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Abstract

Humans can not only see the collection of objects
in visual scenes, but also identify the relationship be-
tween objects. The visual relationship in the scene can
be abstracted into the semantic representation of a triple
〈subject, predicate, object〉 and thus results in a scene
graph, which can convey a lot of information for visual un-
derstanding. Due to the motion of objects, the visual re-
lationship between two objects in videos may vary, which
makes the task of dynamically generating scene graphs from
videos more complicated and challenging than the conven-
tional image-based static scene graph generation. Inspired
by the ability of humans to infer the visual relationship, we
propose a novel anticipatory pre-training paradigm based
on Transformer to explicitly model the temporal correla-
tion of visual relationships in different frames to improve
dynamic scene graph generation. In pre-training stage,
the model predicts the visual relationships of current frame
based on the previous frames by extracting intra-frame spa-
tial information with a spatial encoder and inter-frame tem-
poral correlations with a progressive temporal encoder. In
the fine-tuning stage, we reuse the spatial encoder and the
progressive temporal encoder while the information of the
current frame is combined for predicting the visual relation-
ship. Extensive experiments demonstrate that our method
achieves state-of-the-art performance on Action Genome
dataset.

1. Introduction

Scene graph abstracts the visual relationships as a graph
structure, where the objects are represented as nodes and
their relationships are represented as edges. It is a promis-
ing way to represent semantics of visual content, which
can bridge the large gap between vision and natural lan-
guage. In recent years, scene graph generation has at-
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Figure 1. Given previous frames, humans can easily infer the vi-
sual relationship contained in the current frame. Because the tem-
poral correlation of different relationships is a kind of common
sense to humans. But this kind of temporal reasoning is difficult
for computers.

tracted more and more attention and has been successfully
applied in multiple tasks, e.g., image retrieval [19], im-
age captioning [14, 21, 48, 49] and visual question answer-
ing [11, 12, 53].

Existing scene graph generation methods can be roughly
grouped into two categories, the static scene graph gen-
eration, i.e, generating scene graph from a single image,
and dynamic scene graph generation, i.e., generating scene
graph from a video. For static scene graph generation, exist-
ing methods [4, 22, 51, 52] generally use popular object de-
tectors, such as Faster R-CNN [34] and Mask R-CNN [15],
to extract objects, and then predict the relationship between
objects based on the visual and semantic features. Although
static scene graph generation methods have achieved signif-
icant progress, the dynamic scene graph generation is less
studied, which is more challenging because the objects in
video are moving, and thus cause the change of the relation-
ships. The static scene graph generation methods cannot be
directly applied to solve dynamic scene graph generation
since they ignore the temporal information in videos. To im-
prove the prediction accuracy, existing dynamic scene graph
generation methods focus on capturing temporal informa-
tion by 3D convolution model [39] and transformer [7, 32].
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Existing dynamic scene graph generation methods ex-
plore the temporal structure information in feature-level and
model the dynamic scene graph generation as a classifica-
tion task, which results in that they cannot explicitly cap-
ture the temporal correlation of visual relationships. In con-
trast, humans can easily infer the subsequent relationships
based on the past relationships according to their tempo-
ral correlations. As shown in Figure 1, after observing
〈person, looking at, cup〉 and 〈person, holding, cup〉,
humans can infer that the subsequent relationships are likely
to be consistent with the previous relationships or change
to 〈person, drinking from, cup〉. This kind of reasoning
ability comes from humans’ experience and commonsense
in the real world. To make the dynamic scene graph gen-
eration model explicitly capture the temporal correlation of
visual relationships like humans, there are at least two chal-
lenges to be resolved. (1) Since the temporal and spatial in-
formation in the videos are heavily entangled, it is difficult
to explicitly capture the temporal correlations. (2) Existing
datasets, e.g., Action Genome [18], only have scene graph
annotations in key-frame level due to the high cost, which
hinders the consecutive modeling of the temporal correla-
tions.

In this paper, we propose an anticipatory pre-training
paradigm to predict dynamic scene graph in videos to han-
dle the above challenges. The anticipatory scene graph gen-
eration task is defined as using previous frames to predict
the relationships in the current frame. Using the antici-
patory pre-training paradigm has the two advantages. (1)
Since the goal of the pre-training task is predicting visual
relationships in unseen frames, it can induce the model to
explicitly extract the temporal correlations in task-level. (2)
Based on the pretext task, we can use a large amount of
unlabeled data to train the anticipatory model with the su-
pervision of key frame labels, thus can alleviate the problem
of insufficient annotations.

The proposed anticipatory pre-training paradigm is in-
stantiated as an anticipatory Transformer architecture. In
pre-training stage, the model consists of a spatial encoder
to extract intra-frame spatial information and a progressive
temporal encoder to capture inter-frame temporal correla-
tions based on both visual and semantic features. To en-
hance the perception of visual content in long-sequence
frames, we design an efficient comprehensive short-term
and long-term attention mechanism in the progressive tem-
poral encoder to capture the long-term visual context from
labeled and unlabeled frames for each relationship without
adding too many parameters. Finally, we predict the vi-
sual relationship in current frame based on the output of the
progressive temporal encoder. In the fine-tuning stage, we
reuse the spatial encoder in the pre-training model to obtain
the spatial information of the current frame, and sequen-
tially combine it with the output of the progressive tempo-

ral encoder to predict the visual relationship in the current
frame.

The main contributions of this work are summarized as
follows:

1. We propose a novel anticipatory pre-training paradigm
for dynamic scene graph generation, which explicitly
models the temporal correlation of visual relationships
in the task-level.

2. We instantiate the anticipatory pre-training paradigm
with a Transformer architecture. which can not only
capture the spatial and temporal information from the
labeled training videos based on the visual and seman-
tic features, but also efficiently capture the short-term
and long-term visual context from unlabeled data for
each relationship.

3. We evaluate the proposed pre-training paradigm on
public Action Genome dataset. The extensive ex-
periment results demonstrate that our model achieves
state-of-the-art results.

2. Related Work
Scene Graph Generation for Image. Recently, a large

number of approaches have been proposed for scene graph
generation. A number of methods [6,22,26,38,45,46,52,52]
focus on the structural-semantic object features to improve
the prediction performance. Xu et al. [46] solve the scene
graph generation task by carefully taking the spatial as well
as statistical features in a scene. Inspired by this, many
methods [6, 22, 38, 45, 52] focus on exploring better spatial
context features. Furthermore, Zellers et al. [52] propose
a strong baseline which predicts scene graph using only
semantic labels of objects. They demonstrate that the se-
mantic information plays an essential role in scene graph
generation. To capture correlations among different predi-
cates, Chen et al. [5] propose a two-stage predicate associa-
tion network (PANet). The first stage is designed to extract
instance-level and scene-level context information, while
the second stage is mainly used to capture the association
between predicate alignment features. Our method differs
from above image scene graph generation methods in that
we consider a more complex task of dynamic scene graph
generation in videos. This task requires capturing both the
spatial and temporal context in the video.

Scene Graph Generation for Video. Due to the suc-
cessful application of the scene graph generation method in
the field of image scene parsing, researchers turn to explore
applying scene graph in video understanding. Video un-
derstanding requires reasoning about the relationships be-
tween actors and objects within a long video sequence. In
SGVST [43], the image scene graph method is used to gen-
erate the story from an image stream. Zhuo et al. [55] fur-
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Figure 2. Framework of the proposed method. We employ the spatial encoder for extracting spatial context in a single frame, and a
progressive temporal decoder for extracting temporal context. We pre-train the spatial encoder and the progressive temporal encoder for a
anticipatory task to learn the temporal correlation. Then we fine-tune the whole model for dynamic scene graph generation by combining
the information of the current frame.

ther propose the use of scene graphs to help action reason-
ing. Although these methods introduce scene graphs into
video understanding, they ignore temporal information in
the generation of scene graphs. There are very few meth-
ods [1, 7, 31, 32, 39] proposed for exploring the utilization
of temporal information, and little attention has been paid
to explore the temporal correlation of relationships in the
prediction and inference. These methods on dynamic scene
graph generation simply embed temporal information into
visual features, while the temporal correlation between re-
lationships is ignored. The work most related to ours is
STTran [7], which adopts a Transformer architecture to ex-
plore the temporal dependence of relationships and achieves
promising results. The major difference is that we propose
an anticipatory pre-training paradigm to explicitly model
the temporal correlation of the relationships, which results
in the better performance of our model.

Transformer. The Transformer architecture was firstly
proposed by Vaswani et al. [41] for translation task. Since
Transformer has superior performance, a large number of
improved models have been developed in the field of natural
language processing. Devlin et al. [9] propose a large scale
pre-trained model BERT, which performs well in a variety
of natural language processing tasks. Then, the Transformer
has also been successfully applied in vision-language tasks,
e.g., VQA [2, 50] and image caption [17, 47]. More re-
cently, Transformer has also be widely used in video-related
tasks. For example, Girdhar et al. [13] propose Action
Transformer that utilizes Transformer to refine the spatio-
temporal representations, and Wang et al. [44] propose
VisTR for video segmentation. Different from these meth-
ods, dynamic scene graph generation needs to pay more at-
tention to the temporal changes of the relationships.

Pre-Trained Models. Pre-trained models are first pro-
posed in the field of natural language processing, such

as Word2Vec [28], GloVe [29], CoVe [27], ELMo [30],
BERT [9], and GPT [3]. These methods use large-scale
data for pre-training and achieve satisfactory performance
in a variety of downstream tasks, such as object detec-
tion [15, 25, 33, 34], and image captioning [2, 42]. In-
spired by these methods, more and more pre-trained models
have been applied in vision task. A series of CNNs [16,
20, 35, 37] and Transformers [10, 40] are pre-trained on
large-scale dataset ImageNet [8] and can provide robust vi-
sual features for downstream tasks. More recently, there
are also pre-trained models designed for other modali-
ties. VideoBERT [36] conducts pre-training on the Cook-
ing312K video dataset [36] and applies the model in zero-
shot action classification task and video captioning task. Af-
ter pre-training, spoken question answering (SQA) task is
used for evaluation. To our best knowledge, this is the first
work of applying pre-training and fine-tuning paradigm in
dynamic scene graph generation.

3. Method

In this section, we first introduce the problem formula-
tion of dynamic scene graph generation and then describe
the structure of the proposed method. Finally, the details of
the pre-training and fine-tuning strategies will are given.

3.1. Problem Formulation

Given a video V = {I1, I2, ..., IT }, dynamic scene
graph generation aims to generate a scene graph sequence
G = {G1, G2, ..., GT }, where Gt is the correspond-
ing scene graph of the frame It. We define Gt =
{Bt, Ot, Rt}, where Bt = {bt,1, bt,2, · · · , bt,N(t)}, Ot =
{ot,1, ot,2, · · · , ot,N(t)} and Rt = {rt,1, rt,2, · · · , rt,K(t)}
indicate the bounding box set, object set and predicate set,
respectively. N(t) is the number of object in the t-th frame,
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and K(t) is the number of relationships.
In this work, we formulate the dynamic scene graph gen-

eration as an online prediction task based on pre-training
paradigm. Since the spatial and temporal information are
both important for the prediction of Gt, i.e., both the cur-
rent frame It and the previous frames {I1, I2, · · · , It−1}
contribute a lot to the prediction of Gt, the probability of
Gt can be formulated as follows:

P (Gt|{It}) = P (Gt|{It−1})P (Gt|It), (1)

where P (Gt|{It−1}) is designed to capture the temporal
correlation and is learned by an anticipatory pre-training
model. We use {It−1} to denote the set of previous frames
for current frame It, where {It−1} contains both labeled
and unlabeled frames. P (Gt|It) is designed to predict the
scene graph based on the spatial information from It, which
is learned in fine-tuning.

Following the widely used definition [52], given It, the
probability of Gt can be formulated as the multiplication of
the probabilities of Bt, Ot, and Rt:
P (Gt|It) = P (Bt|It)P (Ot|Bt, It)P (Rt|Ot, Bt, It). (2)

Similarly, P (Gt|{It−1}) can be defined as follows:

P (Gt|{It−1} =P (Bt|{It−1})P (Ot|{Bt−1}, {It−1})
P (Rt|{Ot−1}, {Bt−1}, {It−1}).

(3)

3.2. Framework Overview

The overall framework of our model is shown in Fig-
ure 2. To predict the scene graph Gt for the t-th frame It,
we firstly use the pre-trained detector to detect object boxes
and recognize their categories in the current frame It and
the previous frames {It−1}. Then, we use the spatial en-
coder to extract the context-aware visual representations of
the object pairs in different frames. Next, the progressive
temporal encoder is adopted to explore the long-term tem-
poral correlations among object pairs in different frames,
which is learned in an anticipatory pre-training network. In
the fine-tuning stage, the spatial encoder and the progres-
sive temporal encoder are reused to predict the relation cat-
egories for the object pairs in the current frame based on
both the output of the spatial encoder and the progressive
temporal encoder.

3.3. Detector Backbone

Following [7], we adopt Faster R-CNN as our backbone
to detect objects from video frames, which is pre-trained on
Action Genome [18] dataset. The representation of object
oi contains spatial information, visual feature and semantic
feature, which can be formulated as follows:

ft,i = [Movt,i, φ(bt,i), st,i], (4)

where [, ] indicates concatenation operation, Mo indicates
the trainable matrix of a linear transformation layer, and φ is
a function transforming the bonding box bt,i to a continuous
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Figure 3. Illustration of the proposed Anticipatory Transformer.
(a) is spatial encoder, which is utilized to capture the spatial con-
text information in each frame. (b) is progressive temporal en-
coder, which captures temporal correlation from the representation
of relationships in different frames.

vector. The semantic embedding st,i is determined by the
object category ot,i with a trainable linear embedding layer.

3.4. Anticipatory Transformer

In this work, we design our model based on Trans-
former to capture spatial information and temporal corre-
lation. Therefore, we firstly give a simple review of the
general Transformer [41]. Given the queries Q, keys K and
values V , the self-attention layer is defined as follows:

Attention(Q,K, V ) = Softmax(
QK>√
DK

)V, (5)

where
√
DK is the key dimensionality.

In classical model, the self-attention operation is fol-
lowed by a normalization layer, a feed-forward layer and
another normalization layer, and all the above constitutes a
complete self-attention layer. Extending the self-attention
layer into multi heads enable the mechanism to consider
various attention distributions and make the model pay at-
tention to different aspects of information, thus the multi-
head attention can be generated, which is the main compo-
nent of the Transformer.
MultiHead(X) = Concat(h1, h2, · · · , hH)Wo,

hi = Attention(XWQi , XWKi , XWVi),
(6)

where X ∈ RDX×D, Wo ∈ RHDV ×D is the parameter
matrice, WQi ∈ RD×DQi , WKi ∈ RD×DKi and WVi ∈
RD×DVi are projection functions. For simplicity, we denote
the multi-head attention layer as MultiHead(·), and focus
on the description of the input X .

Spatial Encoder. We firstly design a spatial encoder to
extract visual information contained in a single frame. As
shown in Figure 3(a), Q, K and V share the same input
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X0
spa,t ∈ RN(t)×Nspa , which is presented as:

X
(0)
spa,t = {ft,1, ft,2, · · · , ft,N(t)}, (7)

where N(t) denotes the number of objects detected in the
frame It. The output of the n-th MultiHead layer is com-
puted as follows:

X
(n)
spa,t =MultiHeadspa(X

(n−1)
spa,t ). (8)

The output of the n-th layer will be used as the input of the
(n+1)-th layer. Since ft,i already contains the position in-
formation of the corresponding object, there is no additional
position coding operation. The final output of the spatial en-
coder is denoted as X̂spa,t = {f̂t,1, f̂t,2, · · · , f̂t,N(t)}.

Relationship Representation. The representation of
each relationship is computed based on X̂spa,t and union
box feature. We denote the relationship between the objects
ot,i and ot,j as rt,ij , which can be represented with the fol-
lowing feature:

et,ij = [f̂t,i, f̂t,j ,Muut,ij ], (9)

where ut,ij is union box feature of the i-th and j-th objects
in frame It obtained by RoIAlign, Mu is linear metric for
dimension compress.

Progressive Temporal Encoder. As shown in Fig-
ure 3(b), the progressive temporal encoder is designed to
capture the temporal correlation of relationships, which
consists of short-term encoder and long-term encoder.
Since short-term temporal information is more relevant to
the target frame in pre-training task, while the long-term
temporal information contains rich temporal correlation
knowledge, both of them are equally important. Simply us-
ing long sequence data as input can take into account both
the short-term and long-term information at the same time.
However, this will result in too many model parameters that
are hard to train. To solve this problem, we propose an effi-
cient way to explicitly explore the comprehensive temporal
information by a short-term encoder and a long-term en-
coder. The short-term encoder captures short-term infor-
mation most relevant to the target frame, which takes the
relationship representations of the same subject-object pair
in different frames as input. To find the same subject-object
pair in different frames, we adopt the IoU (i.e., intersec-
tion over union) to match the subject-object pairs detected
in frames {It−γ , · · · , It−1}, where γ − 1 is the number
of frames that can be processed by the short-term encoder.
Specifically, we calculate the matching score between two
object pairs (ot′,i, ot′,j) and (ot′,i′ , ot′−1,j′) in in the t′-th
and t′ − 1-th frames as follows:
ε = min

(
IoU(ot′,i, ot′−1,i′), IoU(ot′,j , ot′−1,j′)

)
. (10)

The object pairs in adjacent frames are matched if the
matching score ε > 0.8. For each subject-object pair
(ot−1,i, ot−1,j) detected in It−1, we establish the temporal
sequence Prij = {(ot−γ,iγ , ot−γ,jγ ), · · · , (ot−1,i, ot−1,j)}

for this pair through frame-by-frame matching. For a frame
which does not have the matched object pair, we create a
placeholder object pair by simply coping the matched ob-
ject pair in the nearest frame. The relationship representa-
tion sequence Aij = {at−γ,ij , · · · , at−1,ij} is constructed
based on Prij . at′,ij is the relationship representation of
(ot′,i, ot′,j) and at′,ij = et′,ij .

Since the temporal sequence of the relationships has an
obvious impact on temporal correlation, we adopt frame po-
sition encoding to inject the temporal position in the rela-
tionship representation. Specifically, we adopt a trainable
liner layer to learn the embeddings of the temporal order
Zs = {zst−γ , · · · , zst−1}. The frame position encodings Zs

have the same dimension as the feature representation et′,ij
of the relationship. Furthermore, we adopt a semantic ex-
tractor which is implemented as a fully connected layer for
obtaining the semantic representation ct′,ij of the relation-
ship between ot′,i and ot′,j .

The short-term encoder is also comprised of multiple
MultiHead layers. The input of the first MultiHead

layer is denoted as X(0)
s,ij = [Aij + Zs, Cij ], and the n-th

MultiHead layer can be formulated as follows:

X
(n)
s,ij =MultiHeadShort(X

(n−1)
s,ij ). (11)

The final output of short-term encoder is denoted as X̂s,ij .
The long-term encoder is adopted to capture long-term

temporal correlations, which takes the output X̂s,ij of the
short-term encoder and the representations of the long rela-
tionship sequence as input. The frame encoding Zl is also
used in long-term encoder to indicate temporal order, which
is calculated in the same way of Zs. The input of the first
MultiHead layer is denoted as follows:

X
(0)
l,ij = {fθ(Uij), φ(X̂s,ij)}+ Zl, (12)

where φ is a 3-layer fully connected network with ReLU
activation function, and Uij = {ut−λ, · · · , ut−γ} denotes
the relationship representations of the long-term sequence.
The construction of Uij is similar to Aij , the difference is
that Uij has a longer sequence than Aij . We denote the
length of Uij as λ, which is much larger than γ. fθ is an
aggregation function used to balance the performance and
efficiency, which combines the representations of different
relationships in the long-term sequence. In this work, we
implement fθ with linear layer according to the analysis of
the experiment, and fθ can be formulated as follows:

fθ(Uij) =Wθ(ϕ(ut−λ,ij)⊗ · · · ⊗ ϕ(ut−1,ij)), (13)

where Wθ is a fully connected layer, ϕ is a convolutional
layer for dimension reshape and ⊗ denotes cross product
operation.

After obtaining the input of the first MultiHead layer
in the long-term encoder, we can formulate the long-term
encoder as follows:

X
(n)
l,ij =MultiHeadLong(X

(n−1)
l,ij ). (14)
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In each batch, the progressive temporal encoder processes
different subject-object pairs in parallel, and the final out-
put of long-term encoder is denoted as X̂l,ij , which is the
temporal context presentation of relationships.

3.5. Pre-training and Fine-tuning Strategy

In pre-training, as described in Sec. 3.1, we propose a
pretext task, which is defined as an online anticipatory pre-
diction. We take {It−1} as model input to predict the scene
graph of It. Since a large number of frames are unlabeled in
dataset, we only use the labeled frames to calculate the loss
of pre-training. Furthermore, since Action Genome [18]
provides the type of relationship category, e.g., attention,
spatial and contacting relationships, we adopt multiple lin-
ear classifiers instead of only one classifier to infer different
kinds of relationships. The category distribution of relation-
ship rt,ij between ot,i and ot,j can be predicted as follows:

yt,ij = Classifierspre(x̂l,ij), (15)

where x̂l,ij is the last element in X̂l,ij . Since in re-
ality there may be multiple correct relationships be-
tween two objects, e.g., 〈person, touching, food〉 and
〈person, eating, food〉, we adopt a multi-label margin loss
in pre-training, which can be formulated as follows:

Lpre(yt,ij , Y
+, Y −) =

∑
p∈Y +

∑
q∈Y −

max(0, 1−ypt,ij+y
q
t,ij),

(16)
where Y + denotes the set of ground-truth predicate labels,
Y − is the set of the negative predicate labels that are not in
the annotation, and ypt,ij indicates the predicted confidence
score of the p-th predicate.

In fine-tuning, we reuse the spatial encoder in Sec. 3.4 to
capture the spatial information of the current frame It. The
representations of objects {ft,i} and relationships {et,ij}
are constructed following Eq. (4) and Eq. (9) respectively.
Then, we adopt another global temporal encoder to capture
the temporal correlation based on the output of the long-
term encoder, which shares the parameters with the short-
term encoder. The formulation of this encoder is defined as
follows:

X
(0)
g,ij = {X̂l,ij , et,ij}+ Zf ,

X
(n)
g,ij =MultiHeadglobal(X

(n−1)
g,ij ),

(17)

where Zf is frame encoding, and the output of global
temporal encoder is denoted as X̂f,ij . Similar as in pre-
training, the multiple linear classifiers are also adopted in
fine-tuning:

y∗t,ij = Classifiersfin(x̂g,ij), (18)

where x̂g,ij is the last element of X̂g,ij , and we use the same
loss function as pre-training.

In inference, we only use the output of classifiers
Classifiersfin in fine-tuning, while the pre-trained clas-

sifiers Classifierspre are discarded.

4. Experiments
In this section, we firstly introduce the details of the ex-

perimental setting and dataset. Then we compare our model
with state-of-the-art methods and report the results. Subse-
quently, we present ablation and qualitative studies.

4.1. Implementation Details

The proposed method is implemented by PyTorch. We
employ Faster RCNN [34] with a ResNet-101 backbone as
the object detector following previous work [7]. For the φ
in Eq. 4, we implement it by a multi-layer perceptron with
3 fully connected layers, and the output dimension is set to
128. The object semantic embedding is obtained by map-
ping the object category distribution to a 200-dimensional
vector with a linear matrix Mw ∈ R36×200. The dimension
of object presentation is 840, while the relationship presen-
tation is 2192. The spatial encoder contains 1 multi-head
attention layer while the short-term encoder, long-term en-
coder and global temporal encoder contain 3 multi-head at-
tention layers. The head number of all multi-head attention
layers is 8.

During the pre-training stage, we use SGD optimizer
with an initial learning rate of 0.001 and decay the learn-
ing rate by multiplying it with 0.9 after every epoch. The
momentum is set to 0.9 and the size of mini-batch is set
to 16. For hyper-parameters, we set the length of short-term
sequence γ to 4 according to the validation results, while the
long-term encoder takes λ = 10. The scene in consecutive
frames may be unchanged and thus the temporal correlation
cannot be reflected, we sample 1 frame in every 3 frames
for pre-training. Furthermore, for batches with insufficient
previous frames, we fill the sequence with a copy of the first
frame.

For fine-tuning, we use SGD optimizer with an initial
learning rate of 1e − 5 and decay the learning rate by mul-
tiplying it with 0.9 after every epoch. The momentum is set
to 0.9 and the size of mini-batch is set to 16.

4.2. Dataset and Metrics

We train and test our method on Action Genome [18],
which is the largest dynamic scene graph dataset. Since
the goal of Action Genome is to decompose the actions,
it focuses on annotating video clips where the action truly
takes place and only the objects involved in the action are
annotated. In the experiments, we use the same training
and testing split as in [18]. Furthermore, we also utilize
the unlabeled frames in the action genome for pre-training.
We evaluate the performance of our model with the metric
of Recall@K (R@K, K = [10, 20, 50]), which measures
the ratio of correct instances among the top K predicted in-
stances with the highest confidences.
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Methods
With Constraint No Constraint

Pred Cls SG Cls SG Gen Pred Cls SG Cls SG Gen

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50
VRD [26] 51.7 54.7 54.7 32.4 33.3 33.3 19.2 24.5 26.0 59.6 78.5 99.2 39.2 49.8 52.6 19.1 28.8 40.5
MotifFreq [52] 62.4 65.1 65.1 40.8 41.9 41.9 23.7 31.4 33.3 73.4 92.4 99.6 50.4 60.6 64.2 22.8 34.3 46.4
MSDN [23] 65.5 68.5 68.5 43.9 45.1 45.1 24.1 32.4 34.5 74.9 92.7 99.0 51.2 61.8 65.0 23.1 34.7 46.5
VCTREE [38] 66.0 69.3 69.3 44.1 45.3 45.3 24.4 32.6 34.7 75.5 92.9 99.3 52.4 62.0 65.1 23.9 35.3 46.8
ReIDN [54] 66.3 69.5 69.5 44.3 45.4 45.4 24.5 32.8 34.9 75.7 93.0 99.0 52.9 62.4 65.1 24.1 35.4 46.8
GPS-Net [24] 66.8 69.9 69.9 45.3 46.5 46.5 24.7 33.1 35.1 76.2 93.6 99.5 53.6 63.3 66.0 24.4 35.7 47.3
STTran [7] 68.6 71.8 71.8 46.4 47.5 47.5 25.2 34.1 37.0 77.9 94.2 99.1 54.0 63.7 66.4 24.6 36.2 48.8
Ours 69.4 73.8 73.8 47.2 48.9 48.9 26.3 36.1 38.3 78.5 95.1 99.2 55.1 65.1 68.7 25.7 37.9 50.1

Table 1. Comparison with state-of-the-art scene graph generation methods on Action Genome. Best result is marked in bold.

Methods
Pred Cls SG Cls SG Gen

R@20 R@50 R@20 R@50 R@20 R@50

w/o Semantic 72.65 72.97 47.25 47.30 35.62 37.94
w/o long-term 72.24 72.98 47.81 47.15 35.67 37.71
w/o Pre-training 71.57 71.59 44.96 45.82 33.24 35.92
Full model 73.81 73.84 48.94 48.94 36.11 38.28

Table 2. Impact of the relationship semantic information, long-
term encoder and pre-training paradigm in the proposed method.
Evaluated on With Constraint strategy.

We evaluate our model under three kinds of experiment
setups: Predicate Classification (Pred Cls): predict the
predicates between actors and objects with given ground-
truth bounding boxes and category labels. Scene Graph
Classification (SG Cls): predict both the predicates and
the class labels of objects with given ground-truth bound-
ing boxes. Scene Graph Generation (SG Gen): predict
relationship labels of object pairs which are detected by de-
tector. An object box is considered to be correctly detected
only if the predicted box has at least 0.5 IoU (Intersection
over Union) overlap with the ground-truth box. Since we
cannot obtain the ground truth bounding box and object
class of unlabeled frames used for training, the detector is
utilized in Pred Cls and SG Cls to detect objects in unla-
beled frames. Furthermore, we analyse the performance
of dynamic scene graph generation based on two typical
generation strategies. (1) With Constraint: Each subject-
object pair is only allowed to have at most one predicate.
(2) No Constraint: Each subject-object pair is allowed to
have multiple predicates. Moreover, since Action Genome
dataset annotates 3 types of relationships (attention, spatial
and contact), our model outputs all the three relationships
for each subject-object pair following [7].

4.3. Comparison with State-of-the-arts

As shown in Table 1, our model outperforms all static
scene graph generation methods and state-of-the-art dy-
namic scene graph generation methods in all metrics. For
fair comparison, all methods share the same object detector.

Since the rich temporal correlation information is ob-

Methods
Pred Cls SG Cls SG Gen

R@10 R@20 R@10 R@20 R@10 R@20

With Constrain
STTran [7] 68.6 71.8 46.4 47.5 25.2 34.1
STTran* 68.8 72.0 46.6 47.8 25.4 37.4
Ours 69.4 73.8 47.2 48.9 26.3 38.3

No Constrain
STTran [7] 77.9 94.4 54.0 63.7 24.6 36.2
STTran* 77.9 94.4 54.3 64.5 24.7 36.9
Ours 78.5 95.1 55.1 65.1 25.7 37.9

Table 3. Ablation study of using unlabeled data for training.

tained from pre-training, our model improves the previ-
ous state-of-the-art method [7] by 0.8%/2.0% on Pred Cls-
R@10/20, 0.8%/1.8% on SG Cls-R@10/20 and 0.9%/2.0%
on SG Gen-R@10/20 under the With Constraint strategy.
This demonstrates that our model performs better in predict-
ing the most important relationships. For No Constraint,
our model outperforms other methods in all settings except
Pred Cls-R@50. Since No Constraint allows a subject-
object pair to have multiple relationships, and R@50 metric
gives the model plenty of opportunities to guess, the results
in this case are unstable. However, our model outperforms
other methods in R@10 and R@20, where the results be-
come more reliable with the less opportunities of guess.

4.4. Ablation Study

In this part, we conduct more experiments to analyze the
impacts of the designed relationship semantic information,
long-term encoder and pre-training paradigm.

Impact of the semantic and long-term encoder. The
first two lines with the full model in Table 2 reflect the role
of the semantic and long-term information in the dynamic
scene graph generation. The semantic provides a high-level
information of temporal correlation and the long-term en-
coder expands the ability of the model to perceive long tem-
poral sequence.

Impact of the pre-training paradigm. To analyze the
influence of pre-training, we retrain a model, which directly
uses the pre-training framework to predict the scene graph
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Figure 4. Parameter analysis. (a) and (b) show how the length of the long-term or short-term sequence affect the performance of our model.
We analyze different types of temporal aggregation function and frame encoding in (c) and (d). Evaluated on With Constraint.
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Figure 5. Qualitative results of our model. For the input RGB frames, we generate the scene graph (in SG Gen task) with top-10 confidence
prediction under the strategy of With Constraint. The blue and pink boxes are correct relationships and objects respectively. The yellow
boxes are wrong relationships.
of It with {It} instead of {It−1} as input. As shown in Ta-
ble 2, the performance of our model improves significantly
after adding the pre-training strategy, which proves that the
pre-training indeed captures the temporal correlation.

Impact of using unlabeled data for training. Since we
utilize the unlabeled data for pre-training, we compare our
model with the variant model STTran∗ which is imple-
mented based on the previous state-of-the-art method [7]
and trained with same scale of data. The results shown in
Table. 3 demonstrate that the additional data is helpful for
capturing time correlation.

Impact of the hyperparameters. There are two impor-
tant hyperparameters in our model, γ and λ which denote
the length of short-term and long-term sequence respec-
tively. As shown in Figure 4 (a) and (b), when λ and γ
become larger, the performance of the model gradually im-
proves until it stabilizes at λ = 10 and γ = 4.

Impact of the different functions of long-term aggre-
gation and frame encoding. We analyze the performance
with different types of long-term aggregation (i.e., fθ) in
Figure 4 (c). The learnable linear layer has better perfor-
mances on the metrics of R@20 and R@50 than average
pooling and maximum pooling, which demonstrates its ef-
fectiveness. As shown Figure 4 (d), the learned frame en-
coding performs better than sinusoidal method on both Pred
Cls-R@20/50 and SG Gen-R@20/50.

4.5. Qualitative Results
The qualitative results are shown in Figure 5. We visual-

ize the results in SG Gen metric under the strategy of With
Constraint, which is a scenario closest to the practical use.
The pink box is correct detection result and blue box is cor-
rect relationship prediction result. The yellow box is wrong

relationship. As shown in Figure 5, our model performs sat-
isfactorily in most of relationships. It is worth noting that
when the object (e.g., book) is occluded, the detection per-
formance is unstable. In this case, our model still can ac-
curately predict the related relationship after detecting the
target based on long-term information and temporal corre-
lations.

5. Conclusion

In this work, we propose a novel pre-training paradigm
for dynamic scene graph generation, which induces the
model to explicitly extract the temporal correlation in task-
level. The pre-training paradigm is instantiated with an An-
ticipatory Transformer architecture, which introduces the
spatial encoder and progressive temporal encoder to extract
the intra-frame spatial information and inter-frame temporal
correlations. We comprehensively capture the visual con-
text from labeled and unlabeled data for each relationship
by the short-term and long-term attention mechanisms in
the progressive temporal encoder. We conduct extensive
experiments to show that the proposed method significantly
outperforms the state-of-the-art methods. In future work,
we would like to explore utilizing our method in scene
graph-based video generation, which is more challenging.
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