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Abstract

We address the task of domain adaptation in object de-
tection, where there is an obvious domain gap between a
domain with annotations (source) and a domain of interest
without annotations (target). As a popular semi-supervised
learning method, the teacher-student framework (a student
model is supervised by the pseudo labels from a teacher
model) has also yielded a large accuracy gain in cross-
domain object detection. However, it suffers from the do-
main shift and generates many low-quality pseudo labels
(e.g., false positives), which leads to sub-optimal perfor-
mance. To mitigate this problem, we propose a teacher-
student framework named Adaptive Teacher (AT) which
leverages domain adversarial learning and weak-strong
data augmentation to address the domain gap. Specifically,
we employ feature-level adversarial training in the student
model, allowing features derived from the source and target
domains to share similar distributions. This process ensures
the student model produces domain-invariant features. Fur-
thermore, we apply weak-strong augmentation and mutual
learning between the teacher model (taking data from the
target domain) and the student model (taking data from
both domains). This enables the teacher model to learn
the knowledge from the student model without being biased
to the source domain. We show that AT demonstrates su-
periority over existing approaches and even Oracle (fully-
supervised) models by a large margin. For example, we
achieve 50.9% (49.3%) mAP on Foggy Cityscape (Cli-
part1K), which is 9.2% (5.2%) and 8.2% (11.0%) higher
than previous state-of-the-art and Oracle, respectively.

1. Introduction
Developing algorithms that can transfer the knowledge

learned from one labeled dataset (i.e., source domain) to
another unlabeled dataset (i.e., target domain) becomes in-

* Work done during the internship at Meta (Facebook).
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Figure 1. The effectiveness of domain loss and weak-strong
augmentation on pseudo labeling in Mean Teacher (MT) [40].
The figure shows the false positive ratio on the training set of Cli-
part1k (target) with PASCAL VOC as source. We run 5 identical
experiments for each setting and plot the error bound accordingly.
Due to inherent domain shift in the Teacher model, it generates
noisy pseudo labels without domain loss. The weak-strong aug-
mentation is able to stabilize pseudo labeling.

creasingly important for object detection. Researchers have
proposed various methods, such as domain classifier and ad-
versarial learning [10], to address the task of cross-domain
adaptation in object detection [2, 3, 14, 32, 39, 42, 44]. Even
though these methods have led to accuracy improvement,
solely using adversarial learning on the complex recogni-
tion task such as object detection is still limited. Hence,
there is generally still a large performance gap from the Or-
acle model (fully supervision) on the target domain.

To explore the potential of self-training on the unla-
beled target domain for improved detection performance,
researchers have exploited and extend the teacher-student
self-training method from semi-supervised learning to do-
main adaptation [40]. These approaches are able to learn
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without annotations by typically involving a teacher model
to generate pseudo labels to update student model. These
methods have led to notable accuracy gains in the domain
adaptation scenario. For example, MTOR [1] employs the
Mean Teacher (MT) [40] as its pipeline to identify relations
using region-level, inter-graph, and intra-graph consistency.
Unbiased Mean Teacher (UMT) [8] is proposed to aug-
ment the teacher-student framework with CycleGAN [43]
and achieved further performance improvement.

Despite the accuracy gain, the teacher-student frame-
work still face a major challenge upon the settings of
domain adaptation: Unlike semi-supervised learning, the
pseudo label generated from the teacher model usually con-
tains a substantial amount of errors and false positives, as
shown in Figure 1. This is because the scenario of domain
adaptation typically involves a large domain gap between
the labeled data (source domain) and unlabeled data (tar-
get domain). The teacher model is trained on, biased to,
and only able to capture features precisely on the source
domain, hence unable to provide high-quality pseudo la-
bels in the target domain. As a result, directly applying the
teacher-student framework only leads to sub-optimal adap-
tation performance.

To address this problem, we propose a self-training
framework named Adaptive Teacher (AT) to mitigate the
domain shift and improve the pseudo labeling quality on
the target domain leveraging adversarial learning and mu-
tual learning. Our model comprises of two separate mod-
ules: target-specific Teacher model and cross-domain Stu-
dent model. We also apply weak augmentation (only strong
augmentation in Student model) and feed images from the
target domain into the Teacher model, which we refer to as
“Weak-Strong augmentation”, following Unbiased Teacher
(UT) [22]. This allows the teacher model to generate re-
liable pseudo labels without being affected by heavy aug-
mentation. In addition, to mitigate the domain bias toward
source domain in the Student model, we apply adversar-
ial learning by introducing a discriminator with gradient
reverse layer to align the distribution across two domains
in the Student model. With all the techniques, we observe
the pseudo label quality improved significantly, as shown
in Figure 1, where the false positive ratio is suppressed by
up to 35%. This further leads to substantial accuracy gain
across all the domain adaptation experiments and outper-
forms all existing methods. We summarize the contribu-
tions of this paper as follows:

• We demonstrate the limitation of the teacher-student
framework in the domain adaptation scenario: The
teacher model is biased toward the source domain and
only able to produce low-quality pseudo labels on the
target domain.

• We propose a novel framework leveraging adversarial
learning augmented mutual learning and weak-strong

augmentation to address domain shift in cross-domain
object detection.

• Our method is able to deal with domain shift and out-
perform all existing SOTA by a large margin. For ex-
ample, we achieve 50.9% mAP on Foggy Cityscape,
which is 9.2% and 8.2% higher than SOTA and Oracle
(full supervision).

2. Related Works
Object Detection. Object detection is a task to localize
the object and its location given an input image. Recently,
deep models have shown to be effective in object detec-
tion with anchor-based approaches, e.g., Faster R-CNN [30]
which introduces Region Proposal Networks (RPN) to facil-
itate the proposal generation for region of interests (ROI).
Afterwards, several anchor-based works [5,6,15,20,26,37]
are proposed to improve the performance and efficacy. On
the other hand, anchor-free methods are also proposed as
one-stage detectors without the step of generating region
proposals. YOLO [27] produces bounding boxes and the
confidence score jointly for multiple classes as regression
task. Several of its variants [28, 29] are also proposed.
SSD [21] is also built on top of YOLO yet leverages fea-
ture maps generated from different scales of images. For
our work, we employ Faster R-CNN as the backbone for
detection due to its flexibility.

Domain Adaptation. Given unlabeled data from target
domain, unsupervised domain adaptation (UDA) or do-
main adaptation (DA) aims to learn a model from addi-
tional labeled source domain to achieve satisfactory per-
formance on the target domain. Recently, it has demon-
strated its effectiveness using deep neural networks. On one
hand, some works have developed discrepancy-based meth-
ods that learn the representations by minimizing the domain
discrepancy, which is also known as Maximum Mean Dis-
crepancy (MMD) [23–25]. Another line of domain adap-
tation is to map the domain distribution and treat it as a
adversarial (min-max) optimization with a domain classi-
fier [10,11,34,41]. Some generative models such as Cycle-
GAN [43] can also be seen as image-level domain adapta-
tion. However, compared to these general vision tasks, the
problem of object detection is more complicated since it has
to predict the bounding box and class label for each object.
Comparing with other recognition tasks, we aim at handling
such challenging task of cross-domain object detection.

Cross-Domain Object Detection. Recently, more works
pay more attention on domain adaptation in the task of
object detection and propose various approaches. Some
utilize adversarial learning with a gradient reverse layer
(GRL) for mapping the feature across different domains
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Figure 2. Overview of our proposed Adaptive Teacher (AT). Our model consists of two modules: 1) target-specific Teacher model for
taking weakly-augmented images from target domain and 2) cross-domain Student model for taking strongly-augmented images from both
domains. We train our model using two learning streams: Teacher-Student mutual learning and adversarial learning. The Teacher model
generates pseudo-labels to train the Student while the Student updates the Teacher model with exponential moving average (EMA). The
discriminator with gradient reverse layer is employed to align the distributions across two domains in Student model.

in [2, 3, 14, 32, 39, 42, 44]. The annotation-level adapta-
tion [17, 18, 31] or curriculum learning [38] have also been
proposed for the task of domain adaptation. Recently, an-
other direction is to utilize Mean Teacher (MT) [40] which
is originally proposed for semi-supervised learning on this
task. MTOR [1] is proposed on top of MT and train
its teacher network with enforcing the region-level, inter-
graph, and intra-graph consistency. Similarly, Unbiased
Mean Teacher (UMT) [8] has been proposed to reduce the
domain shift by augmenting the training samples with Cy-
cleGAN [43]. However, the above approaches are likely to
suffer the same and inherent issue in Mean Teacher (MT),
generating pseudo labels of low quality on target domain.

3. Adaptive Teacher

3.1. Problem Formulation and Overview

Before we demonstrate how our proposed method is able
to mitigate the errors of pseudo labels in domain adaptation
of object detection, we first review the problem formulation.
We are given Ns labeled images Ds = {(Xs, Bs, Cs)} in
source domain and Nt unlabeled images Dt = {Xt} in tar-
get domain, where Bs = {bis}

Ns
i=1 denotes the bounding box

annotations and Cs = {cis}
Ns
i=1 denotes corresponding class

labels for source image Xs = {xi
s}

Ns
i=1. There is no anno-

tations for the target image Xt = {xj
t}

Nt
j=1. The ultimate

goal of cross-domain object detection is to design domain-
invariant detectors by leveraging Ds and Dt.

The overview of our framework is presented in Fig-
ure 2. Our AT framework consists of two modules: target-
specific Teacher model and cross-domain Student model.
The Teacher model only takes into the weakly-augmented

images from target domain (Dt) while the Student model
takes strongly-augmented images from both domains (Ds

and Dt). We train our model using two training streams
which are the Teacher-Student mutual learning and the ad-
versarial learning strategies. To begin with, we train the
object detector with the available source labeled data and
initialize the feature encoder and detector. At the stage of
mutual learning, we duplicate the initialized object detec-
tor into two identical detectors, i.e., Teacher and Student
models. The Teacher generates pseudo labels to train the
Student while the Student updates the knowledge it learned
back to the Teacher via exponential moving average (EMA).
Iteratively, the pseudo-labels for training the Student are im-
proved. Furthermore, we employ the discriminator and the
gradient reverse layer (GRL) [10] for the adaptive learning
(Sec. 3.3) to align the distributions across two domains in
Student model. This allows the Student model to reduce
domain shifts and benefits the Teacher model to generate
more accurate pseudo-labels.

3.2. Mutual Learning between Teacher and Student

Following the teacher-student framework initially pro-
posed for semi-supervised object detection, our model is
also composed of two architecturally identical models: a
Student model and a Teacher model. The Student model
is learned by standard gradient updating, and the Teacher
model is updated with the exponential moving average
(EMA) of the weights from the student model. To generate
precise and accurate pseudo labels for target domain im-
ages, we feed the images with weak augmentation as in-
put to the Teacher to provide reliable pseudo-labels while
images with strong augmentation as inputs of the Stu-
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dent. Specifically, the target samples are augmented with
randomly horizontal flipping and cropping as weak aug-
mentation in Teacher model and randomly color jittering,
grayscaling, Gaussian blurring, and cutting patches our for
strong augmentations as perturbations.

Model Initialization. Initialization is significant for the
self-training framework since we rely on the Teacher to gen-
erate reliable pseudo-labels for target domain without an-
notations to optimize the Student model. To achieve this,
we first use the available supervised source data Ds =
{(Xs, Bs, Cs)} to optimize our model with the supervised
loss Lsup. Hence, the supervised loss for training and ini-
tializing the student model using the labeled source data can
be defined as:

Lsup(Xs, Bs, Cs) = Lrpn
cls (Xs, Bs, Cs) + Lrpn

reg (Xs, Bs, Cs)

+Lroi
cls (Xs, Bs, Cs) + Lroi

reg(Xs, Bs, Cs),

(1)

where RPN loss Lrpn is the loss for learning the Region
Proposal Network (RPN), which is designed to generate
candidate proposals, and Region of Interest (ROI) loss Lroi

is for the prediction branch of ROI. Both of RPN and ROI
perform bounding box regression (reg) and classification
(cls). We use binary cross-entropy loss for Lrpn

cls and Lroi
cls ,

and l1 loss for Lrpn
reg and Lroi

reg .

Optimize Student with Target Pseudo-Labels As the la-
bels are not available in the target domain, we adopt the
pseudo-labeling method to produce dummy labels on the
images from target domain to train the Student. To filter out
the noisy pseudo-labels, we set a confidence threshold δ on
the predicted bounding boxes from the teacher model to re-
move the false positives. In addition, we exclude duplicated
boxes prediction by non-maximum suppression (NMS) for
each class. Hence, after obtaining the pseudo-labels from
Teacher model on the images of target domain, we can up-
date the Student with the loss as:

Lunsup(Xt, Ĉt) = Lrpn
cls (Xt, Ĉt) + Lroi

cls (Xt, Ĉt), (2)

where Ĉt denotes the pseudo labels generated by the
Teacher model on target domain. Here, unsupervised losses
are not applied in the task of bounding box regression since
the confidence score of predicted bounding boxes on the
unlabeled data can only represent the confidence of the cat-
egories for each object instead of the locations for the pro-
duced bounding boxes.

Temporally Update Teacher from Student. To obtain
strong pseudo-labels from the target images following
MT [40], we apply Exponential Moving Average (EMA) to

update Teacher model by temporally copying the weights of
the student model. The update formula can be defined as:

θt ← αθt + (1− α)θs, (3)

where θt and θs denote the network parameters of Teacher
and Student, respectively.

3.3. Adversarial Learning to Bridge Domain Bias

Since annotations are only available on source data, both
of the Teacher and the Student can be easily biased towards
the source domain during the mutual learning process. To
be particular, the pseudo labels generated on target images
from Teacher model are basically derived using the knowl-
edge of the model trained with labels from source domain.
As a result, we need to bridge the domain bias across source
and target domains otherwise the Teacher model would gen-
erate noisy labels on target images and make the learning
process collapse. Thus, we introduce adversarial learning
into the framework for aligning the distributions across two
domains. This leads to substantial false positive ratio reduc-
tion (20% on MT+adversarial loss) in pseudo label genera-
tion, as shown in Figure 1.

Since Student model takes images from both domains,
the adversarial loss is applicable on Student model to align
two distribution. To achieve adversarial learning, a do-
main discriminator D is placed after the feature encoder E
(shown in Figure 2) on the Student model. The discrim-
inator is aimed at discriminate where the derived feature
E(X) is from (source or target). Then we can define the
probability of each input sample that belonging to the target
domain as D(E(X)) and the probability of it belonging to
source domain as 1 − D(E(X)). We can update the do-
main discriminator D using binary cross-entropy loss given
the domain label d for each of the input image. Specifi-
cally, images from the source domain are labeled as d = 0
and images from target domain are labeled as d = 1. The
discriminator loss Ldis can be formulated as:

Ldis = −d logD(E(X))− (1− d) log(1−D(E(X))),
(4)

On the other hand, the feature encoder E is encouraged
to produce features that confuse the discriminator D while
the discriminator D aim to distinguish which domain the
derived features are from. Hence, such adversarial opti-
mization objective function can be defined as the following:

Ladv = max
E

min
D
Ldis. (5)

Fortunately, to simply the min-max optimization, we can
append an additional Gradient Reverse Layer (GRL) [10]
between the feature encoder and the discriminator to pro-
duce reverse gradient. During the gradient calculation, the
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Table 1. The results of cross-domain object detection on the Clipart1k test set for PASCAL VOC → Clipart1k adaptation. The average
precision (AP, in %) on all classes is reported. The used backbone is ResNet-101 for fair comparison. We compare our method with
SCL [35], SWDA [32], DM [19], CRDA [42], HTCN [2], UMT [8], Source (F-RCNN), and Oracle (F-RCNN).

Method aero bcycle bird boat bottle bus car cat chair cow table dog hrs m-bike prsn plnt sheep sofa train tv mAP

Source 23.0 39.6 20.1 23.6 25.7 42.6 25.2 0.9 41.2 25.6 23.7 11.2 28.2 49.5 45.2 46.9 9.1 22.3 38.9 31.5 28.8 (-16.2)

SCL 44.7 50.0 33.6 27.4 42.2 55.6 38.3 19.2 37.9 69.0 30.1 26.3 34.4 67.3 61.0 47.9 21.4 26.3 50.1 47.3 41.5 (-3.5)
SWDA 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1 (-6.9)
DM 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8 (-3.2)
CRDA 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3 (-6.7)
HTCN 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3 (-4.7)
UMT 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1 (-0.9)

AT 33.8 60.9 38.6 49.4 52.4 53.9 56.7 7.5 52.8 63.5 34.0 25.0 62.2 72.1 77.2 57.7 27.2 52.0 55.7 54.1 49.3 (+4.3)

Oracle 33.3 47.6 43.1 38.0 24.5 82.0 57.4 22.9 48.4 49.2 37.9 46.4 41.1 54.0 73.7 39.5 36.7 19.1 53.2 52.9 45.0

Table 2. The results of cross-domain object detection on the Water-
color2k test set for PASCAL VOC → Watercolor2k adaptation.
The average precision (AP, in %) on all classes is reported. The
used backbone is ResNet-101 for fair comparison.

Method bicycle bird car cat dog person mAP

Source 84.2 44.5 53.0 24.9 18.8 56.3 46.9 (-3.7)

SCL [35] 82.2 55.1 51.8 39.6 38.4 64.0 55.2 (+4.8)
SWDA [32] 82.3 55.9 46.5 32.7 35.5 66.7 53.3 (+2.7)
UMT [8] 88.2 55.3 51.7 39.8 43.6 69.9 58.1 (+7.5)

AT 93.6 56.1 58.9 37.3 39.6 73.8 59.9 (+9.3)

Oracle 51.8 49.7 42.5 38.7 52.1 68.6 50.6

GRL negates the gradients that pass back and the gradients
of feature encoder E is calculated in an opposite direction.
This helps to maximize the discriminator loss for learning
E while we only need to minimize the objective Ldis. With
the above discriminator loss, our Student model resolves the
domain bias in visual features and helps Teacher to generate
precise pseudo labels after several EMA updates.

We would like to note that, the design of adversarial
learning in the Student model of our Adaptive Teacher is
reasonable for two reasons. First, since we only feed im-
ages from target domain into Teacher model to avoid do-
main bias on Teacher model, the process of aligning two
domains could be preferable in Student model which takes
images across two domains. Feeding images from source
domain like [1, 8] may bring more bias toward source do-
main to both Teacher and Student models. Second, adver-
sarial learning is a min-max learning problem and requires
loss function to update the model. Since Student model is
updated via objective losses, applying adversarial loss to the
Student model is a simple and suitable way in the standard
learning of the Mean Teacher.

3.4. Full Objective and Inference

The total loss L for training our proposed AUT is sum-
marized as follows:

L = Lsup + λunsup · Lunsup + λdis · Ldis, (6)

where λunsup and λdis are the hyper-parameters used to
control the weighting of the corresponding losses. We note
that Lsup and Lunsup are developed to learn the feature en-
coder and detector in the Student model while Ldis is intro-
duced to update the feature encoder and discriminator. The
Teacher model is only updated through EMA discussed in
the Sec 3.2.

4. Experiment

4.1. Datasets

We conduct our experiments on five public datasets, in-
cluding Cityscapes [4]), Foggy Cityscapes [33], PASCAL
VOC [9], Clipart1k [16], and Watercolor2k [16].

Cityscapes. Cityscapes [4] is collected by capturing im-
ages from outdoor street scenes in normal weather condi-
tions from 50 cities, which has diverse scenes. It contains
2,975 images for training and 500 images for validation
with dense pixel-level labels. The annotations of bounding
boxes are converted from instance segmentation labels.

Foggy Cityscapes. Foggy Cityscapes [33] is synthesized
from the images in the Cityscapes. Therefore, it has the
same train/test split as Cityscapes. It simulates the condition
of foggy weather according to depth information provided
in Cityscapes and generates three levels of foggy weather.

PASCAL VOC. PASCAL VOC [9] contains 20 cate-
gories of common objects from real world with bounding
box and class annotations. Following [32, 35], the dataset
is combined from PASCAL VOC 2007 and 2012 with total
16,551 images.

Clipart1k. Clipart1k [16] contains clipart images and
shares the same 20 classes with PASCAL VOC. Yet, it ex-
hibits a large domain shift from PASCAL VOC. We follow
the practice in [32,35] and split it into training and test sets,
containing 500 images each.

Watercolor2k. Watercolor2k [16] contains watercolor
style images, which consists of images from 6 classes and
shares with the same classes in PASCAL VOC dataset. Fol-
lowing [32,35], the dataset is splitted halfly into training set
and testing sets and each contains 1000 images.

7585



Table 3. The results and comparison on cross-domain object detection on the Foggy Cityscapes test set for Cityscapes → Foggy Cityscapes
adaptation. The average precision (AP, %) on all classes is presented. The used backbone is VGG-16 for fair comparison.

Method bus bicycle car mcycle person rider train truck mAP

Source (F-RCNN) 20.1 31.9 39.6 16.9 29.0 37.2 5.2 8.1 23.5 (-19.2)

SCL [35] 41.8 36.2 44.8 33.6 31.6 44.0 40.7 30.4 37.9 (-4.8)
DA-Faster [3] 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6 (-15.1)
SCDA [44] 39.0 33.6 48.5 28.0 33.5 38.0 23.3 26.5 33.8 (-8.9)
SWDA [32] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3 (-8.4)
DM [19] 38.4 32.2 44.3 28.4 30.8 40.5 34.5 27.2 34.6 (-8.1)
MTOR [1] 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1 (-7.6)
MAF [14] 39.9 33.9 43.9 29.2 28.2 39.5 33.3 23.8 34.0 (-8.7)
iFAN [45] 45.5 33.0 48.5 22.8 32.6 40.0 31.7 27.9 35.3 (-7.4)
CRDA [42] 45.1 34.6 49.2 30.3 32.9 43.8 36.4 27.2 37.4 (-5.3)
HTCN [2] 47.4 37.1 47.9 32.3 33.2 47.5 40.9 31.6 39.8 (-2.9)
UMT [8] 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7 (-1.0)

AT 56.3 51.9 64.2 38.5 45.5 55.1 54.3 35.0 50.9 (+8.2)

Oracle (F-RCNN) 50.3 40.7 61.3 32.5 43.1 49.8 35.1 28.6 42.7

4.2. Implementation Details

Following [3] and [32], we employ Faster RCNN [30] as
the base detection model in our Adaptive Teachera and im-
plement it using Detectron2. Either of the network ResNet-
101 [13] or VGG16 [36] pre-trained on ImageNet [7] is used
as the backbone according to the settings. Following the im-
plementation of Faster RCNN with ROI-alignment [12], we
scale all images by resizing the shorter side of the image to
600 while maintaining the image ratios. For the hyperpa-
rameter, we set the λunsup = 1.0 and λdis = 0.1 for all the
experiments for simplicity. We set the confidence thresh-
old as δ = 0.8. For the initialization stage of training the
framework described in Sec. 3.2, we train the AT using the
source labels for 10k iterations. Then we copy the weights
to both Teacher and Student models in the beginning of mu-
tual learning and train the AT for 50k iterations. We set the
learning rate as 0.04 during the entire training stage without
applying any learning rate decay. We optimize the network
using Stochastic Gradient Descent (SGD). The used data
augmentation methods include random horizontal flip for
weak augmentation , and randomly color jittering, grayscal-
ing, Gaussian blurring, and cuting out patches are utilized
for strong augmentations. The weight smooth coefficient
parameter of the exponential moving average (EMA) for
the teacher model is set to 0.9996. Each experiment is con-
ducted on 8 Nvidia GPU V100 with the batch size of 16 and
implemented in PyTorch.

4.3. Experimental Settings and Evaluation

We report the average precision (AP) of each class as
well as the mean AP over all classes for object detection
following existing works [3, 32] for all of the experimental
settings, which are described as follows:

Real to Artistic Adaptation. To begin with, we would
like to benchmark the effectiveness of our model for ad-

dressing the large domain gap. In this setting, we test our
model with the effect of domain shift between the real im-
ages and the artistic images. We use Pascal VOC as the
source dataset and the Clipart1k or Watercolor2k as the tar-
get dataset. The backbone of ResNet-101 [13] is used fol-
lowing the settings in existing works.

Adverse Weather Adaptation. For this setting, we eval-
uate our model on the domain shift between the image
in normal weather and the image with adverse weather
(foggy). The data from Cityscapes dataset is served as
the source domain while the data from Foggy Cityscapes
dataset is served as the target domain. The model is trained
with the labeled images from Cityscapes and unlabeled im-
ages from Foggy Cityscapes in the experiments. The test-
ing results on the validation set of Foggy Cityscapes are
reported. Even though there are one-to-one mappings of
images between Cityscapes and Foggy Cityscapes datasets,
we do not use such information in all of the experiments.
The backbone of VGG16 [36] is used following previous
settings.

4.4. Results and Comparisons

In this section, we report the performance of our Adap-
tive Teacher and other state-of-the-art approaches in Table 1
and Table 3. We additionally report the source-only model
denoted “Source (F-RCNN)” as training the base Faster
RCNN model with only source images as the lower bound
benchmark. On the other hand, we also include an ora-
cle model denoted “Oracle (F-RCNN)” as training a base
Faster RCNN model using the images from target domain
and ground truth annotations, which can be viewed as the
upper bound benchmark.

Real to Artistic Adaptation. The results of the setting:
real to artistic adaptation on Clipart1k is presented in Ta-
ble 1 and the one on Watercolor2k is presented in Table 2.
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Table 4. The results of domain generalization on unseen target dataset, which leverages the labeled source data and another domain
without supervision. The average precision (AP, %) is reported. The backbone is ResNet-101 for fair comparison. “WS Aug.” indicates
weak-strong augmentation.

Method PASCAL VOC (sup.) & Watercolor2k (unsup.) → Clipart1k PASCAL VOC (sup.) & Clipart1k (unsup.) →Watercolor2k

bicycle bird car cat dog person mAP bicycle bird car cat dog person mAP

AT 78.6 30.1 40.3 10.9 32.6 72.8 44.5 (+1.1) 91.2 55.2 60.4 37.0 39.6 69.8 56.7 (-6.1)
MT [40] + WS Aug. 68.2 25.6 35.2 2.9 25.5 64.5 37.4 (-6.0) 82.1 49.0 55.6 29.5 25.4 66.2 50.4 (-0.2)
MT [40] + Ldis 73.2 29.7 38.8 9.0 28.6 69.2 41.3 (-2.1) 84.3 51.2 58.7 34.2 24.3 62.4 51.1 (+0.5)
MT [40] 64.8 23.4 34.6 3.1 22.0 61.4 34.2 (-9.2) 80.5 43.4 53.0 27.6 19.5 55.6 47.6 (-3.0)

Oracle 47.6 39.1 51.4 20.1 38.4 69.7 43.4 51.8 49.7 42.5 38.7 52.1 68.6 50.6

We compare our method with several state-of-the-art ap-
proaches and report the performance gap between the or-
acle model (fully supervision) and each of the competitors.
We observed that, first, our model achieves state-of-the-
art performance at 49.3% mAP and outperforms the recent
competitor UMT by 5.2% and other methods by a large
margin. We note that, UMT using Mean Teacher already
had significant performance improvement with augmented-
styled training images. Yet, due to the inherent issue with
the quality of pseudo labels in Mean Teacher on target do-
main, their model may also suffer large domain shift be-
tween real and artistic images when generate pseudo la-
bels. On the other hand, our model mitigates the domain
gap and achieve largely improved performance. Second,
our model is the only one exceeding the oracle model on
Clipart1k dataset, showing that the mutual learning adopted
form Mean Teacher plus adversarial learning is capable to
bridge the domain gap. Similar observations can be found
on experiments conducted on Watercolor2k.

Adverse Weather Adaptation. The results of the setting:
normal weather to adverse weather adaptation is presented
in Table 3. We also report the performance gap between the
oracle model (fully supervision) and each of the competi-
tors. When comparing to the state of the arts, we can see
that, first, our model also outperforms all of the state-of-the-
art approaches by a large margin (more than 9%). Among
these methods, MTOR [1] and UMT [8] are the two meth-
ods adopting Mean Teacher in their model. However, due
to the problems discussed earlier regarding the augmenta-
tion in Teacher model and bias to source domain, both of
their model suffer from generating noisy labels and lead to
performance gap between our AT. Second, the performance
of our model is able to exceed the oracle model by a large
margin, which indicates that training the images with only
the annotations from clear weather (high visibility) are suf-
ficient to have satisfactory performance of the object detec-
tion on the adverse foggy weather (low visibility).

4.5. Experiments on domain generalization

As we observe that our AT outperforms all of the Oracle
models on the three benchmark domain adaptation datasets,

Table 5. The ablation studies on our AT. We report mean aver-
age precision (mAP, %) on each of the experimental settings while
“WS Aug.” indicates weak-strong augmentation.

Source:
Target:

PASCAL VOC
Clipart1k

PASCAL VOC
Watercolor2k

Cityscapes
Foggy Cityscapes

AT 49.3 59.9 50.9
AT w/o Ldis 40.6 (-8.7) 55.5 (-4.4) 48.7 (-2.2)
AT w/o WS Aug. 45.3 (-4.0) 55.1 (-4.8) 45.9 (-5.0)
AT w/o Lunsup & EMA 31.6 (-17.7) 50.2 (-9.7) 36.0 (-14.9)

we are more interested in the ability of generalization of
our model on the unseen domains. We define such prob-
lem as domain generalization: Instead of focusing on the
model’s accuracy on the target domain, we further general-
ize the model to a completely unseen domain and evaluate
it’s generalization capability. In this section, we further con-
duct two experimental settings and compare our AT with the
baseline model MT [40]:

• Train: PASCAL VOC (supervised) & Watercolor2k
(unsupervised)→ Test: Clipart1k

• Train: PASCAL VOC (supervised) & Clipart1k (unsu-
pervised)→ Test: Watercolor2k

In each of the setting, we train the model on the source real
dataset with labels and another artistic dataset without la-
bels. We then inference the model on the target dataset
which is unseen during the training. We only train on the
overlapped classes (6 classes) between the Clipart1k and
Watercolor2k, and presented the results in the Table 4. From
the table, we can observe that our model achieves supe-
rior performance comparing with the Oracle model and MT.
This shows that our model is able to generalize to unseen
domain without observing any target images. In addition,
each of the ablation studies on either adversarial loss or aug-
mentation on MT also show the importance of their roles in
our proposed AT.

4.6. Ablation studies

We further conduct ablation studies on each of impor-
tant components in Table 5 and also present the qualitative
studies of pseudo labels in Figure 3.
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(a) Mean Teacher (MT) (d) AT (Ours)(b) AT w/o ℒ𝒅𝒊𝒔 (c) AT w/o Aug.

Figure 3. Qualitative ablation studies on pseudo labels generated on the image from the training set of Clipart1k. This figure show
the importance of adversarial loss Ldis and weak-strong augmentation on pseudo labeling. Note that the thresholding is not applied here.
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Figure 4. Mutual Learning curve on Clipart1k dataset. We
run 5 identical experiments for each settings and plot the error
bound accordingly in the figure. The results show that increas-
ing weights of λdis can achieve improved performance and stable
learning curve.

Adversarial loss Ldis. To further analyze the importance
of adversarial learning in our Adaptive Teacher, we exclude
the loss Ldis in discriminator and report the performance on
three experimental settings in Table 5. It can be observed
that the 8.7% and 4.4% performance drop appears on Cli-
part1k and Watercolor2k in the scenario with larger domain
gap (real to artistic adaptation). Yet, in another scenario
with smaller domain gap (weather adaptation), only 2.2%
performance drop is observed. We can also observe that
Ldis is able to largely reduce the ratio of false positives in
pseudo labels generated by the Teacher model in Figure 3.
On the other hand, we also analyze the weight λdis of the
adversarial loss Ldis in in Figure 4. Some phenomenons
can be observed in this figure in two folds. We can see that,
first, increasing weights can lead to improved performance,
which supports the effectiveness of the discriminator in our
model. Second, without applying the adversarial loss, the
performance of the model keeps dropping due to the error

propagation coming from the noisy pseudo labels.

Augmentation pipeline. We also benchmarked the effec-
tiveness of weak-strong (WS) augmentation in our Adap-
tive Teacher, and around 4% to 5% performance drop is ob-
served when it is excluded (Table 5). This demonstrates
that the simple modification on the training pipeline (weak
and strong augmentation for Teacher and Student, respec-
tively) is vital. We can also observe that such augmenta-
tion pipeline is able to reduce the ratio of false positives in
pseudo labels generated by the Teacher model in Figure 3.

Lunsup & EMA. Similarly, we ablated the importance of
utilizing Mean Teacher in Table 5 as previous works (i.e.,
excluding the mutual learning and the Teacher model from
our model) and report the performance of the Student model
for cross-domain training with only strong augmentation
and adversarial loss Ldis. We can see that there is a signif-
icant performance drop, thus the performance gain mainly
came from the mutual learning with pseudo labels on target
domain.

5. Conclusion
In this paper, we proposed an novel framework to ad-

dress the task of cross-domain object detection. With the
introduced target-domain Teacher model and cross-domain
Student model, the framework is able to generate correct
pseudo labels on the target domain via mutual learning. Our
design of training pipeline with proper augmentation strate-
gies and adversarial learning also resolve the bias toward
source domain in both Teacher and Student model. The ex-
periments on two benchmarks confirmed the effectiveness
and superiority of our model for cross-domain object de-
tection. The extensive experiments of ablation studies also
demonstrated our proposed model trained without seeing
both labels nor images on target domain outperform the Or-
acle model which is trained with fully supervision.
Acknowledgement: We thank Meta (Facebook) for the
sponsorship and the computing resources.
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