthesizes coherent and natural background contents. The proposed
method predicts diverse semantic layouts first, and synthesizes realistic background contents with the help of predicted semantic layouts.
For each example, we show the semantic layouts (in red dashed boxes) and the outpainted images (in red boxes) generated by our method
after the input foreground image and the ground truth image, respectively.

Abstract
We study the problem of contextual outpainting, which

aims to hallucinate the missing background contents based
on the remaining foreground contents. Existing image out-
painting methods focus on completing object shapes or ex-
tending existing scenery textures, neglecting the semanti-
cally meaningful relationship between the missing and re-
maining contents. To explore the semantic cues provided
by the remaining foreground contents, we propose a novel
ConTextual Outpainting GAN (CTO-GAN), leveraging the
semantic layout as a bridge to synthesize coherent and di-
verse background contents. To model the contextual corre-
lation between foreground and background contents, we in-
corporate an object-level contrastive loss to regularize the
learning of cross-modal representations of foreground con-
tents and the corresponding background semantic layout,
facilitating accurate semantic reasoning. Furthermore, we
improve the realism of the generated background contents
via detecting generated context in adversarial training. Ex-
tensive experiments demonstrate that the proposed method
achieves superior performance compared with existing so-
lutions on the challenging COCO-stuff dataset. Project
page: https://ddlee-cn.github.io/cto-gan.

*Corresponding author: zwxiong@ustc.edu.cn.

1. Introduction

Image outpainting, also referred to as image extrapola-
tion or image extension, is a long-lived task in computer vi-
sion. Many real-world scenarios have a strong demand for
high-quality image extrapolations, like simulating different
views of the current visual content in virtual reality. Early
image outpainting methods rely on a retrieval and stitch-
ing process to extend image patches [18, 49, 69]. Recently,
learning-based methods have made impressive progress in
synthesizing visually pleasing results [13, 21, 53, 61]. How-
ever, existing image outpainting methods mainly focus on
completing object shapes or extending existing scenery tex-
tures. The contextual relationship between foreground and
background contents remains unexplored.

In this work, we study a variant of the outpainting prob-
lem, named contextual outpainting, which aims to synthe-
size coherent and natural background contents from the re-
maining foreground contents, as shown in Fig. 1. As hu-
mans, it is easy for us to hallucinate the empirical con-
text given common objects, since we relate objects with
their context unconsciously in everyday life. There are
many potential applications of contextual outpainting tech-
niques, such as generating plausible backgrounds for the
salient objects in online advertising, film making, and aug-
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mented reality. However, for machines, the task of contex-
tual outpainting is significantly harder than the previous im-
age completion tasks (i.e. inpainting and outpainting) in two
ways. Firstly, the assumption of information redundancy is
violated because the foreground and background contents
share almost nothing in common in terms of appearance.
Secondly, to utilize the constraint provided by the remain-
ing foreground contents, it is necessary to understand the
correlations inside the scene at the semantic level.

To address the above obstacles, we utilize the semantic
layout as a bridge and exploit the contextual correlation be-
tween foreground and background contents in a generative
way. Specifically, as shown in Fig. 2, we propose a novel
ConTextual Outpainting GAN (CTO-GAN), that infers the
possible semantic layout from the foreground contents first
and then synthesizes the corresponding background con-
tents under its guidance. We predict diverse semantic lay-
outs from the remaining foreground contents with a Varia-
tional Auto-Encoder (VAE).

To better model the contextual correlation between fore-
ground and background contents at the semantic level, we
propose an object-level contrastive loss to assist the learn-
ing of representations of the foreground contents and the
background semantic layout. Specifically, we encode the
features of foreground pixels and background semantic lay-
outs into the same cross-modal embedding space and regu-
larize the learning of their representations in a “relating-by-
contrasting” paradigm, where the network is encouraged to
pull the given foreground contents to the coherent semantic
layouts and push out-of-context semantic layouts away.

Furthermore, to prevent the discriminator from making
lazy decisions merely based on the untouched foreground
contents, we incorporate an additional context-aware dis-
criminator to detect which region of the generated image
is fake, making it harder for the generator to fool the dis-
criminator and thus improving the quality of generated im-
ages. We conduct extensive experiments on the challenging
COCO-stuff dataset [5] and show that our method is able to
generate coherent and diverse background contents, outper-
forming existing solutions.

2. Related Work

Image outpainting. Early outpainting methods first search
similar patches from a candidate pool, and then stitch the
retrieved patches with the input image to complete extrapo-
lation [18, 49, 69]. Recently, learning-based methods have
been introduced to take advantage of learned representa-
tions from large datasets [13, 21, 53, 61]. Following works
are conducted based on edge guidance [26, 28, 54, 55], in-
stance mask [4, 19], patch rearrangement [20], and GAN
inversion [8]. The aforementioned methods mainly focus
on extending a regular portion like the center or a half of

the image and producing existing scenery textures or com-
pleting image shapes. The closest work to ours is multi-
modal image outpainting [66], which aims to conquer the
mode collapse phenomenon in generating background con-
tents with regularized normalized diversification. Differ-
ently, we are interested to model the joint distribution of
foreground and background contents and hallucinate coher-
ent context for the remaining foreground content.
Image inpainting. Existing inpainting methods can be di-
vided into two groups: single-solution and multi-solution.
Most early single-solution methods are based on diffusion
[3, 24] and patch-matching [2, 10]. Recently, learning-
based methods model the image inpainting task as a con-
ditional generation problem, leveraging a large dataset to
extract powerful priors [17, 25, 31, 33, 38, 52, 60, 62, 63,
64, 72]. Numerous works introduce cues like edges [35,
58, 59], semantic layouts [43], class labels [22], smoothed
images [32, 41], and semantic textures [27] to guide the
prediction of missing contents. In parallel, multi-solution
methods aim to synthesize multiple plausible results given
one corrupted image. Methods based on VAE [70, 71],
GAN [34], VQ-VAE [39], and transformers [11, 48] are
proposed. The extracted priors from large datasets mainly
focus on intra-class consistency, while our method infers
inter-class priors based on the modeling of the contextual
relationship between foreground and background contents.
Contrastive learning. With the progress made in self-
supervised representation learning [7, 14, 45], contrastive
learning attracts increasing interest from the community.
Most image-level contrastive learning methods rely on an
elaborately designed augmentation process to generate suit-
able positive samples. Recent research interests shift from
image-level to pixel-level or object-level, where the positive
and negative samples can be naturally defined. Progress is
made in fields like object detection [56], semantic segmen-
tation [51], and object-level representation learning [57].
Along the other line, contrastive learning methods for cross-
modal data such as depth map, semantic layout, audio, and
text have been introduced [1, 44, 65]. Our method distin-
guishes itself from the above works by operating at the ob-
ject level (foreground vs background) and across modality
(image vs semantic layout).
Context modeling. Contextual information has been ex-
ploited in many computer vision tasks, such as visual recog-
nition [9, 12, 15], representation learning [36, 38], and dy-
namics prediction [47]. Recently, learning-based methods
which synthesize and insert objects based on their context
[23, 67] or predict context from objects [40] have been pro-
posed. These methods operate on either images or segmen-
tation maps. In comparison, we adopt a “relating by con-
trasting” paradigm to model the cross-modal contextual re-
lationship between the foreground contents and the back-
ground semantic layout.
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Figure 2. The overview of the proposed CTO-GAN. Left: We train the proposed method in two stages independently: semantic reasoning
(blue) and content generation (purple). Firstly, the input foreground image Ifg and the background semantic layout Sbg are encoded by
the foreground encoder Efg and the background encoder Ebg into latent codes zfg and zbg , which are then decoded into semantic layout
by the layout generator Gbg . Secondly, with Sbg as conditional input, the image generator Gimg learns to outpaint Ifg to obtain the final
output image Î . Note we omit the discriminators in the illustration for similicity. Right: At the inference time, {ẑbg} are sampled from a
known distribution, say N (0, 1). Then, Gbg and Gimg synthesize diverse background semantic layouts and contents from {ẑbg} and Ifg .⊕

denotes the concatenation operation. Detailed architectures of these components are provided in the supplementary material.
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Figure 3. (a) Statistics of pixel area grouped by background
classes in the COCO-Stuff dataset [5]. (b) The contextual
relationship between foreground and background classes re-
vealed by counting co-occurrences. We highlight the con-
textual correlation of person+ sports → ground (blue) and
person+ animal → plant (green).

3. Contextual Outpainting

3.1. Revealing Contextual Relationships

Recent learning-based completion methods benefit from
extracting appearance priors from a large dataset. For ex-
ample, the COCO-stuff dataset [5, 30] contains versatile
image patches with both thing (foreground) and stuff (back-
ground) categories. The dataset-level distribution of back-
ground classes can be described with the pixel area statis-
tics grouped by class labels, as shown in Fig. 3(a). With
the extracted patch appearance priors of different classes,
learning-based completion methods are capable of filling
the missing region based on the intra-class similarity. But
these intra-class appearance priors are not enough for the
contextual outpainting task, whose crucial point is under-
standing the contextual relationship between the remain-

ing foreground and missing background classes. Intu-
itively, we reveal the inter-class contextual correlations in-
side the dataset by counting co-occurrences among super-
categories. As illustrated in Fig. 3(b), a group of objects
with certain foreground classes is more likely to appear
in a specific context. For example, person and sports

classes are related to context ground, while person and
animal are related to plant. From this point of view,
we assume that the images which share similar foreground
classes would share similar background context and reorga-
nize the dataset into image groups. Inside each group, the
foreground images should be associated with shared contex-
tual semantics. We build these associations in a generative
way, by introducing the semantic layout as bridging infor-
mation and setting these shared similar semantic layouts as
training targets for each group of foreground images.

3.2. ConTextual Outpainting GAN (CTO-GAN)

From the above observation, we design CTO-GAN that
leverages the semantic layout as a bridge to model the
contextual correlation between foreground and background
contents. The benefit of bridging the foreground and
background contents with the semantic layout is two-fold.
Firstly, the semantic layouts lie in a more compact domain,
which is easier to be abstracted by neural networks. Sec-
ondly, it explicitly describes the intermediate semantic rea-
soning result from the remaining foreground contents, mak-
ing our method more explainable. As illustrated in Fig. 2,
we infer the possible semantic layout Ŝbg from the fore-
ground image Ifg first, and then obtain the outpainted im-
age Î with the predicted Ŝbg as the conditional signal.

During training, the proposed CTO-GAN contains two
independent stages: semantic reasoning and content gener-
ation. In the semantic reasoning stage, a conditional VAE
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Figure 4. “Relating-by-contrasting” paradigm. The proposed
CMC loss regularizes the learning procedure of encoders by
pulling hfg to context-coherent semantics (h+) and pushing out-
of-context semantics (h−) away. We show the original images on
the bottom-left corner for reference.

is trained to model the joint distribution of foreground and
background contents. It is composed of a background en-
coder Ebg , a foreground encoder Efg , and a background
layout generator Gbg . Given a foreground image Ifg and a
background semantic layout Sbg , Efg encodes Ifg into a la-
tent code zfg , and Ebg encodes Sbg into a distribution, from
which the background latent code zbg is resampled. Then,
Gbg decodes zfg and zbg into Ŝbg . In the content generation
stage, the image generator Gimg learns to outpaint Ifg to
obtain Î . We use the SPDNorm [37] condition scheme and
upsample from a random noise z.

During inference, the background semantic layout plays
a bridging role between foreground and background con-
tents. Sampled from the normal distribution, latent codes
{ẑbg} are decoded into multiple semantic layouts {Ŝbg} un-
der the condition provided the foreground latent code zfg .
Then Gimg outpaints Ifg to obtain diverse results {Î} with
the help of {Ŝbg}.

3.3. Relating-by-Contrasting Paradigm

To better exploit the contextual relationship between
foreground and background contents, we embrace the idea
of object-level contrastive learning to encode contents in
the semantic reasoning stage. Specifically, with the fore-
ground encoder Efg and the background encoder Ebg , we
map the foreground image Ifg and the background seman-
tic layout Sbg into the same cross-modal embedding space.
As illustrated in Fig. 4, in this shared space, the foreground
representation hfg is viewed as an anchor, the background
representations from the same image group act as positive
samples h+, and the background representations from the
other image groups serve as negative samples h−. From
this point of view, we formulate the following cross-modal
contrastive (CMC) loss for training as

LCMC(hfg, h
+, h−) =

− log

[
exp (hfg · h+/τ)

exp (hfg · h+/τ) +
∑N

n=1 exp
(
hfg · h−n /τ

)] ,

Ddet

̂I

No fake region

Fake region

I

D score map
LGAN−det

Figure 5. Context-aware discriminator. The proposed context-
aware discriminator learns to detect the region of synthetic context
with the supervision of the ground truth mask.

where τ denotes the temperature value. This regulariza-
tion term helps the foreground encoder to derive a better-
structured embedding space by pulling closer to the context-
coherent semantics and pushing away the out-of-context se-
mantics. It enables Efg to encode the foreground images
according to their most related background semantics, facil-
itating the semantic reasoning process. In practice, we uti-
lize another momentum encoder for Ebg to provide a large
set of negative samples via the MoCo scheme [14]. The
learned representations are then further abstracted by con-
volutions to obtain latent codes zfg and zbg .

3.4. Context-Aware Discriminator

Since the foreground image is preserved in the contex-
tual outpainting task, the vanilla discriminator that distin-
guishes the realism of the generated image may be easily
fooled by the almost untouched foreground pixels. To ad-
dress this issue, we propose a context-aware discriminator
that detects the synthesized region of the generated images
and apply it to the content generation stage for context-
aware adversarial training. As shown in Fig. 5, the context-
aware discriminator Ddet predicts a score map, indicating
the probability to be real or fake for every spatial location.
We use the binary cross-entropy (BCE) criterion and the in-
put mask as the target to supervise the learning of Ddet.
During optimization, the following losses are alternatingly
updated as

LGAN−det(Ddet) = E(Ddet(Î),m) + E(Ddet(I),m
0),

LGAN−det(Gimg) = E(Ddet(Î),m
0),

where E denotes the BCE criterion, m denotes the ground
truth mask, and m0 denotes a mask tensor with all zero val-
ues, indicating no fake region in the ground truth image I .

3.5. Loss Functions

In addition to the CMC loss for semantic reasoning, we
utilize the Kullback-Leibler divergence term to regularize
the sampling of zbg into a the normal distribution as

LKL(Ebg) = DKL(Ebg(zbg|Sbg)||N (0, 1)),
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Figure 6. Visual results generated by our method. The proposed CTO-GAN predicts coherent and diverse semantic layouts with different
classes and shapes, and then synthesize realistic background contents.

where DKL denotes the KL divergence distance. Besides,
cross-entropy loss and focal loss [29] are applied at multi-
ple scales to supervise the generation of the background se-
mantic layout. Following previous work [50], a multi-scale
patch discriminator is incorporated for adversarial training.

In the content generation stage, we utilize the `1 distance
and the feature matching distance from a pre-trained VGG
network [42] to supervise the reconstruction of outpainted
images. Besides the proposed context-aware discriminator,
we apply a multi-scale patch discriminator with the seman-
tic layout as conditional input to judge the realism and the
alignment with the desired layout of the generated images.
The multi-scale features extracted by the discriminator are
used for feature-level reconstruction. The two stages of
CTO-GAN are trained in parallel, and their respective loss
terms are balanced by hyperparameters during optimization.

4. Experiments
4.1. Settings

Dataset. We conduct experiments on the COCO-Stuff
dataset [5, 30], which contains 80 thing (foreground) cat-
egories and 91 stuff (background) categories. Collected by
searching for common objects in their common context, the
COCO-Stuff dataset encapsulates rich and challenging con-
textual correlations among classes. It includes over 118K
training images and 5K validation images. We focus on
the outdoor scene and omit the images with too small fore-

ground area, resulting in 53,865 training images and 2,252
test images. During training, for each image, we construct
the mask to indicate the missing background regions, where
the pixels are annotated as stuff classes. We rescale all the
images to 256 × 256 pixels. The detailed process to obtain
pseudo stuff annotations for foreground regions and back-
ground semantic layouts with all-stuff annotations are pro-
vided in the supplementary material.
Comparison methods. We compare the proposed method
with both single-solution and multi-solution image comple-
tion methods, including GatedConv [63] (inpainting, single-
solution), Boundless [21] (outpainting, single-solution),
Multimodal Image Outpainting (MIO) [66] (outpainting,
multi-solution), Pluralistic Image Completion (PIC) [71]
(inpainting, multi-solution) and Diverse Structures for In-
painting (DSI) [39] (inpainting, multi-solution).
Implementation details. The encoders and the generator in
the semantic reasoning stage of CTO-GAN follow PIC [71].
The content generation stage of CTO-GAN is inspired by
SPADE [37]. We add a UNet-like generator to aggregate the
input foreground image and background features to obtain
the final result. The context-aware discriminator follows
the architecture of DeepLabV2 [6]. The architectures of
other discriminators are similar to pix2pixHD [50], but with
the projection of the semantic layout as conditional input
for the one in the content generation stage. Our method is
implemented in PyTorch and trained on 2 NVIDIA GTX
3090 GPUs.
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Figure 7. Qualitative comparison with existing methods. For each example, from top to bottom, from left to right, the pictures are: the
input foreground image, results of GatedConv [63], Boundless [21], results of MIO [66] (in blue box), results of PIC [71] (in purple box),
the ground truth image, results of DSI [39] (in yellow box) and results of our method (in red box).
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Figure 8. Scene-adaptive results generated by our method for ma-
nipulated input foreground images.

4.2. Main Results

Qualitative results. We visualize both the generated se-
mantic layouts and outpainted results produced by our
method in Fig. 6. As can be seen, our method generates
both coherent and diverse semantic layouts, as well as re-
alistic background contents. We compare the visual quality
of our proposed method with existing methods, as shown in
Fig. 7. Although comparison methods can generate plausi-

ble colors, they tend to predict blurry textures or irrelevant
contents. In comparison, the proposed CTO-GAN is able to
synthesize semantically coherent contents as well as vivid
textures. For example, in the first example in Fig. 7, our
method hallucinates sky views in both morning and sunset.
Furthermore, we analyze the ability of scene understand-
ing of our method by manipulating the semantic classes and
spatial relations of foreground objects of the input image.
As shown in Fig. 8, our method predicts the adapted results
according to the semantic changes in terms of presented
foreground objects and their spatial locations.

Quantitative comparison. We evaluate and compare our
method with existing methods across multiple metrics. We
adopt deep features based metrics FID [16] and LPIPS [68]
to evaluate the perceptual quality of the outpainted images
since deep features show superior consistency with the hu-
man visual system than traditional metrics [68]. To eval-
uate the semantic coherence of generated images, we per-
form semantic segmentation with a pre-trained DeepLabV2
model [6] and calculate the weighted mean intersection-
over-union (mIoU) and pixel accuracy (Accu). These met-
rics are calculated across 10 random samples for multi-
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Metric Perceptual Semantic Subjective Distortion

FID ↓ LPIPS ↓ mIoU ↑ Accu ↑ Avg. Rank. ↓ PSNR ↑ SSIM ↑
GatedConv 40.10 0.436 26.6 38.2 4.25 14.29 0.436
Boundless 31.11 0.411 26.8 38.8 3.40 15.54 0.514

MIO 60.33 0.487(0.455) 26.6 31.6 5.39 11.36(12.86) 0.433(0.462)
PIC 33.14 0.417(0.378) 25.4 39.0 3.92 14.37(15.88) 0.467(0.510)
DSI 30.74 0.395(0.351) 26.6 39.1 2.42 14.94(16.22) 0.494(0.542)
Ours 27.34 0.371(0.341) 31.5 47.0 1.61 14.79(16.01) 0.529(0.560)

Table 1. Quantitative comparison with existing methods. For multi-solution methods, we report the performances of LPIPS, PSNR and
SSIM in the format of Average(Best). Our method outperforms the existing solutions in almost all metrics, especially in terms of
perceptual quality and semantic coherence.

person

sports
animal

person

vehicle
vehicle

animal

person

GatedConv 0.714 0.594 0.639 0.651 0.732
Boundless 0.704 0.602 0.639 0.644 0.732

MIO 0.594 0.476 0.574 0.595 0.632
PIC 0.699 0.569 0.614 0.630 0.716
DSI 0.721 0.573 0.616 0.620 0.732
Ours 0.702 0.644 0.645 0.661 0.754

Table 2. Semantic precision of top-5 foreground super-category
combinations.

(a) (b)

Figure 9. The effectiveness of contrastive regularization illus-
trated by the t-SNE visualization of learned representations (hfg)
of foreground images. (a) Without contrastive regularization, the
learned representations inside the same class are quite separated,
leading to inaccurate semantic reasoning. (b) With the proposed
contrastive regularization, foreground images with similar seman-
tic classes are well grouped. N denotes foreground images with
person+ surfboard classes, H denotes person+ boat, and �
denotes person+ car+ bus.

solution methods. As listed in Table 1, our method out-
performs the existing solutions in almost all metrics, espe-
cially in terms of perceptual quality and semantic coher-
ence. We also report distortion metrics peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) for ref-
erence, although all methods perform poorly in terms of
pixel-level restoration. Additionally, we report the semantic

FID ↓ LPIPS ↓ mIoU ↑ Accu ↑
Ours w/o contra. reg. 33.19 0.407 25.6 38.0
Ours w/o context dis. 28.31 0.387 31.1 46.4

Ours 27.34 0.371 31.5 47.0

Table 3. Ablation studies on contrastive regularization (contra.
reg.) and context-aware discriminator (context dis.).

precision of the top-5 super-category combinations in Ta-
ble 2. It measures the accuracy of the generated semantic
classes of each method. Our method outperforms existing
solutions in most combinations. For the diversity metric,
we use the average pairwise LPIPS distance (LPIPS-D) be-
tween 5 samples from 1K images from the test set. As dis-
cussed in previous works [39, 48], meaningless but diverse
completion results may lead to high LPIPS-D, so we show
the FID metric accompany with LPIPS-D in Fig. 11(a). Our
method achieves similar performance with PIC and DSI. Fi-
nally, We conduct a subjective evaluation, where 20 partici-
pants are asked to rank the results produced by comparison
methods and our method for 20 random input images. We
report the average ranking in Table 1. As can be seen, our
method obtains the most favorable results.

4.3. Ablation Studies

The effectiveness of contrastive regularization. We val-
idate the regularization effect of utilizing the CMC loss by
comparing the learned representations from the foreground
encoder. Specifically, we obtain the learned representations
(hfg) of the test images from the foreground encoder and
run the t-SNE algorithm [46] to visualize these represen-
tations in a 2D plane. As illustrated in Fig. 9(a), with-
out contrastive regularization, the learned representations
across different foreground images are heavily intersected
with each other, leading to inaccurate semantic reasoning.
In comparison, as shown in Fig. 9(b), with our contrastive
regularization, foreground images with the same semantic
classes are well grouped. Note that even the images from
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Figure 10. Results of ablation studies on contrastive regularization
(contra. reg.) and context-aware discriminator (context dis.).

other classes are grouped together due to the consistency
they share in context, although they are very different in
terms of appearance. Besides, as shown in Fig. 10, with-
out our contrastive regularization, intersected representa-
tions may lead to predicting common but inaccurate seman-
tics. As listed in Table 3, our method with object-level
contrastive regularization achieves better quantitative per-
formance, since it helps reason the missing background se-
mantics and synthesize coherent semantic layouts.
The effect of the context-aware discriminator. We re-
train the content generation stage of CTO-GAN without in-
corporating the proposed context-aware discriminator. As
listed in Table 3, the method trained with our context-aware
discriminator achieves better performance in terms of per-
ceptual quality and semantic coherence. It also can be ob-
served in Fig. 10. Given the same semantic layouts, our
method trained with the proposed context-aware discrimi-
nator generates more realistic and vivid background con-
tents, while the one trained without the context-aware dis-
criminator mixes different classes (sea and sand) together.
The effect of sharing semantics inside the same image
group. As described in Sec. 3.1, we reorganize the images
into groups and share semantics inside each group. Dur-
ing training, we control the percentage of involving shared
semantic layouts for a training image via a hyperparame-
ter γ. We adopt the widely used precision and recall curve
to evaluate the accuracy and coverage of generated seman-
tic classes, respectively. As shown in Fig. 11(b), without
sharing semantics (γ = 0), our method achieves high preci-
sion, but with low recall. Involving shared semantic layouts
during training helps increase the semantic diversity of our
method. We choose γ = 0.25 to obtain a balance between
semantic accuracy and coverage. More experimental results
and an interactive demo are in the supplementary material.

4.4. Limitation

Our method fails in certain cases. As shown in the
first example of Fig. 12, our method fails to generate se-
mantic layouts with too many classes and fine bound-
aries. As shown in the second example, when the photo is

Figure 11. The quantitative comparison of diversity with exist-
ing multi-solution methods. (a) The FID vs LPIPS-D plane. (b)
The semantic precision vs recall curve. n denotes the number of
generated samples.

Input 
image

Ground truth 
image

Outpainted 
image

Ground truth 
layout

Generated 
layout

Figure 12. Failure cases of our method.

monochrome, our assumption that the semantic layout pro-
vides necessary cues for background generation is violated,
leading to an inconsistent style in the outpainted image. Our
future work would include introducing more explicit con-
straints like bounding boxes and scene graphs to facilitate
the reasoning and generation of background semantics and
contents.

5. Conclusion
In this work, we propose CTO-GAN, which generates

coherent and diverse background contents according to the
remaining foreground contents. Our method leverages the
semantic layout as a bridge and utilizes contrastive regular-
ization to model the contextual correlation between fore-
ground and background contents. We conduct extensive
experiments on the challenging COCO-stuff dataset and
demonstrate the semantic reasoning ability of our method
and its superiority over existing solutions.
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