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Abstract

Humans are able to recognize structured relations in ob-
servation, allowing us to decompose complex scenes into
simpler parts and abstract the visual world in multiple lev-
els. However, such hierarchical reasoning ability of human
perception remains largely unexplored in current literature
of semantic segmentation. Existing work is often aware of
flatten labels and predicts target classes exclusively for each
pixel. In this paper, we instead address hierarchical seman-
tic segmentation (HSS), which aims at structured, pixel-wise
description of visual observation in terms of a class hierar-
chy. We devise HSSN, a general HSS framework that tackles
two critical issues in this task: i) how to efficiently adapt ex-
isting hierarchy-agnostic segmentation networks to the HSS
setting, and ii) how to leverage the hierarchy information to
regularize HSS network learning. To address i), HSSN dire-
ctly casts HSS as a pixel-wise multi-label classification task,
only bringing minimal architecture change to current seg-
mentation models. To solve ii), HSSN first explores inherent
properties of the hierarchy as a training objective, which en-
forces segmentation predictions to obey the hierarchy stru-
cture. Further, with hierarchy-induced margin constraints,
HSSN reshapes the pixel embedding space, so as to generate
well-structured pixel representations and improve segmen-
tation eventually. We conduct experiments on four seman-
tic segmentation datasets (i.e., Mapillary Vistas 2.0, City-
scapes, LIP, and PASCAL-Person-Part), with different class
hierarchies, segmentation network architectures and back-
bones, showing the generalization and superiority of HSSN.

1. Introduction
Semantic segmentation, which aims to identify semantic

categories for pixel observations, is viewed as a vital step to-
wards intelligent scene understanding [82]. The vast major-
ity of modern segmentation models simply assume that all
the target classes are disjoint and should be distinguished ex-
clusively during pixel-wise prediction. This fails to capture
�Work done during an internship at Baidu Research.
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Figure 1. Hierarchical semantic segmentation explains visual
scenes with multi-level abstraction (left), by considering structured
class relations (right). The class taxonomy is borrowed from [58].

the structured nature of the visual world [53]: complex scenes
arise from the composition of simpler entities. Walking city,
vehicles and pedestrian fill our view (Fig. 1). After focusing
on the vehicles, we identify cars, buses, and trucks, which
consist of more fine-grained parts like wheel and window.
On the other hand, structured understanding of our world in
terms of relations and hierarchies is a central ability in hu-
man cognition [68,95]. We group chair and bed as furniture,
while cat and dog as pet. We understand this world over
multiple levels of abstraction, in order to maintain stable,
coherent percepts in the face of complex visual inputs [37].
The ubiquity of hierarchical decomposition serves as a core
motivation behind many structured machine learning mod-
els [20, 85], which have shown wide success in document
classification [39,55] and protein function prediction [8,75].

In semantic segmentation literature, surprisingly little is
understood about how to accommodate pixel recognition
into semantic hierarchies. [43, 45, 56, 80, 81, 83, 89] are rare
exceptions that exploit class hierarchies in segmentation
networks. Nevertheless, they either focus specifically on
the structured organization of human body parts [80,81,83],
or introduce hierarchy-induced architectural changes to the
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segmentation network [43, 45, 56, 89], both hindering gen-
erality. More essentially, these methods are more aware of
making efficient information propagation over the hierar-
chies (e.g., graph message passing [43, 83, 109], multi-task
learning [89]), without imposing tree-structured label de-
pendencies/constraints into prediction and learning.

To mimic human hierarchical visual perception, we pro-
pose a novel approach for hierarchical semantic segmen-
tation (HSS). In HSS, classes are not arranged in a “flat”
structure, but organized as a tree-shaped hierarchy. Thus
each pixel observation is associated to a root-to-leaf path of
the class hierarchy (e.g., human! rider! bicyclist),
capturing general-to-specific relations between classes. Our
algorithm, called HSSN, addresses two core issues in HSS,
yet untouched before. First, instead of previous structured
segmentation models focusing on sophisticated network de-
sign, HSSN directly formulates HSS as a pixel-wise multi-
label classification task. This allows to easily adapt exist-
ing segmentation models to the HSS setting, densely link-
ing the fields of classic hierarchy-agnostic segmentation and
HSS together. Second, HSSN makes full use of the class
hierarchy in HSS network learning. To make pixel pre-
dictions coherent with the class hierarchy, HSSN explores
two hierarchy constraints, i.e., i) a pixel sample belong-
ing to a given class must also belong to all its ancestors
in the hierarchy, ii) a pixel sample not belonging to a given
class must also not belong to all its descendants, as opti-
mization criterion. This leads to a pixel-wise hierarchical
segmentation learning strategy, which enforces segmenta-
tion predictions to obey the hierarchy structure during train-
ing. HSSN further encodes the structured knowledge in-
troduced by the class hierarchy into the pixel embedding
space. This leads to a pixel-wise hierarchical representa-
tion learning strategy, which inspires tree-induced margin
separation for embedding space reshaping. As the hierarchy
characterizes the underlying relationships between classes,
HSSN is able to enrich pixel embeddings by pulling seman-
tically similar pixels (e.g., bicycle and motorcycle)
closer, while pushing semantically dissimilar pixels (e.g.,
pedestrian and lamppost) farther away. This leads to
more efficient learning by discovering and reusing common
patterns [27], facilitating hierarchical segmentation eventu-
ally. This also allows our model to take different levels of
mistakes into consideration. This is essential for some crit-
ical systems [7]. Take autonomous driving as an example:
mistaking a bicycle for a motorcycle is less of a prob-
lem than confusing a pedestrian with a lamppost.

This work represents a solid step towards HSS. Our ap-
proach is elegant and principle; it is readily incorporated
to arbitrary previous hierarchy-agnostic segmentation net-
works, with only marginal modification on the segmenta-
tion head. We train and test HSSN over four public bench-
marks (i.e., Mapillary Vistas 2.0 [58], Cityscapes [18], LIP

[44], PASCAL-Person-Part [87]), with different class hier-
archies for urban street scene parsing and human semantic
parsing. Extensive experimental results with different seg-
mentation network architectures (i.e., DeepLabV3+ [13],
OCRNet [98], MaskFormer [16]) and backbones (i.e.,
ResNet-101 [34], HRNetV2-W48 [79], Swin-Small [49])
verify the generalization and effectiveness of HSSN.

2. Related Work
(Hierarchy-Agnostic) Semantic Segmentation. Semantic
segmentation is to partition an image into regions with dif-
ferent semantic categories, which can be viewed as a pixel-
wise classification task. Typical solutions for semantic seg-
mentation follow a hierarchy-agnostic setting, where each
pixel is assigned to a single label from a set of disjoint se-
mantic categories. In 2015, Long et al. proposed fully con-
volutional networks (FCNs) [50], which are advantageous
in end-to-end dense representation modeling, laying the
foundation for modern semantic segmentation algorithms.
As FCNs suffer from limited visual context with local re-
ceptive fields, how to effectively capture cross-pixel rela-
tions became the main focus of follow-up studies. Scholars
devised many promising solutions, by enlarging receptive
fields [10, 13, 19, 93, 97, 105], building image pyramids
[33,46], exploring encoder-decoder architectures [3,13,62],
utilizing boundary clues [23,41,99], or incorporating neural
attention [25, 32, 35, 40, 42, 73, 84, 106, 108, 113]. Recently,
a new family of semantic segmentation models [16, 69, 90,
107], built upon the full attention (Transformer [76]) archi-
tecture, yielded impressive performance, as it overcomes
the issues in long-range cross-pixel dependency modeling.

Though impressive, existing semantic segmentation so-
lutions rarely explore the structures between semantic con-
cepts. We take a further step towards class relation aware
semantic segmentation, which better reflects the structured
nature of our visual world, and echoes the hierarchical rea-
soning mode of human visual perception. An appealing ad-
vantage of our hierarchical solution is that, it can adapt ex-
isting class hierarchy-agnostic segmentation architectures,
no matter FCN-based or Transformer-like, to the structured
setting, in a simple and cheap manner.
Scene Parsing/Hierarchical Semantic Segmentation. Our
work is, at a high level, relevant to classical image parsing
algorithms [31, 70, 71, 74, 96]. Image parsing has been ex-
tensively studied in the pre-deep learning era, dating back
to [74]. Image parsing seeks a parse graph that explains vi-
sual observation following a “divide-and-conquer”strategy:
a football game image is first parsed into person, sports
field, and spectator, which are further decomposed, e.g.,
person consists of face and body patterns. In the deep learn-
ing era, human parsing, as a sub-field of scene parsing, be-
came active. Some recent human parsers explored human
part relations, based on the human hierarchy [36, 56, 80, 83,
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110, 111]. Only very few efforts [43, 45, 89, 104] are con-
cerned with utilizing structured knowledge to aid the train-
ing of general-purpose semantic segmentation networks.

To accommodate the semantic structures imposed by the
hierarchy, previous methods tend to greatly change the seg-
mentation network, through the use of different graph neu-
ral networks. They hence put all emphasis on how to aggre-
gate information over the structured network. Beyond their
specific solutions, we propose a general framework for both
HSS network design and training. This leads to an elegant
view of how to adapt typical segmentation networks to the
class hierarchy with only minimal architecture change, and
how to involve the hierarchy for regularizing network train-
ing, which are core problems yet ignored by prior methods.
Hierarchical Classification. Considering class hierarchies
when designing classifiers is a common issue across var-
ious machine learning application domains [67], such as
text categorization [63], functional genomics [4], and im-
age classification [6, 21]. Depending on whether each dat-
apoint can be assigned a single path or multiple paths in
the hierarchy, hierarchy-aware classification can be cate-
gorized into hierarchical classification [20, 39, 55, 72] and,
a more general setting, hierarchical multi-label classifica-
tion [8, 29, 85]. In the field of computer vision, exiting ef-
forts for class taxonomy aware image classification can be
broadly divided into three groups [7]: i) Label-embedding
methods [2, 6, 24, 88] that embed class labels to vectors
whose relative locations represent semantic relationships;
ii) Hierarchical losses [7,9,21,78,103] which are designed
to inspire the coherence between the prediction and class hi-
erarchy; and iii) Hierarchical architectures [1, 91, 112, 114]
that adapt the classifier architecture to the class hierarchy.

Drawing inspiration from these past efforts, we advo-
cate for holistic visual scene understanding through pixel-
level hierarchical reasoning. We leverage tree-structured
class dependencies as supervision signal to guide hierarchy-
coherent pixel prediction and structured pixel embedding.
Hierarchical Embedding. The objective of an embedding
algorithm is to organize data samples (e.g., words, images)
into an high-dimensional space where their distance reflects
their semantic similarity [59]. As semantics are inherently
structured, it is necessary to integrate different levels of
concept abstraction into representation embedding. Some
algorithms directly parameterize the hierarchical embed-
ding space into hierarchical models [14, 57, 60, 78, 86, 92].
While straightforward, they are computationally intensive
and have to adjust the network architecture when handling
different hierarchies. Some alternatives [5, 28, 38, 94] de-
sign hierarchy-aware metric learning objectives [26, 59, 65]
to directly shape the embedding space.

With a similar spirit, in this work, we adopt semantic
hierarchy-induced margin separation to reinforce pixel rep-
resentation learning and make prediction less ambiguous.

3. Our Approach
Our goal is to accommodate standard semantic segmen-

tation networks to the HSS problem and then exploit struc-
tured class relations in order to generate hierarchy-coherent
representations and predictions, and improve performance.
Given this goal, we develop HIERARCHICAL SEMANTIC
SEGMENTATION NETWORKS (HSSN), a general framework
for HSS network design (x3.1) and training (x3.2).

3.1. Hierarchical Semantic Segmentation Networks
Rather than typical segmentation methods treating se-

mantic classes as disjoint labels, in the HSS setting, the un-
derlying dependencies between classes are considered and
formalized in a form of a tree-structured hierarchy, T =
(V; E). Each node v2 V denotes a semantic class/concept,
while each edge (u; v) 2E encodes the decomposition rela-
tionship between two classes, u; v 2V , i.e., parent node v is
a more general, superclass of child node u, such as (u; v)=
(bicycle; vehicle). We assume (v; v) 2 E, thus every
class is both a subclass and superclass of itself. The root
node of T , i.e., vr , denotes the most general class. The leaf
nodes, i.e., V� , refer to the most fine-grained classes, such
as V� = f tree; bicyclist; � � � g in urban street scene
parsing, and V� = f head; leg; � � � g in human parsing.

For a typical hierarchy-agnostic segmentation network,
an encoder f ENC is first adopted to map an image I into a
dense feature tensor I = f ENC(I ) 2 RH � W � C , where i 2 I is
the embedding of pixel i 2 I . Then a segmentation head
f SEG is used to get a score map Y = softmax(f SEG(I )) 2
[0; 1]H � W �jV � j w.r.t. the leaf node set V� . Given the score
vector y = [ yv � ]v � 2V � 2 [0; 1]jV � j and groundtruth leaf label
v̂� 2V � for pixel i , the categorical cross-entropy loss is opti-
mized:

L CCE(y )= � log(yv̂ � ): (1)

During inference, pixel i is associated to a single leaf node:
v�

� =arg max v �
(yv � ).

To accommodate classic segmentation networks to the
HSS setting with minimum change, our HSSN first formu-
lates HSS as a pixel-wise multi-label classification task, i.e.,
map pixels with their corresponding classes in the hierar-
chy as a whole. Specifically, only the segmentation head
f SEG is modified to predict an augmented score map S =
sigmoid(f SEG(I )) 2 [0; 1]H � W �jVj w.r.t. the entire class
hierarchy V. Given the score vector s = [ sv ]v2V 2 [0; 1]jVj

and groundtruth binary label set l̂ = [ l̂v ]v2V 2 f 0; 1gjVj for
pixel i , the binary cross-entropy loss is optimized:

L BCE(s) =
P

v2V � l̂v log(sv ) � (1� l̂v )log(1� sv ): (2)

During inference, each pixel i is associated with the top-
scoring root-to-leaf path in the class hierarchy T :

f v�
1 ; � � � ; v�

jPj g =arg max
P�T

P
vp 2P svp ; (3)
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Figure 2. Hierarchy constraints used in our pixel-wise hierarchi-
cal segmentation learning (x3.2.1). (a) In the class hierarchy, the
filled circles represent the positive classes, while empty circles in-
dicate the negative classes. The positive and negative T -properties
are highlighted in the red and blue regions, respectively. (b) The
original score vector s predicted for the class hierarchy. The pre-
dictions which violate the positive and negative T -constraints are
highlighted in the red and blue rectangles, respectively. (c) The
updated score vector p, which satisfies the T -constraints. With
L TM, the penalties for the wrong predictions, i.e., ‘0.6’ and ‘0.3’,
are increased twice, compared with applying L BCE on (b).

where P = f v1; � � � ; vjPj g � T denotes a feasible root-to-
leaf path of T , i.e., v12 V � , vjPj = vr , and 8vp; vp+1 2 P )
(vp; vp+1 ) 2 E. Although Eq. 3 ensures the coherence be-
tween pixel-wise prediction and the class hierarchy during
the inference stage, there is no any class relation informa-
tion used for segmentation network training, as the binary
cross-entropy loss in Eq. 2 is computed over each class in-
dependently. To alleviate this issue, we propose a hierarchy-
aware segmentation learning scheme (x3.2), which incorpo-
rates the semantic structures into the training of HSSN.

3.2. Hierarchy-Aware Segmentation Learning
Our hierarchy-aware segmentation learning scheme in-

cludes two major components: i) a pixel-wise hierarchical
segmentation learning strategy (x3.2.1) which supervises
the segmentation prediction S in a hierarchy-coherent man-
ner, and ii) a pixel-wise hierarchical representation learn-
ing strategy (x3.2.2) that makes hierarchy-induced margin
separation for reshaping the pixel embedding space f ENC.

3.2.1 Pixel-Wise Hierarchical Segmentation Learning
For each pixel, the assigned labels are hierarchically con-
sistent if they satisfy the following two properties (Fig. 2):

Definition 3.2.1 (Positive T -Property). For each pixel, if a
class is labeled positive, all its ancestor nodes (i.e., super-
classes) in T should be labeled positive.

Definition 3.2.2 (Negative T -Property). For each pixel, if a
class is labeled negative, all its child nodes (i.e., subclasses)
in T should be labeled negative.

The first property, also known as T -property [8], was ex-
plored in some hierarchical classification work [29, 77, 85],
while the second property is ignored. Actually, these two
properties are complementary and crucial for consistent hi-
erarchical prediction. Specifically, to incorporate these two
label consistency properties into the supervision of HSSN,
we further derive the following two hierarchy constraints
w.r.t. per-pixel prediction, i.e., s =[ sv ]v2V 2 [0; 1]jVj :

Fine Coarse

mIoU1 : 51.42%

mIoU1 : 72.83%

mIoU2 : 69.15%

mIoU2 : 85.61%

mIoU3 : 78.54%

mIoU3 : 92.37%

Figure 3. Effect of L BCE in Eq. 2 (top) vs L FTM in Eq. 6 (bottom).

Definition 3.2.3 (Positive T -Constraint). For each pixel, if
v class is labeled positive, and u is an ancestor node (i.e.,
superclass) of v, it should hold that sv � su .
Definition 3.2.4 (Negative T -Constraint). For each pixel,
if v class is labeled negative, and u is a child node (i.e.,
subclass) of v, it should hold that 1 � sv � 1 � su .

With the positive T -constraint (cf. Def. 3.2.3), the pos-
itive T -property (cf. Def. 3.2.1) can be always guaranteed.
Similar conclusion is also hold for the negative T -constraint
(cf. Def. 3.2.4) and negative T -property (cf. Def. 3.2.2).
Tree-Min Loss. To ensure the satisfaction of the two hi-
erarchy constraints, we estimate a hierarchy-coherent score
map P 2 [0; 1]H � W �jVj from S . For pixel i , the updated
score vector p =[ pv ]v2V 2 [0; 1]jVj in P is given as:

8
<

:

pv = min
u2Av

(su ) if l̂v =1 ;

1� pv = min
u2Cv

(1 � su )=1 � max
u2Cv

(su ) if l̂v =0 ;
(4)

where A v and Cv denote the superclass and subclass sets of
v in T respectively, and s =[ sv ]v2V 2S refers to the original
score vector of pixel i . Note that, according to our definition
(v; v) 2 E (cf. x3.1), we have v2A v and v2Cv . With Eq. 4,
the pixel-wise prediction p is guaranteed to always satisfy
the hierarchy constraints (cf. Defs. 3.2.3 and 3.2.4).

We thus build a hierarchical segmentation training ob-
jective, i.e., tree-min loss, to replace L BCE(s) in Eq. 2:

L TM(p) =
P

v2V
� l̂v log(pv ) � (1 � l̂v )log(1 � pv );

=
P

v2V
� l̂v log( min

u2Av
(su )) �

(1 � l̂v )log(1 � max
u2Cv

(su )) :

(5)

Compared with L BCE(s), L TM(p) is more favored as the
structured score distribution p is constructed by strictly fol-
lowing the hierarchy constraints (cf. Eq. 4), and hence the
violation of the hierarchy properties (i.e., any undesired pre-
diction of p) can be explicitly penalized (see Fig.2(c)).
Focal Tree-Min Loss. Inspired by the focal loss [47], we
add a modulating factor to the tree-min loss (cf. Eq. 5), so as
to reduce the relative loss for well-classified pixel samples
and focus on those difficult ones:

L FTM(p)=
P

v2V
� l̂v (1 � pv)  log(pv) � (1 � l̂v)(pv)  log(1� pv);

=
P

v2V
� l̂v (1 � min

u2Av
(su ))  log( min

u2Av
(su )) �

(1 � l̂v )(max
u2Cv

(su ))  log(1� max
u2Cv

(su )) ;

(6)
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where  � 0 is a tunable focusing parameter controling the
rate at which easy classes are down-weighted. When  =0 ,
L FTM(p) is equivalent to L TM(p). Fig. 3 shows representa-
tive visual effects of L FTM against L BCE. We see that L FTM

yields more precise and coherent results. In x4.4, we pro-
vide quantitative comparison results for L BCE(s) (cf. Eq. 2),
L TM(p) (cf. Eq. 5), and L FTM(p) (cf. Eq. 6).

3.2.2 Pixel-Wise Hierarchical Representation Learning
Through mapping pixels with their corresponding semantic
classes in the hierarchy T as a whole (cf. x3.1), we exploit
intrinsic properties of T (cf. Defs. 3.2.1-3.2.2) as constraints
(cf. Defs. 3.2.3-3.2.4) to encourage hierarchy-coherent seg-
mentation prediction S (cf. Eqs. 5-6). As the class hierar-
chy provides rich semantic relations among categories over
different levels of concept abstraction, next we will exploit
such structured knowledge to reshape the pixel embedding
space f ENC, so as to generate more efficient pixel represen-
tations and improve final segmentation performance.

With this purpose, we put forward a margin based pixel-
wise hierarchical representation learning strategy, where the
learned pixel embeddings are well separated with structured
margins imposed by the class hierarchy T . Specifically, for
any pair of labels u; v 2 V , let  (u; v) denote their dis-
tance in the tree T . That is,  (u; v) is defined as the length
(in edges) of the shortest path between u and v in T . The
distance function  (�; �) is in fact a semantic similarity met-
ric defined over T [20]; it is a non-negative and symmetric
function,  (v; v) = 0 ,  (u; v) =  (v; u), and the triangle
inequality always holds with equality.

In HSSN, the structured margin constraints are defined
by the tree distance  (�; �), leading to a tree-triplet loss.
This loss is optimized on a set of pixel triplets f i; i + ; i � g,
where i; i + ; i � are anchor, positive and negative pixel sam-
ples, respectively. f i; i + ; i � g are sampled from the whole
training batch, such that  (v̂� ; v̂+

� ) <  (v̂� ; v̂�
� ), where v̂� ,

v̂+
� ; v̂�

� 2 V � are the groundtruth leaf labels of i , i + , and i � ,
respectively. As such, in our tree-triplet loss, the positive
samples are more semantically similar to the anchor pixels
(i.e., closer in T ), compared with the negative pixels. Note
that this is different from the classic, hierarchy-agnostic
triplet loss [66], where the anchor and positive samples are
from the same class, while the anchor and negative samples
are from different classes, i.e., v̂� = v̂+

� , and v̂� 6= v̂�
� . With

a valid training triplet f i; i + ; i � g, our loss is given as:

L TT(i ; i + ; i � ) = max fhi ; i + i � h i ; i � i + m; 0g; (7)

where i ; i + ; i � 2 RC are the embeddings of i , i + , and i � ,
respectively, obtained from the encoder f ENC, h�; �i is a dis-
tance function to measure the similarity of two inputs; we
use the cosine distance, i.e., hx ; y i = 1

2 (1� x �y
kx kk y k ) 2 [0; 1].

The margin m forces the gap of hi ; i � i and hi ; i + i larger
than m. When the gap is larger than m, the loss value would
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Figure 4. Visualization of the hierarchical embedding space
f ENC learned on Mapillary Vistas 2.0 [58] (x3.2.2). The differ-
ent colors correspond to different categories. It can be seen that,
with L TT, f ENC (middle) nicely embraces the hierarchical semantic
structures (right), in comparison with the one without L TT (left).

be zero. The separation margin m is determined as:

m = m" + 0 :5m�

m� = (  (v̂� ; v̂�
� ) �  (v̂� ; v̂+

� ))=2D;
(8)

where m" = 0 :1 is set as a constant for the tolerance of
the intra-class variance, i.e., maximum intra-class distance,
m� 2 [0; 1] is a dynamic violate margin, which is computed
according to the semantic relationships among i , i + , and i �

over the class hierarchy T , and D refers to the height of T .
Eq. 7 encourages f ENC as a hierarchically-structured em-

bedding space (Fig. 4): pixels with similar semantics (i.e.,
nearby in T ) are pushed closer than those with dissimi-
lar semantics (i.e., faraway in T ), guided by the hierarchy-
induced margin m. Related experiments are given in x4.4.

3.3. Implementation Detail
Network Architecture. HSSN is a general HSS framework;
it is readily applied to any hierarchy-agnostic segmentation
models. i) The segmentation encoder f ENC (x3.1) maps each
input image I into a dense feature I 2 RH � W � C , and can
be implemented as any backbone networks. In x4, we ex-
periment with two CNN-based (i.e., ResNet-101 [34] and
HRNetV2-W48 [79]) and a Transformer-based (i.e., Swin-
Transformer [49]) backbones. ii) The segmentation head
f SEG (x3.1) projects I into a structured score map S 2
RH � W �jVj for all the classes in V. Segmentation heads used
in recent segmentation models (i.e., DeepLabV3+ [13],
OCRNet [98], MaskFormer [16]) are used and modified.
Training Objective. HSSN is end-to-end trained by min-
imizing the combinatorial loss of our focal tree-min loss
(L FTM in Eq. 6) and tree-triplet loss (L TT in Eq. 7): L FTM +
� L TT, where the coefficient � 2 [0; 0:5] is scheduled follow-
ing a cosine annealing policy[51]. The focusing parameter
 in L FTM is set as 2. Furthermore, following the common
practice in metric learning, a projection function f PROJ is
used in L TT. It maps each pixel embedding i into a 256-d
vector. f PROJ consists of two 1� 1 convolutional layers and
one ReLU between them, and is discarded after training,
causing no extra computational cost in deployment.
Inference. For each pixel, the label assignment follows Eq. 3.
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Figure 5. Visual results (x4.3) on Mapillary Vistas 2:0[58] val (left) and Cityscapes[18] val (right). Top: MaskFormer, Bottom: HSSN.

4. Experiment

4.1. Experimental Setup

Datasets. We conduct experiments on two popular urban
street scene parsing datasets [18, 58] and two human body
parsing datasets [44, 87]. The corresponding class hierar-
chies are either the officially provided ones [18, 58] or gen-
erated by following the conventions [44, 87].

� Mapillary Vistas 2.0 [58] is an urban egocentric street-
view dataset with high-resolution images. It contains
18;000, 2;000 and 5;000 images for train, val and
test, respectively. It provides annotations for 144 se-
mantic concepts, which are organized in a three-level hi-
erarchy, covering 4=16=124concepts, respectively.

� Cityscapes [18] contains 5;000elaborately annotated ur-
ban scene images, which are split into 2;975=500=1;524
for train/val/test. It is associated with 19 fine-
grained concepts, which are grouped into 6 super-classes.

� PASCAL-Person-Part [87] has 1;716 and 1;817 im-
ages for train and test, with precise annotations
for 6 human parts. Following [80, 83], we group 20
fine-grained parts (e.g., head, left-arm) into two su-
perclasses upper-body and lower-body, which are
further combined ito full-body.

� LIP [44] includes 50;462single-person images gathered
from real-world scenarios, with 30;462=10;000=10;000
for train=val=test splits. The hierarchy is similar
to the one in PASCAL-Person-Part, but the leaf layer has
19 fine-grained semantic parts.

Training. For fair comparison, we follow [13, 80, 102, 105]
to set the training hyper-parameters. Specifically, for CNN-
based models, we use SGD as the optimizer with base learn-
ing rate 1e-2, momentum 0:9 and weight decay 1e-4. For
Transformer-based models, we use AdamW [52] with base
learning rate 6e-5 and weight decay 0:01. The learning rate
is scheduled by the polynomial annealing policy [11]. All
backbones are initialized using the weights pre-trained on
ImageNet-1K [22], while the remaining layers are randomly
initialized. During training, we use standard data augmenta-
tion techniques, i.e., horizontal flipping and random scaling
with a ratio between 0:5 and 2:0. We train 240K and 80K it-
erations for Mapillary Vistas 2:0 and Cityscapes, with batch
size 8 and crop size 512� 1024. For PASCAL-Person-Part

Method Backbone mIoU3" mIoU2" mIoU1"
DeepLabV3+ [13] [ECCV18] ResNet-101 81.86 68.17 37.43

Seamless [61] [CVPR19] ResNet-101 - - 38.17
OCRNet [98] [ECCV20] HRNet-W48 83.19 69.32 38.26

HMSANet [83] [ArXiv19] HRNet-W48 84.63 70.71 39.53
MaskFormer [16] [NeurIPS21] ResNet-101 84.56 70.82 39.60
MaskFormer [16] [NeurIPS21] Swin-Small 87.93 73.88 42.16

DeepLabV3+ ResNet-101 85.27 71.40 40.16
HSSN OCRNet HRNet-W48 86.46 72.34 41.13

MaskFormer Swin-Small 90.02 75.81 43.97

Table 1. Hierarchical semantic segmentation results (x4.2) on
the val set of Mapillary Vistas 2:0 [58].

Method Backbone mIoU2" mIoU1"
DeepLabV2 [10] [CVPR17] ResNet-101 - 70.22

PSPNet [105] [CVPR17] ResNet-101 - 80.91
PSANet [106] [ECCV18] ResNet-101 - 80.96

PAN [40] [ArXiv18] ResNet-101 - 81.12
DeepLabV3+ [13] [ECCV18] ResNet-101 92.16 82.08

DANet [25] [CVPR19] ResNet-101 - 81.52
Acfnet [100] [ICCV19] ResNet-101 - 81.60
CCNet [35] [ICCV19] ResNet-101 - 81.08
HANet [17] [CVPR20] ResNet-101 - 81.82
HRNet [79] [TPAMI20] HRNet-W48 92.12 81.96

OCRNet [98] [ECCV20] HRNet-W48 92.57 82.33
MaskFormer [16] [NeurIPS21] Swin-Small 92.96 82.57

DeepLabV3+ ResNet-101 93.31 83.02
HSSN OCRNet HRNet-W48 93.92 83.37

MaskFormer Swin-Small 94.39 83.74

Table 2. Hierarchical semantic segmentation results (x4.2) on
the val set of Cityscapes [18].

and LIP, we use batch size 16 and crop size 480� 480, and
train models for 80K and 160K iterations, respectively.
Testing. The inference follows Eq. 3. As in [16, 35, 36, 80,
83,98], we report the segmentation scores at multiple scales
(f 0:5; 0:75; 1:0; 1:25; 1:5; 1:75g) with horizontal flipping.
Evaluation Metric. The mean intersection-over-union
(mIoU) is adopted for evaluation. Particularly, we report
the average score, i.e., mIoUl , for classes in each hierar-
chy level l independently. For reference, we also report the
scores of each level for hierarchy-agnostic methods. The
results of each non-leaf layer are obtained by merging the
segmentation predictions of its subclasses together.

4.2. Quantitative Results

Mapillary Vistas 2.0 [58]. Table 1 presents comparisons
of our HSSN against several top-leading semantic segmen-



Method Head Torso U-Arm L-Arm U-Leg L-Leg U-Body L-Body F-Body B.G. mIoU3" mIoU2" mIoU1"
DeepLabV3+ [13] [ECCV18] 87.02 72.02 60.37 57.36 53.54 48.52 90.07 65.88 93.02 96.07 94.55 84.01 67.84

SPGNet [15] [ICCV19] 87.67 71.41 61.69 60.35 52.62 48.80 - - - 95.98 - - 68.36
PGN [30] [CVPR19] 90.89 75.12 55.83 64.61 55.42 41.57 - - - 95.33 - - 68.40

CNIF [80] [ICCV19] 88.02 72.91 64.31 63.52 55.61 54.96 91.82 66.56 94.33 96.02 95.18 84.80 70.76
SemaTree [36] [ECCV20] 89.15 74.76 63.90 63.95 57.53 54.62 92.36 67.13 95.11 96.84 95.98 85.44 71.59

HHP [83] [CVPR20] 89.73 75.22 66.87 66.21 58.69 58.17 93.44 68.02 96.77 96.94 96.86 86.13 73.12
BGNet [102] [ECCV20] 90.18 77.44 68.93 67.15 60.79 59.27 - - - 97.12 - - 74.42
PCNet [101] [CVPR20] 90.04 76.89 69.11 68.40 60.78 60.14 - - - 96.78 - - 74.59

HSSN DeepLabV3+ 90.19 78.72 70.67 69.71 61.15 60.44 95.86 71.56 98.20 97.18 97.69 88.20 75.44

Table 3. Hierarchical human parsing results (x4.2) on PASCAL-Person-Part [87] test. All models use ResNet-101 as the backbone.

Method Backbone mIoU3" mIoU2" mIoU1"
SegNet [3] [TPAMI17] ResNet-101 - - 18.17

FCN-8s [50] [CVPR15] ResNet-101 - - 28.29
DeepLabV2 [10] [CVPR17] ResNet-101 - - 41.64

Attention [12] [CVPR16] ResNet-101 - - 42.92
MMAN [54] [ECCV18] ResNet-101 - - 46.93

DeepLabV3+[13] [ECCV18] ResNet-101 88.13 83.97 52.28
CE2P [64] [AAAI19] ResNet-101 - - 53.10

BraidNet [48] [ACMMM19] ResNet-101 - - 54.42
SemaTree [36] [ECCV20] ResNet-101 90.78 87.12 54.73

BGNet [102] [ECCV20] ResNet-101 - - 56.82
PCNet [101] [CVPR20] ResNet-101 - - 57.03

CNIF [80] [ICCV19] ResNet-101 95.92 91.83 57.74
HRNet [79] [TPAMI20] HRNet-W48 95.53 91.21 57.23

OCRNet [98] [ECCV20] HRNet-W48 96.78 92.56 58.47
HHP [83] [CVPR20] ResNet-101 97.41 93.43 59.25

HSSN DeepLabV3+ ResNet-101 98.86 94.75 60.37

Table 4. Hierarchical human parsing results (x4.2) on LIP val.

tation models on Mapillary Vistas 2:0 val. With the
standard ResNet-101 as the backbone, HSSN outperforms
the famous DeepLabV3+ [13] by solid margins across all
three levels (2.69%/3.21%/3.40%). Consistent gains are
also observed for a more recent segmentation model (i.e.,
MaskFormer [16]), which relies on a heavy Transformer-
based decoder. In addition, our HSSN further improves
the performance when using more advanced CNN-based
(i.e., HRNetV2-W48) or Transformer-based (i.e., Swin-
Small) backbones. Concretely, it outperforms OCRNet [98]
by 2.87%/3.02%/3.27% and MaskFormer [16] by 1.81%/
1.93%/2.09% across the three levels. HSSN, with Swin-
Small as the backbone, establishes a new state-of-the-art.
These results clearly demonstrate the efficacy of our hierar-
chical semantic segmentation framework.
Cityscapes [18]. Table 2 compares our HSSN with sev-
eral competitive models on Cityscapes val. Despite that
the dataset has relatively simple semantic hierarchy and has
been comprehensively benchmarked, our model still leads
to appealing improvements. In particular, HSSN outper-
forms the top-leading MaskFormer [16] by 1.17%/1.43%
in terms of mIoU1 and mIoU2 when using Swin-Small as
the backbone. Similar gains are obtained when applying
CNN-based backbones (i.e., ResNet-101 and HRNet-W48).
PASCAL-Person-Part [87]. Table 3 lists the detailed re-
sults on PASCAL-Person-Part test. Note that all the mod-
els use ResNet-101 as the backbone. As seen, our HSSN
achieves the best performance for all human parts and hi-

erarchical levels. Remarkably, HSSN outperforms all ex-
isting hierarchical human parsers (i.e., HHP [83], Sema-
Tree [36] and CNIF [80]) by significant margins. Results
on this dataset are particularly impressive since it includes
a very small number (i.e., 1;713) of training samples.
LIP [44]. In Table 4, we compare HSSN with state-of-
the-art human semantic parsing models on LIP val. As
observed, our model provides a considerable performance
gain against the leading hierarchy-aware human parser (i.e.,
HHP [83]) across all three levels (1.12%=1.32%=1.45%).
These results support our motivation of exploiting struc-
tured label constraints and structured representation learn-
ing rather than only focusing on structured feature fusion.

4.3. Qualitative Results

Fig. 5 and Fig. 6 depict representative visual results on
four datasets. As seen, HSSN yields more precise segmenta-
tion results in comparison with some top-performing meth-
ods (i.e., MaskFormer in Fig. 5 and DeepLabV3+ in Fig. 6),
and shows strong robustness to various challenging scenar-
ios with occlusions, small objects and densely arranged tar-
gets, etc. Moreover, as shown in the last column of Fig. 5,
MaskFormer makes a severe mistake that misclassifies a
part of background structure as truck. In contrast, ben-
efiting from hierarchy-aware segmentation learning, HSSN
naturally address the issue of mistake severity, i.e., distin-
guish significantly different concepts with larger margins.

4.4. Diagnostic Experiment

To gain more insights into HSSN, we conduct a set of
ablative studies on Mapillary Vistas 2.0 [58] and Pascal-
Person-Part [87], with ResNet-101 as the backbone.
Key Component Analysis. First, we investigate the essen-
tial designs in HSSN, i.e., hierarchical segmentation learn-
ing (x3.2.1) with L FTM (cf. Eq. 6) and hierarchical repre-
sentation learning (x3.2.2) with L TT (cf. Eq. 7). The re-
sults are summarized in Table 5. The first row refers to
a hierarchy-agnostic baseline that only concerns the leaf
nodes and is trained using the categorical cross-entropy loss
L CCE (cf. Eq. 1). Three crucial conclusions can be drawn.
First, our L FTM leads to significant performance improve-
ments against the baseline across all the metrics on both
datasets. This evidences that our hierarchical segmentation



Figure 6. Visual results (x4.3) on LIP [44] val (left) and PASCAL-Person-Part [87] test (right). Top: DeepLabV3+, Bottom: HSSN.

L FTM L TT Mapillary Vistas 2.0 Pascal-Person-Part
Eq. 6 Eq. 7 mIoU3" mIoU2" mIoU1" mIoU3" mIoU2" mIoU1"

81.86 68.17 37.43 93.58 83.04 67.84
3 84.17 69.62 39.17 96.33 86.72 72.89

3 83.06 68.61 38.29 95.92 86.03 72.27
3 3 85.27 71.40 40.16 97.69 88.20 75.44

Table 5. Analysis of essential components on Mapillary Vistas
2:0 [58] val and PASCAL-Person-Part [87] test (x4.4).

Mapillary Vistas 2.0 Pascal-Person-Part
Loss

mIoU3" mIoU2" mIoU1" mIoU3" mIoU2" mIoU1"
CCE 81.86 68.17 37.43 93.58 83.04 67.84
BCE 81.56 67.61 37.26 93.12 82.55 67.38
Focal 82.63 68.48 38.09 94.07 83.66 68.42
TM 83.48 69.13 38.69 95.32 85.99 72.17

FTM 84.17 69.62 39.17 96.33 86.72 72.89
Full 85.27 71.40 40.16 97.69 88.20 75.44

Table 6. Analysis of focal tree-min loss L FTM on Mapillary Vistas
2:0 [58] val and PASCAL-Person-Part [87] test (x4.4).

learning strategy is able to produce hierarchy-coherent pre-
dictions. Second, we also observe compelling gains by in-
corporating L TT into the baseline. This proves the impor-
tance of hierarchical representation learning. Third, our
full model achieves the best performance by combining our
L FTM and L TT together, confirming the necessity of joint
hierarchical segmentation and embedding learning.
Focal Tree-Min Loss. We next examine the design of our
focal tree-min loss L FTM (cf. Eq. 6). As shown in Table 6,
we compare L FTM with four different losses, i.e., categori-
cal cross-entropy loss L CCE (cf. Eq. 1), binary cross-entropy
loss L BCE (cf. Eq. 2), focal loss [47], and our tree-min loss
L TM (cf. Eq. 5). We can find that our L TM generates impres-
sive results, and L FTM is even better than L TM. Then, in Ta-
ble 7, we analyze the impact of the focusing parameter  in
L FTM. As seen, the performance progressively improves as
 is increased, and the gain becomes marginal when  = 2 .
Hence, we choose  =2 by default.
Tree-Triplet Loss. We further investigate the design of
our tree-triplet loss L TT (cf. Eq. 7). In Table 8, “Vanilla”
refers to the vanilla triplet loss with a constant margin [66].
By constructing hierarchy-aware triplet samples, our tree-
triplet loss L TT (also with a constant margin) outperforms
“Vanilla”. The gains become larger when further applying
the hierarchy-induced margin constraint. These results con-
firm the designs of our tree-triplet loss. Finally, we assess

 Mapillary Vistas 2.0 Pascal-Person-Part
Eq. 6 mIoU3" mIoU2" mIoU1" mIoU3" mIoU2" mIoU1"

0 84.47 70.24 39.52 96.90 87.56 74.84
0:2 84.53 70.38 39.62 97.17 87.71 74.91
0:5 84.85 70.61 39.72 97.23 87.68 74.94
1:0 85.11 70.95 39.94 97.44 87.97 75.20
2:0 85.27 71.40 40.16 97.69 88.20 75.44
5:0 84.92 70.07 39.40 96.84 87.25 74.65

Table 7. Analysis of  for L FTM (Eq. 6) on Mapillary Vistas
2:0 [58] val and PASCAL-Person-Part [87] test (x4.4).

Triplet Margin Mapillary Vistas 2.0 Pascal-Person-Part
Loss m mIoU3" mIoU2" mIoU1" mIoU3" mIoU2" mIoU1"

Vanilla Constant 84.25 70.13 39.41 96.58 87.03 74.10
L TT Constant 84.66 70.42 39.67 97.30 87.86 74.83
L TT Hierarchy 85.27 71.40 40.16 97.69 88.20 75.44

Table 8. Analysis of different variants of L TT on Mapillary Vis-
tas 2:0 [58] val and PASCAL-Person-Part [87] test (x4.4).

Distance Mapillary Vistas 2.0 Pascal-Person-Part
Measurement mIoU3" mIoU2" mIoU1" mIoU3" mIoU2" mIoU1"

Euclidean 84.23 70.02 39.33 96.28 86.73 73.88
Cosine 85.27 71.40 40.16 97.69 88.20 75.44

Table 9. Analysis of distance measure for L TT on Mapillary Vis-
tas 2:0 [58] val and PASCAL-Person-Part [87] test (x4.4).

the impact of the distance measurement h�; �i used in L TT.
We study Cosine and Euclidean distances. Table 9 shows
that Cosine distance performs much better than Euclidean
distance, corroborating relevant observations in [26,59,65].

5. Conclusion
In this paper, we presented HSSN, a structured solution

for semantic segmentation. HSSN is capable of exploit-
ing taxonomic semantic relations for structured scene pars-
ing, by only slightly changing existing hierarchy-agnostic
segmentation networks. By exploiting hierarchy properties
as optimization criteria, hierarchical violation in the seg-
mentation predictions can be explicitly penalized. Through
hierarchy-induced margin separation, more effective pixel
representations can be generated. We experimentally show
that HSSN outperforms many existing segmentation models
on four famous datasets. We wish this work to pave the way
for future research on hierarchical semantic segmentation.
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