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Abstract

Depth reconstruction and hyperspectral reflectance re-
construction are two active research topics in computer vi-
sion and image processing. Conventionally, these two top-
ics have been studied separately using independent imag-
ing setups and there is no existing method which can ac-
quire depth and spectral reflectance simultaneously in one
shot without using special hardware. In this paper, we pro-
pose a novel single-shot hyperspectral-depth reconstruc-
tion method using an off-the-shelf RGB camera and projec-
tor. Our method is based on a single color-dot projection,
which simultaneously acts as structured light for depth re-
construction and spatially-varying color illuminations for
hyperspectral reflectance reconstruction. To jointly recon-
struct the depth and the hyperspectral reflectance from a
single color-dot image, we propose a novel end-to-end net-
work architecture that effectively incorporates a geometric
color-dot pattern loss and a photometric hyperspectral re-
flectance loss. Through the experiments, we demonstrate
that our hyperspectral-depth reconstruction method outper-
forms the combination of an existing state-of-the-art single-
shot hyperspectral reflectance reconstruction method and
depth reconstruction method.

1. Introduction
Depth reconstruction and hyperspectral reflectance re-

construction (spectral reconstruction, for short) are two ac-

tive research areas in the fields of computer vision and im-

age processing. Depth reconstruction aims at obtaining a

scene’s depth map, which presents the distances from the

camera to each scene point. On the other hand, spectral re-

construction aims at acquiring scene’s spectral reflectance

information, which provides the wavelength-by-wavelength

reflectance of each scene point. Since the depth and the

spectral reflectance provides the scene’s geometric and pho-

tometric properties, respectively, simultaneously acquiring

them, which we refer to as hyperspectral-depth reconstruc-

tion, has various potential applications such as cultural her-

itage [6, 19], artwork authentication [30], material classifi-
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Figure 1. The overview of our system. From a single RGB image

captured with a random color-dot projection, we simultaneously

reconstruct the depth and the spectral reflectance for each pixel.

cation [5, 25], plant modeling [26], and relighting [35].

Although depth reconstruction and spectral reconstruc-

tion have been studied separately, some systems are re-

cently designed to simultaneously acquire both the depth

and the spectral reflectance. They typically combine a

conventional depth-sensing technology with a hyperspec-

tral camera [9, 13, 32, 34, 36, 39]. However, the require-

ment of a hyperspectral camera makes the system high cost.

Some other systems use a standard RGB camera in con-

junction with a variable and controllable light source, which

emits temporally-changing illuminations to acquire multi-

band spectral observations [15,21–23,27,28,37]. However,

these systems require multiple shots and thus are not appli-

cable to dynamic scenes. Very recently, Baek et al. have

proposed a single-shot system that uses a standard RGB

camera and a diffractive optical element attached in front

of the camera [3]. Although this system realizes a compact

design using existing optical components, it still requires

customized hardware design.

In this paper, we propose a novel single-shot system

to simultaneously acquire the depth and the spectral re-

flectance using a standard RGB camera and an off-the-

shelf RGB projector (see Fig. 1). Our system is based
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on a single random color-dot projection, which simul-

taneously acts as structured light for depth reconstruc-

tion and spatially-varying color illuminations for spectral

reconstruction. Since the random color dots provide a

unique code pattern and three distinct RGB color illumina-

tions for each local region, we exploit these cues for the

hyperspectral-depth reconstruction. To effectively recon-

struct the depth and the spectral reflectance from a single

color-dot image, we propose a novel end-to-end deep learn-

ing method. Since the location of an observed color-dot pat-

tern depends on the scene depth, we perform the joint learn-

ing of the depth and the spectral reflectance to improve the

accuracy of each other, by considering the geometric warp-

ing of the color-dot pattern. Furthermore, to address the

difficulty of constructing a real-world hyperspectral-depth

dataset, we develop a spectral renderer to generate a syn-

thetic dataset using a spectral rendering model under the

color-dot illumination. Main contributions of this work are

summarized as follows.

1. We propose the first single-shot hyperspectral-depth

reconstruction system using a standard RGB camera

and an off-the-shelf RGB projector without any hard-

ware modifications.

2. We propose a novel network architecture and end-to-

end learning method using a spectral renderer to si-

multaneously reconstruct the depth and the spectral re-

flectance from a single color-dot pattern image.

3. We experimentally validate the effectiveness of our

system for synthetic and real-world scenes.

2. Related Works
Existing systems for hyperspectral-depth reconstruction

are roughly classified into hyperspectral camera-based sys-

tems [9, 13, 32, 34, 36, 39] and controllable lighting-based

systems [15, 21–23, 27, 28, 37].

Most of the hyperspectral camera-based systems acquire

the depth and the spectral reflectance data by replacing the

RGB camera of an existing depth-sensing technology, such

as structured light [9, 13], ToF [32], stereo [34], and light

fields [36,39], with a hyperspectral camera. Although these

systems can realize the single-shot acquisition of the depth

and the spectral reflectance, the necessity of a hyperspectral

camera brings high cost. Also, the integration of a hyper-

spectral camera into a depth-sensing device requires highly

complicated and dedicated hardware design.

Controllable lighting-based systems are based on a tra-

ditional 3D reconstruction method that uses extra light

sources, such as structured light [15,22,37] and photometric

stereo [21, 23, 27, 28]. These systems use a standard RGB

camera and observe spectral measurements by temporally

changing illumination spectrum. However, since these sys-

tems require multiple shots, they are limited to static scenes.
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Figure 2. Color-dot representations. Left: Color-dot pattern P ,

which is generated by randomly filling each projector pixel with

one of three binary codes: R (0,0,1), G (0,1,0), and B (1,0,0).

Right: Color-dot illumination spectrum Lpat, which has Nλ-

dimensional illumination spectrum at each pixel.

There are two other classes of closely related meth-

ods: lighting-based hyperspectral imaging methods using

an RGB camera [8, 12, 14, 29] and deep-learning-based ac-

tive stereo methods [2, 10, 31, 38] (especially, Connecting

the Dots [31], which learns to reconstruct the depth from

a single gray-scale-dot pattern image, is the closest work

to ours). Although these methods inspired us, they only

reconstruct either the depth or the spectral reflectance. In

contrast, our method simultaneously reconstructs the depth

and the spectral reflectance from a single color-dot image

based on end-to-end network learning, which consequently

enables us to improve the accuracy of each other.

3. Proposed Method
3.1. Random Color-Dot Projection

In our system, we use an off-the-shelf RGB projector

and a standard RGB camera to capture a single color-dot

pattern image. The extrinsic and intrinsic parameters of

the projector-camera system are pre-calibrated. The spec-

tral sensitivity of the RGB camera and the spectral power

distributions of the projector’s RGB primaries are assumed

to be known or pre-estimated.

As shown in the left figure of Fig. 2, the projector is used

to project a single color-dot pattern to acquire geometric

and spectral observations. The color-dot pattern P is gen-

erated by randomly filling each projector pixel with one of

the three code words representing the projector’s RGB pri-

maries: R (0,0,1), G (0,1,0), and B (1,0,0).

As the geometric observation, the random pattern pro-

vides a locally unique code for establishing correspon-

dences between the captured color-dot image and the ref-

erence color-dot pattern P . As the spectral observation, the

projector’s RGB primaries provide three distinct illumina-

tions, which results in the information from nine spectral

bands (i.e., 3 illuminations × 3 color channels) by assum-

ing locally uniform spectral reflectance. The illumination

spectrum representation of the projected color-dot pattern

is denoted by Lpat and shown in the right figure of Fig. 2,

where Nλ denotes the dimension discretized from the con-
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Figure 3. The overview of our end-to-end network architecture. As the first part, the disparity estimation network estimates the disparity

map D̂ from the captured image I and the local contrast normalization (LCN) image ILCN. Then, the estimated disparity map D̂ is

converted to the depth map Ẑ. As the second part, the spectral reconstruction network estimates the spectral reflectance image R̂ from the

inputs of the captured image I , the estimated depth map Ẑ, and the warped illumination spectrum L̃pat. The two networks are trained in

an end-to-end manner using both geometric losses (LD, LDE and LP) and photometric losses (LR and LRE).

tinuous wavelength domain (specifically, we used the sam-

pling of every 10nm from 410nm to 670nm, i.e., Nλ=27).

3.2. End-to-End Network Architecture

Figure 3 illustrates the overview of our end-to-end net-

work architecture. Based on the geometric and the photo-

metric cues that can be observed from the color-dot projec-

tion, we reconstruct a disparity map D̂ and a spectral re-

flectance image R̂ from a single color-dot image I , where

the image I is rectified in advance using the extrinsic and

intrinsic parameters of the projector-camera system. For

the reconstruction, we apply two deep convolutional neural

networks: disparity estimation network and spectral recon-

struction network.

Firstly, the disparity estimation network estimates the

disparity map D̂ with the inputs of the captured image I and

the local contrast normalization (LCN) image ILCN. LCN

is applied to extract the color-dot pattern from I . The esti-

mated disparity is then converted to the depth map Ẑ using

the calibrated parameters of the projector-camera system.

Then, the spectral reconstruction network estimates the

spectral reflectance image R̂ with the inputs of the captured

image I , the estimated depth map Ẑ, and the warped illu-

mination spectrum L̃pat. In this study, our aim is to recon-

struct the spectral reflectance, which is inherent to a target

object and irrelevant to the illumination and the scene ge-

ometry such as the shading. Since the depth provides an

important cue to eliminate the effect of the shading from the

estimated spectral reflectance, we input the depth map into

the spectral reconstruction network. In addition, to provide

the correct illumination information for each camera pixel,

we input the illumination spectrum L̃pat, which can be gen-

erated by warping the color-dot illumination spectrum Lpat

from the projector viewpoint to the camera viewpoint based

on the estimated disparity map.

The two networks are trained in a supervised and end-

to-end manner using both geometric losses (LD, LDE and

LP) and photometric losses (LR and LRE). In our train-

ing process, the error of the estimated disparity will lead to

wrong shading inference and wrong illumination warping

for the spectral reconstruction network, meaning that the

accuracy of the disparity affects the accuracy of the spectral

reflectance. Thus, jointly training the two networks con-

tributes to the improvement of the accuracy for both the dis-

parity and the spectral reflectance, as we will demonstrate

in the experimental result section.

3.2.1 Disparity Estimation Network

The disparity estimation network produces an output image

of the same resolution as the input with left-right dispar-

ity information. Since the appearance of the color-dot pat-

tern in the captured image I depends on various spatially-

varying factors such as the shading and the texture, we pre-

process the captured image to extract the projected color-dot

pattern by applying LCN [16, 31, 38]. Following [31], for

each pixel (u, v) and each color channel n, we compute the

local mean μ and the standard deviation σ of a small local

region (11 × 11 in our experiments) centered at pixel co-
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ordinate (u, v). These local statistics are used to normalize

the current pixel intensity as

ILCN(u, v, n) =
I(u, v, n)− μ(u, v, n)

σ(u, v, n) + η
, (1)

where η is a small constant to avoid numerical instabilities.

Then, we concatenate the LCN image ILCN with the

original image I to form a six-channel input for the dis-

parity estimation network, where the disparity is defined by

the x-coordinate difference of the corresponding pixels be-

tween the captured image and the reference color-dot pat-

tern. Given the estimated disparity map D̂, the scene depth

Ẑ can be calculated as

Ẑ(u, v) = bf/D̂(u, v), (2)

where b is the baseline of the projector-camera system and

f is the focal length of the rectified camera.

We design the network architecture based on the Dis-

parity Decoder presented in [31]. This network consists of

a contractive part and an expanding part with long-range

links between them. In total, the network has 32 convolu-

tion layers and each of them is followed by ReLU. The final

layer is followed by a scaled sigmoid non-linearity which

constrains the output disparity map to the range between 0

and the maximum of the disparity. The network details can

be found in the supplementary document.

3.2.2 Spectral Reconstruction Network

We next estimate the spectral reflectance image R̂ using

the spectral reconstruction network. The captured image

I , the predicted scene depth Ẑ and the warped illumination

spectrum to the camera viewpoint L̃pat are concatenated

and passed to the spectral reconstruction network. As the

disparity map provides the pixel correspondences between

the captured image and the reference color-dot pattern, the

warped illumination spectrum L̃pat can be calculated as

L̃pat(u, v, λ) = Lpat(u− D̂(u, v), v, λ). (3)

Since the disparity is estimated with sub-pixel accuracy,

we apply bilinear interpolation for the resampling of the

warped illumination spectrum.

The network architecture of the spectral reconstruction

network is similar to that of the disparity estimation network

with the difference of the input and the output channels.

The range of the output spectral reflectance is constrained

between 0 and 1 by the scaled sigmoid non-linearity.

3.3. Loss Function

The loss function for end-to-end training is described as

L =
∑

(u,v)∈V
LD + ωDELDE + ωPLP + ωRLR + ωRELRE,

(4)

including geometric losses (disparity loss LD, disparity

edge loss LDE, and pattern loss LP) and photometric losses

(spectral reflectance loss LR and spectral reflectance edge

loss LRE). The balance of each loss is determined by the pa-

rameters ωDE, ωP, ωR, and ωRE. As the cast shadows that

are apparent in the input image are meaningless in the net-

work training, we binarize the input image to mask out the

shadows and calculate the losses only for the non-shadow

pixel set (u, v) ∈ V .

Disparity loss LD and spectral reflectance loss LR com-

pute the mean squared error between the ground truth and

the estimated value as

LD = ‖D̂(u, v)−Dgt(u, v)‖2,
LR =

∑
λ

‖R̂(u, v, λ)−Rgt(u, v, λ)‖2, (5)

where Dgt is the ground-truth disparity and Rgt is the

ground-truth spectral reflectance.

For pattern loss LP, we take the advantage of the

projector-camera setup to strengthen geometric constraints.

To this end, we warp the reference color-dot pattern P to

the camera viewpoint using the estimated disparity D̂ as

P̃ (u, v) = P (u− D̂(u, v), v), (6)

where P̃ is the warped pattern. Then, we calculate the loss

between the LCN image ILCN and the warped color-dot

pattern P̃ as

LP = ‖ILCN(u, v)− P̃ (u, v)‖C , (7)

where ‖ · ‖C denotes the smooth Census transform [11].

As the color-dot pattern is relatively sparse, we further

add disparity edge loss LDE and spectral reflectance edge

loss LRE for predicting accurate and sharp boundaries. To

this end, we use Sobel operator [18] to perform 2D spa-

tial gradient calculation on the disparity and the spectral re-

flectance to enhance the boundaries. We apply a pair of

Sobel convolution kernels to produce the approximate gra-

dients of each pixel in the vertical and horizontal directions.

Then, we calculate the errors of vertical gradients and hor-

izontal gradients separately and add then up together. We

formulate the losses LDE and LRE as

LDE =‖D̂V(u, v)−DV
gt(u, v)‖2

+ ‖D̂H(u, v)−DH
gt(u, v)‖2,

(8)

LRE =
∑
λ

‖R̂V(u, v, λ)−RV
gt(u, v, λ)‖2

+ ‖R̂H(u, v, λ)−RH
gt(u, v, λ)‖2,

(9)

where the values with superscripts V and H denote the ver-

tical gradient and the horizontal gradient, respectively.
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3.4. Hyperspectral-Depth Dataset Generation

Since it is difficult to simultaneously acquire accurate

depth and spectral reflectance as a large-scale ground-truth

dataset in real-world situations, we developed a spectral

renderer to generate a synthetic dataset with rendered RGB

color-dot images, ground-truth disparity maps, and ground-

truth spectral reflectance images by extending the algorithm

of a structured-light renderer [31].

We render the scene with randomly populated 3D mod-

els using spectral reflectance samples. For simplicity, we

first obtain the corresponding 3D point x for each pixel by

computing the intersection of the camera ray and the 3D

surface, and then acquire the ground-truth depth value as

the z-coordinate of the 3D point in the camera coordinate

system. The ground-truth spectral reflectance r of this 3D

point is also obtained. According to Eq. (2), we can ob-

tain the ground-truth disparity from the depth value. The

illumination spectrum l for the 3D point is determined by

the corresponding pattern code which can be obtained by

reprojecting the 3D point to the projector’s image plane.

Suppose that the camera response is linear and inter-

reflection and ambient illumination are negligible, the cam-

era’s pixel intensity I of n-th color channel is calculated

based on the spectral rendering model [22] as

I(n) = s

∫
Ωλ

c(n, λ)l(λ)r(λ)dλ, (10)

where c(n, λ) is the n-th channel camera spectral sensitiv-

ity and λ represents the wavelength. Ωλ is the wavelength

range that the projector emits the illumination (410nm to

670nm for our used projector). s is the shading factor,

which describes the proportion of the reflected radiance

leaving the surface point x with respect to the intensity of

the emitted light from the projector at position xpro. As-

suming that the 3D point has Lambertian reflectance and

the projected illumination follows the inverse-square law,

we define the shading factor s as

s =
1

‖xpro − x‖2 × xpro − x

‖xpro − x‖ · n, (11)

where n is the normal of the point x. The first term repre-

sents the quadratic attenuation with respect to the distance

of the object point x from the projector xpro. The second

term represents the inner product of the normalized light-

ing vector and the point normal n. In practice, the con-

tinuous wavelength domain Ωλ is discretized to Nλ dimen-

sion (we sampled at every 10nm from 410nm to 670nm, i.e.,

Nλ=27). The observed RGB intensity [I(R), I(G), I(B)]T

can be computed by the matrix form as

⎡
⎣I(R)
I(G)
I(B)

⎤
⎦ = scTDiag(l)r, (12)

(a) Color-dot image

0
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(b) Disparity map (c) sRGB

Figure 4. Spectral rendering examples: (a) A rendered input RGB

image with the projected color-dot pattern. (b) A ground-truth dis-

parity map, and (c) An sRGB image converted from the ground-

truth spectral reflectances.

where r ∈ R
Nλ represents the spectral reflectance, l ∈ R

Nλ

is the illumination spectrum corresponding one of the pro-

jector’s RGB primaries, c ∈ R
Nλ×3 is the camera sensitiv-

ity matrix, and Diag(·) is a square diagonal matrix function.

We used the same camera spectral sensitivity, projec-

tor illumination spectrum, and geometrically calibration pa-

rameters as our actual setup, which is described in Sec4.1.

4. Experimental Results
4.1. Setup and Implementation Details

We used an ASUS P3B projector and Canon EOS 5D

Mark-II digital camera for our projector-camera system.

The spectral power distributions of the projector’s RGB pri-

maries were measured by using a StellarNet BlueWave-VIS

Spectrometer and they are shown in Fig. 2. The spectral

sensitivity of EOS 5D camera was obtained from the public

database of [17]. To calibrate the projector-camera system

geometrically, we used the calibration method of [33].

For the synthetic dataset generation described in Sec.3.4,

we used ShapeNet Core dataset [7] as the 3D models. We

randomly placed the models at a distance from 0.3m to 1m

and then randomly assigned the ground-truth spectral re-

flectance data to different texture parts of each 3D model.

We generated 8,192 scenes for training, and 256 scenes for

testing. For the training data, we used chair and car models

in ShapeNet Core and the spectral reflectance data of 1,269

Munsell color chips [1]. For the testing data, we used cam-

era, airplane, and watercraft models in ShapeNet Core and

the spectral reflectance data of a standard X-Rite colorchart

with 24 patches, which are unseen in the training data. The

images were rendered with the resolution of 640×480. Ren-

dering examples of an RGB color-dot image, a ground-truth

disparity map, and an sRGB color image converted from the

ground-truth spectral reflectances are shown in Fig. 4.

We implemented the proposed method in PyTorch and

trained our model using Adam optimizer [20]. The learning

rate was set as 1.0×10−4. The loss weights in Eq. (4) were

empirically set as ωDE = 100, ωP = 0.2, ωR = 1, and

ωRE = 8. We used full-size 640x480 images for training.

The total number of training epochs is 200 with batch size

of 8. Training our model takes around 57 hours in total with

one NVIDIA GeForce RTX 2080 Ti 11G GPU.
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Table 1. Evaluation metrics.

Depth:

RMSE =

√
mean

[(
Ẑ −Zgt

)2
]

θi = % of Ẑ(u, v) subject to

max
(

Ẑ(u,v)
Zgt(u,v)

,
Zgt(u,v)

Ẑ(u,v)

)
< 1.03i

Spectral reflectance:

RMSE =

√
mean

[(
R̂−Rgt

)2
]

MRAE = mean
(
|R̂−Rgt|/Rgt

)

Table 2. Quantitative comparison with the state-of-the-art methods on all the test scenes.

Depth Spectral reflectance

θ1 ↑ θ2 ↑ θ3 ↑ RMSE ↓ MRAE ↓ RMSE (×10−2) ↓
AdaBins [4] 53.00 82.61 93.52 24.60 - -

Connecting [31] 98.02 98.72 99.11 8.83 - -

Basis [12] - - - - 0.38 8.02

AWAN [24] - - - - 0.34 7.93

Ours 98.18 99.17 99.58 6.10 0.32 5.31

4.2. Evaluation on Synthetic Data

We first qualitatively and quantitatively evaluate our pro-

posed method on the test set of the synthetic dataset gener-

ated using the spectral renderer.

For the depth evaluation, we use root mean squared er-

rors (RMSE) and threshold accuracy (θi) used in [4]. For

the spectral reflectance evaluation, we use RMSE and mean

relative absolute error (MRAE) used in [24]. These met-

rics are formulated in Table 1, where mean(·) computes the

arithmetic mean.

4.2.1 Comparison with State-of-the-Art Methods

Since there is no existing single-shot hyperspectral-depth

reconstruction method directly applicable to our setup, we

compare our method with state-of-the-art single-shot depth

reconstruction methods and single-shot spectral reconstruc-

tion methods, respectively. For the depth evaluation, we

compare our method with state-of-the-art AdaBins [4],

which learns the depth from a standard RGB image without

any dot pattern, and Connecting the Dots [31], which learns

the depth from a single gray-scale image with Kinect dot

pattern. Their networks were retrained using our dataset.

Since their input images are different from ours, we re-

rendered RGB images without the dot pattern (under white

illumination) and gray-scale Kinect dot pattern images, re-

spectively. The examples of the input images are shown in

Fig. 5(a). For the spectral reflectance evaluation, we com-

pare our method with two spectral reconstruction methods

from a single RGB image: A widely-applied method using

spectral reflectance basis functions (Basis) [12] and a state-

of-the-art deep learning-based AWAN [24]. We used the

RGB image without the dot pattern (under white illumina-

tion) as their inputs, which is the same input as AdaBins.

For Basis, the spectral basis functions were calculated from

1,269 Munsell spectral reflectances of our training data. For

AWAN, we retrained the model using our dataset.

Table 2 summarizes the overall quantitative evaluation

on all 256 test scenes. We can observe that our method

yields the best results for both the depth and the spectral

reflectance. In contrast to the compared methods that only

focus on a single property, our method jointly reconstructs

the depth and the spectral reflectance by training the net-

work model using both geometric losses and photometric

losses, leading the improved performance to each other.

Figure 5(b) provides the qualitative results of the depth

reconstruction, where our method provides a more accu-

rate depth map. Figure 5(c) shows the visual comparison

of sRGBs (top row), which was converted from the esti-

mated spectral reflectances, and the error maps for the esti-

mated spectral reflectances (bottom row), where RMSE for

all wavelengths is visualized for each pixel. We can con-

firm that our sRGB result is the closest to the ground truth

and represents the object’s inherent spectral reflectance less

affected by the shading, compared with the sRGB results

of the existing methods that do not consider the shading

(depth) information. Figure 5(d) shows the spectral re-

flectance results on eight sample points. Our method can

reconstruct accurate spectral reflectances representing cor-

rect spectral shapes as well as correct relative scales. This is

because that our method can benefit from the color-dot pro-

jection to acquire nine-band information and depth informa-

tion, while the existing single-shot spectral reconstruction

methods only rely on a standard three-band RGB image.

4.2.2 Ablation Study
Loss comparison for disparity estimation: To confirm the

contribution of the individual geometric loss of the disparity

estimation network (disparity loss LD, disparity edge loss

LDE, and pattern loss LP), we trained the disparity esti-

mation network only and compared different loss combina-

tions. Table 3 shows the depth reconstruction performance

with the four loss combinations. We can observe that, if we

add the disparity edge loss LDE, the depth accuracy is sig-

nificantly improved especially for large errors evaluated in

the metrics θ3, indicating that the edge loss contributes to

reducing the boundary errors. The pattern loss LP signifi-

cantly reduces overall RMSE, demonstrating the effective-

ness of the color-dot pattern matching. We can also confirm

that the best result can be achieved by using all the losses.
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(c) Spectral reflectance results. Top: sRGB color representation converted

from the estimated spectral reflectances. Bottom: Visualized errors.
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(d) Estimated spectral reflectance results on 8 sample points.

Figure 5. Synthetic comparison with the state-of-the-art methods.

Effectiveness of joint training: To demonstrate the effec-

tiveness of the joint training of the depth and the spectral

reflectance, we compare our full model with the following

network models. (i) Disparity estimation network, which

applies only the disparity estimation network for the dispar-

ity training, as compared in the previous paragraph (i.e., the

best result of Table 3). (ii) Spectral reconstruction network,

which applies only the spectral reconstruction network us-

ing only the single color-dot image input. The networks (i)

and (ii) mean the cases of the separated network training

at our setup. (iii) Joint network training without the depth

input, which applies both the disparity estimation network

Table 3. Depth accuracy comparison with respect to different loss

combinations for the disparity estimation network.

θ1 ↑ θ2 ↑ θ3 ↑ RMSE ↓
LD 97.89 98.71 99.04 8.01

LD + LDE 97.93 98.89 99.32 7.38

LD + LP 98.00 98.90 99.10 7.22

LD + LDE + LP 98.03 99.12 99.38 6.80

Table 4. Effectiveness of joint training.

Depth

RMSE ↓
Reflectance

RMSE ↓
(×10−2)

Disparity estimation network 6.80 -

Spectral reconstruction network - 5.79

Joint

w/o depth input 6.24 5.69

w/o illumination input 6.32 5.75

full model 6.10 5.30

and the spectral reconstruction network, but does not apply

the depth input for the spectral reconstruction network. (iv)

Joint network training without the illumination input, which

applies both the networks, but does not apply the warped

illumination input for the spectral reconstruction network.

The networks (iii) and (iv) are compared to confirm the im-

portance of the depth and the illumination inputs for esti-

mating the spectral reflectance.

Table 4 shows the results of the comparison. From the

results, we can observe that joint training certainly provides

better performance compared with the separated training of

the depth and the spectral reflectance. In addition, both

the depth and the warped illumination inputs to the spec-

tral reconstruction network contribute to the performance

improvement for estimating object-inherent (shading- and

illumination-irrelevant, in other words) spectral reflectance.

Interestingly, the depth result also can be significantly im-

proved by using the warped illumination input, because the

illumination spectrum pattern corresponding to the input

image is accurate only when the disparity is correct, sug-

gesting that the errors of the spectral reflectances can be

back-propagated to update the disparity estimation network.

4.3. Results on Real Scenes

We next evaluate our method for real scenes. Because

our method can realize the single-shot reconstruction of the

depth and the spectral reflectance, we applied our method

to a dynamic scene with a moving hand using a succes-

sive capturing mode of the camera. Figure 6 shows the

captured input color-dot images (top row), the estimated

depth maps from each input image (middle row) and the

3D point clouds converted from each depth map (bottom

row). Each 3D point of the point cloud is colored by sRGB,
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Figure 6. The reconstruction results for a dynamic scene (hand).

Top: The sequentially captured input color-dot images. Middle:

The estimated depth maps from each input image. Bottom: The

3D point clouds converted from each estimated depth map and the

spectral reflectance result for one sample point (rightmost). Each

3D point is colored by sRGB, which is converted from the corre-

sponding estimated spectral reflectance.

which is converted from the corresponding estimated spec-

tral reflectance. We also show the spectral reflectance result

for one sample point in the right-bottom figure. From the

results, we can confirm that our method performs well in

the dynamic real scene.

One important application of the spectral reflectance re-

construction is to differentiate the materials that have sim-

ilar colors, but different spectral reflectances, because the

spectral reflectances provide much richer information than

the RGB tristimulus values. To demonstrate this, we cap-

tured real and plastic bell peppers. As the objects shown

in the left column of Fig. 7, it is hard to differentiate the

real and the plastic bell peppers only from the color appear-

ance. In contrast, we can confirm the difference of the spec-

tral reflectances from our spectral reconstruction results, as

shown in the right column. Beyond that, our system can re-

construct dense 3D points using the estimated depth maps.

Additional results on real scenes reconstructed by our pro-

posed system can be seen in the supplemental video.

4.4. Discussion and Limitations

To offer a theoretical insight on the spectral reflectance

estimation, we conducted a condition-number analysis on

the system matrix consisting of the products of the projec-

tor’s RGB illumination spectrums and RGB camera sensi-

tivities. The condition number is 1275.3, which indicates

that the direct linear inverse problem is highly ill-posed.

As commonly performed [12, 29], if we introduce a spec-

tral basis model (e.g., 8 bases) and a smoothness constraint

to the spectral reflectance, the condition number reduces to

13.0, which means that the problem is solvable. Although

we solved the ill-posed problem without such constraints by

Real
Plastic

Real

Plastic

Input image Estimated 3D points with spectral reflectanceObject

(a) Red bell pepper

Real

Plastic

Input image Estimated 3D points with spectral reflectance

Real
Plastic

Object

(b) Green bell pepper

Figure 7. Which is real? We captured real (a) red and (b) green

bell peppers, as well as plastic models, to show an example appli-

cation for material discrimination. From left to right, we show the

object images for reference, the input images to our system, the

resultant 3D point clouds with sRGB color representation, and the

estimated spectral reflectances for sampled points.

exploiting deep-learning-based reconstruction, we consider

that bridging the theoretical analysis and the learning-based

method could be one of the important future directions.

Our method has several limitations. First, our method

will degrade the performance under the existence of strong

ambient illumination because it makes the color-dot extrac-

tion by LCN more difficult and it also changes the illumi-

nation spectrum of the color dot. Second, heavy occlusions

will lead to a large area of cast shadow, resulting in a highly

incomplete depth map. Third, similar to other structured-

light methods, our method is difficult to reconstruct the dark

objects that do not reflect the projector light sufficiently.

5. Conclusion

In this paper, we have proposed a novel single-shot sys-

tem to simultaneously acquire scene depth and spectral re-

flectance using a standard RGB camera and an off-the-shelf

projector. Our system utilizes a single color-dot projection

to simultaneously provide geometric and spectral observa-

tions. To effectively reconstruct the depth and the spec-

tral reflectance in a joint training manner, we have built

an end-to-end deep neural network architecture by incor-

porating a geometric color-dot pattern loss and a photo-

metric spectral reflectance loss. Experimental results us-

ing both synthetic and real-world data have demonstrated

the potential of our system for a high-fidelity 3D sens-

ing technology. Our dataset and spectral renderer for the

dataset generation are available in our project page (http:
//www.ok.sc.e.titech.ac.jp/res/DHD/).
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