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Abstract

Weakly-supervised temporal action localization aims to
localize actions in untrimmed videos with only video-level
labels. Most existing methods address this problem with a
“localization-by-classification” pipeline that localizes ac-
tion regions based on snippet-wise classification sequences.
Snippet-wise classifications are unfortunately error prone
due to the sparsity of video-level labels. Inspired by recent
success in unsupervised contrastive representation learn-
ing, we propose a novel denoised cross-video contrastive al-
gorithm, aiming to enhance the feature discrimination abil-
ity of video snippets for accurate temporal action localiza-
tion in the weakly-supervised setting. This is enabled by
three key designs: 1) an effective pseudo-label denoising
module to alleviate the side effects caused by noisy con-
trastive features, 2) an efficient region-level feature con-
trast strategy with a region-level memory bank to capture
“global” contrast across the entire dataset, and 3) a diverse
contrastive learning strategy to enable action-background
separation as well as intra-class compactness & inter-class
separability. Extensive experiments on THUMOS14 and
ActivityNet v1.3 demonstrate the superior performance of
our approach.

1. Introduction
As a fundamental yet challenging computer vision task,

temporal action localization aims to localize the occur-
rences of prescribed action categories in untrimmed videos.
It has received extensive research attention due to its wide
applications in surveillance [49], video summarization [32],
and highlight detection [55], etc. Many existing meth-
ods [4, 7, 28, 43, 56, 66, 68] are based on fully-supervised
training, which rely heavily on densely annotated frame la-
bels that are typically laborious and time-consuming to ac-
quire. On the other hand, it is much easier for users to
provide video-level tags describing scene context and con-
tent. This naturally gives rise to the weakly-supervised tem-
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poral action localization, or WS-TAL, where cheap video-
level tags are utilized as an alternative supervision sig-
nal [38,41,50]. Most existing WS-TAL methods [18,25,38,
39, 41, 50, 60, 64] follow a “localization-by-classification”
pipeline: a snippet-wise classification is carried out over
time to generate the Temporal Class Activation Sequence,
also called T-CAS or T-CAM [38, 41]; this is followed by
selecting snippets with high responses to localize the plausi-
ble action regions. Given the sparsity nature of video-level
labels, however, snippet-wise classifications are often error-
prone, which may severely damage the final localization
performance.

To learn a good T-CAS for action localization, it be-
comes crucial to enhance the feature discrimination abil-
ity of various video snippets in snippet-wise classification.
Generally, the snippet feature embedding space is expected
to satisfy two properties: 1) action snippets should be sep-
arable from the background snippets that do not belong to
any action classes, i.e., action-background separation; 2)
action snippets from a same class should be closer than
those from different classes, i.e., intra-class compactness
& inter-class separability. This has led to several prior
studies [36, 41, 64] exploring deep metric learning [15, 26]
or contrastive learning [5] to foster learning discriminative
features. As illustrated in Fig. 1 (a) & (b), their focus is
mostly on action-background separation, by pushing action
features of a specific class to be close and pulling action
features away from the background ones, either within in-
dividual videos [64], or within a carefully-designed mini-
batch [36, 41]. They unfortunately fail to capture the inter-
class separability, and ignore the useful “global” contrast
across training videos in the entire dataset. Given the lack
of frame-level annotations, snippet-wise pseudo-labels [64]
or attention-based mechanisms [36, 41] are often used in-
ternally as a substitute. As illustrated in Fig. 1 (a), action-
background separation is performed based on pseudo-labels
over the snippets of each video. In Fig. 1 (b), attention-
pooled video-level features from a mini-batch are engaged
in the feature contrastive training process. Due to the noisy
pseudo-labels or false activations in the learned attention se-
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Figure 1. Different contrastive learning schemes. (a) Exploiting snippet-wise contrastive learning within single video to separate snippet-
wise actions from backgrounds with pseudo-labels (e.g., [64]). (b) Exploiting deep metric learning within mini-batch to separate video-
level actions from backgrounds with attention-weighted pooling (e.g., [36,41]). (c) Our denoised cross-video contrastive algorithm with 1)
pseudo-label denoising module, 2) region-level feature contrastive learning across entire dataset, and 3) action-background separation, as
well as intra-class compactness & inter-class separability.

quence, these strategies would inevitably give rise to noisy
contrastive features. Incorporating these noisy contrastive
features may unnecessarily complicate the snippet feature
training, and result in suboptimal performance of action lo-
calization.

The above observations motivate us to propose a novel
Denoised Cross-video Contrastive (DCC) algorithm tai-
lored for weakly-supervised temporal action localization.
As illustrated in Fig. 1 (c), it contains three key ideas.
First, to account for the pseudo-label noises that are ubiq-
uitous in weakly-supervised TAL, a pseudo-label denois-
ing (PLD) module is devised to reduce the negative im-
pacts of noisy contrastive features. By down-weighting
the confidence scores of incorrect pseudo-labels, more ac-
curate contrastive features can be generated. Second, to
capture “global” contrast across the entire dataset, we pro-
pose a region-level feature contrast strategy which, together
with a region-level memory bank, allow our learned model
to preserve “global” informative features across the entire
dataset. Third, a diverse contrastive training strategy is
proposed to enforce contrasts between actions and back-
grounds, and between different action classes. It is capa-
ble of promoting action-background separation, inter-class
separation and intra-class compactness. Note that our DCC
algorithm is performed only during training, so it does not
incur additional computational cost in testing.

Here we summarize our main contributions. (1) A novel
denoised cross-video contrastive algorithm is proposed for
weakly-supervised TAL. It reduces the influence of noisy
contrastive features; it also captures “global” contrast across
the entire dataset, and simultaneously promotes action-

background separation, inter-class separability as well as
intra-class compactness. As a result, the discrimination
ability of snippet features is significantly enhanced. (2) Ex-
tensive experiments on THUMOS14 and ActivityNet v1.3
datasets demonstrate the superior performance of our ap-
proach over the state-of-the-art methods. Specifically, we
observe a 16.7% improvement over the baseline in terms of
average mAP of IoU thresholds from 0.1 to 0.7 on THU-
MOS14, a significant amount without incurring extra com-
putation cost in inference.

2. Related Work
Temporal action localization (TAL). Fully-supervised
TAL has been extensively studied over the years. They
can be roughly classified into two categories, namely two-
stage methods and one-stage methods. Two-stage mod-
els [4, 7, 10, 21, 22, 24, 43, 45, 56, 62, 68] first generate ac-
tion proposals, then classify them by temporal boundary re-
gression. One-stage methods [1, 23, 28, 65, 66], on the con-
trary, directly predict frame-level action labels. The fully-
supervised paradigm unfortunately relies on densely anno-
tated labels at the frame-level, which may be prohibitively
expensive to acquire.

Weakly-supervised TAL is drawing increasing atten-
tion, as the video-level labels are comparably at low cost.
UntrimmedNet [50] performs per-clip classification, then
selects important clips for video label generation via a
soft or hard attention. STPN [38] introduces sparsity loss
to assist sparse selection of video snippets. To facilitate
the detection of complete actions, [33, 46, 69] propose to
remove the discriminative action parts or randomly hide
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video snippets to press the models in exploring comple-
mentary action regions. Liu et al. [25] design a multi-
branch network and a diversity loss to discover distinct tem-
poral snippets. To improve feature discriminability, deep
metric learning algorithms are explored in [33, 37, 41] to
encourage action features of the same class to stay simi-
lar and to distinguish the activity-related snippets from the
backgrounds. CoLA [64] proposes a snippet contrast loss
to refine the hard snippet representation in feature space
and make them more distinguishable. Meanwhile, explicit
background modeling is introduced in [18,39] with an aux-
iliary background class. Nguyen et al. [39] generate back-
ground attention from the foreground attention in order to
pool background frames for training the background class;
BaSNet [18] designs an asymmetrical training strategy to
suppress background snippet activations. In [19], back-
ground frames are modeled as out-of-distribution samples.
The action-context separation problem has been considered
in DGAM [42] and CMCS [25]. More recently, attempts
are made in [30, 40, 58, 63] to generate frame-level pseudo-
labels for iterative network training. The pioneer work
of [40] proposes an iterative refinement approach by esti-
mating and training with pseudo frame-level ground-truth at
each iteration. Zhai et al. [63] generate frame-level pseudo-
labels by considering two-stream consensus and designing
an attention normalization loss to promote polarizing the at-
tention predictions. Expectation-Maximization [34] is em-
ployed in [30] to alternatively train key instance assign-
ment module and foreground classification module. Yang et
al. [58] train RGB and optical flow streams using pseudo-
labels generated from each other, with an uncertainty-aware
learning module to alleviate noises in pseudo-labels. Our
approach also tackles pseudo-label noise issue, while it is
based on clustering-based confidence voting and is used
to generate more accurate contrastive features. Action-
foreground consistency is explored in [13] with a hybrid
attention to improve boundary accuracy. Lou et al. [29]
propose an action unit memory bank to learn action units
specific classifiers. The differences of our approach with
existing methods are discussed in Sec. 3.4.

Contrastive Learning. As an important branch of deep
metric learning [15], contrastive learning [5, 9, 11, 12, 53]
have recently made impressive progress in unsupervised
representation learning. These approaches learn represen-
tations in a discriminative manner by contrasting positive
pairs against negative ones: two augmentations of the same
image may be viewed as a positive pair, while two different
images are considered as a negative pair. However, false
negative samples are inevitably brought in [5] due to the
lack of label information [6]. Prannay et al. [16] intro-
duce supervised contrastive loss for image classification,
showcasing the benefits of engaging label information in
constructing positive and negative pairs. Moreover, several

latest studies extend contrastive loss to a variety of down-
stream tasks, e.g., semantic segmentation [51, 67] and ob-
ject detection [47, 52, 54], and lead to new state-of-the-art
performance.

3. Methodology

In this section, we first describe our baseline method
in Sec. 3.1, then detail the proposed Denoised Cross-video
Contrastive (DCC) algorithm in Sec. 3.2. This is followed
by introducing the overall training objective and our infer-
ence process in Sec. 3.3. Finally, we discuss the differences
with existing works in Sec. 3.4.

3.1. Baseline Setup

Fig. 2 (upper) presents the pipeline of our baseline algo-
rithm. Given a training video sample {v,y}, where y ∈ RC

stands for the action label of video v and C is the number
of action categories, we sample a fixed number of T non-
overlapping snippets, each with 16 frames, for each video
and then extract snippet-wise features using the pre-trained
feature extractor (e.g., I3D [3])1. Next, we apply several
layers of temporal convolution layers on the pre-trained
features to introduce some temporal involvement between
snippets and output the base Temporal Class Activation Se-
quence (T-CAS) Ab ∈ RT×(C+1) using a classification
head. Here we additionally predict a background class for
each snippet to better model background. Following BaS-
Net [18], a parallel branch termed as foreground selection
module is introduced to learn the class-agnostic foreground
probability Q ∈ RT×1, which can be regarded as temporal
attention for actions. By multiplyingQ withAb temporally,
we obtain the T-CAS Af ∈ RT×(C+1), which filters out
non-action predictions. Following multiple instance learn-
ing [8], we apply a temporal top-k pooling followed by a
softmax on bothAb andAf to generate the video level pre-
diction pb,pf ∈ RC+1, respectively.

By using snippet-wise binary cross entropy loss, we cal-
culate the MIL loss as,

LMIL = −
C+1∑
c=1

(yb
c log pb

c + (1− yb
c) log (1− pb

c)

+ yf
c log pf

c + (1− yf
c ) log (1− pf

c )),

(1)

where yb,yf are the corresponding labels of pb,pf by in-
troducing the background labels. Concretely, yb

c = yf
c =

yc for 1 ≤ c ≤ C. yb
C+1 is set to 1 because that all train-

ing videos contain background snippets and yf
C+1 is set to

0 since background snippets are filtered in Af . To enforce
the foreground scores to be more polarized, we also apply

1We use two modalities, i.e., RGB and optical flow, as the input of
feature extractor.
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Figure 2. The overall architecture of our approach. The upper stream (a) presents the baseline model trained with conventional multiple
instance learning loss with background modeling. We propose (b) denoised cross-video contrastive (DCC) algorithm in the bottom stream,
aiming to shape the snippet feature embedding space and generate better Temporal Class Activation Sequence (T-CAS) for temporal action
localization.

a L1 normalization loss [38] on Q, Lnorm = 1
T

∑T
t=1 |Qt|.

The final loss of this baseline method can be formulated as,

Lbase = LMIL + γLnorm, (2)

where γ is a balance factor and is set to 1e-5 following [18].

3.2. Denoised Cross-video Contrastive Algorithm

An overview of our DCC is illustrated in Fig. 2 (bottom).
Our pipeline includes three components which are Snippet-
wise Pseudo-label Generation (SPG), Pseudo-label Denois-
ing (PLD) and Denoised Contrastive Learning (DCL). SPG
aims to estimate the snippet-wise label for action and back-
ground region extraction in videos and PLD is designed to
emphasize confident video regions while suppress unreli-
able ones to alleviate noisy issue of snippet-wise label. DCL
is in charge of constructing denoised contrastive features
and generating positive and negative feature pairs for con-
trastive learning.
Snippet-wise Pseudo-label Generation. To determine the
required action or background portions under the weakly-
supervised setting, we opt to generate pseudo-label Â by
thresholding Ab as in [30]. A softmax function along the
category dimension ε(·) is first applied on Ab to map the
logits to probability scores. This process is formulated as

Ât,c = Φ(ε(Ab)t,c; θc), (3)

where θc is the threshold value for class c and is set to the
mean value of ε(Ab)c along temporal dimension; Φ is the

thresholding operation where Ât,c is 1 if ε(Ab)t,c ≥ θc, and
0 otherwise.
Pseudo-label Denoising. To address the issue of noisy es-
timated snippet-wise pseudo-label Â, we design a Pseudo-
label Denoising (PLD) module aiming to assign each video
snippet a confidence score that estimates the probability of
its pseudo-label being a trustworthy true label. Intuitively,
video snippets within the same cluster are more likely to
maintain the same category label; so the outliers, i.e., video
snippets whose pseudo-labels are inconsistent with the ma-
jority in each cluster, have a high probability of being mis-
classified and should be assigned with lower confidence
scores.

Concretely, we cluster the embedding features using the
basic K-means algorithm [20] with the number of cluster
center set to K. After feature clustering, each snippet will
be assigned to a cluster center, which is denoted by {Et}Tt=1

where Et ∈ [1,K]. The confidence score of pseudo-label
Ât,c can be calculated by a confidence voting strategy,

St,c =

∑T
k=1 1(Et = Ek ∧ Ât,c = Âk,c)∑T

k=1 1(Et = Ek)
, (4)

where 1(condition) is the indicator function, i.e., a func-
tion that returns 1 if the condition is satisfied, and 0 oth-
erwise. ∧ means the and operation. This strategy takes as
confidence score the percentage of snippets in cluster center
Et that have the same pseudo-label as the t-th snippet.
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Denoised Contrastive Learning. The estimated pseudo-
labels and the confidence scores computed in PLD module
are then engaged to generate contrastive features. To cap-
ture “global” contrast across the entire dataset, we propose a
region-level feature contrast strategy which, together with a
region-level memory bank, allow our learned model to pre-
serve “global” informative features across the entire dataset.
As illustrated in Fig. 2, following [5], we first append a pro-
jection head after the embedded features to get more com-
pact representation, termed asX ∈ RT×d, where d is the di-
mension of projected feature, for constrative learning. Then
we compute the denoised action video feature F by multi-
plying the projected feature X by pseudo-label Âc and its
corresponding confidence score in an element-wise manner:

Ft,i = Ât,c × St,c ×Xt,i, (5)

where c is the video label of encoded X . For background
feature F ′, we alter the pseudo-label Ât,c with 1 − Ât,c

accordingly,

F ′t,i = (1− Ât,c)× St,c ×Xt,i. (6)

Next, we evenly divide the denoised action video feature
F into M action region features along temporal dimen-
sion, denoted as F ⇒ {Rm}Mm=0, where we set R0 = F
by treating video feature as a relatively large region fea-
ture. Finally, we temporally average pooling these region
features to obtain their corresponding vectors {rm}Mm=0 for
contrastive learning. Similarly, the background region fea-
tures {r′m}Mm=0 are also generated. At the same time, a
region-level memory bank is introduced to store the region
features of all training videos, which enables our model to
learn “global” contrast from the entire dataset.

Given these denoised region-level features, we then ap-
ply a diverse contrastive training strategy to both enforce
contrasts between actions and backgrounds, and between
different action classes. The positive/negative sample pairs
are constructed from two sources, i.e., within video and
cross video. In detail, given a denoised action region fea-
ture rm, its positive sample set Pm includes: 1) action re-
gion features from the same video with the same class la-
bel; 2) action region features from other videos with the
same class label. Its negative sample setNm consists of: 1)
background region features from the same video; 2) back-
ground region features from other videos; 3) action region
features from other videos but with different class label.
Equipped with the InfoNCE [12] loss, we can formulate the
contrastive learning as,

Ldcc = − 1

M

M∑
m=0

log

∑
r+m∈Pm

exp(rm · r+m/τ)∑
r±m∈Pm∪Nm

exp(rm · r±m/τ)
,

(7)
where τ is the temperature parameter. Note that all the em-
beddings in the loss function are l2-normalized. With Ldcc,

the model is able to capture action-background separation,
intra-class compactness, and inter-class separability.

3.3. Overall Training Objective and Inference

The overall training objective of our model is

Lfinal = Lbase + βLdcc, (8)

where β is a balancing factor. Since the contrastive features
are less informative in the early training stage, we gradu-
ally increase β from 0.1 to 10000 during network training
to focus more on the MIL loss at the early training stage
and regularize the feature space learning at later stage. We
note that the DCC algorithm is only applied during train-
ing and will be removed at inference time. Thus it does not
introduce any extra computation at deployment stage.

In the inference stage, we first threshold on the video-
level prediction pf with threshold θv to determine the action
categories to be localized. For each selected category, we
threshold the T-CAS Ab with θl to obtain candidate action
proposals. To enrich the proposal pool, multiple thresholds
are applied and Non-Maximum Suppression (NMS) is used
to remove duplicated proposals.

3.4. Discussion

Deep metric learning [15,26] and contrastive learning [5]
are also explored in [33, 36, 37, 41, 64] for temporal action
localization, and the differences are discussed as follows:
(1) [64] designs a snippet-wise contrastive loss to refine the
hard action or background snippet features. They only con-
sider the action-background separation within singe videos.
While in our DCC, a diverse contrastive learning strategy
is proposed to simultaneously contrast action-background,
and different classes. Moreover, our region-level feature
contrast enables the model to learn “global” contrast across
entire dataset. (2) [36, 41] exploit deep metric learning
techniques to enforce action-background separation across
video-level features in a mini-batch while our method cap-
tures the region-level contrast in the entire dataset and also
learns inter-class separability. (3) [41, 64] fail to address
the noisy contrastive feature issue, whereas in our method,
a novel pseudo-label denoising module is designed to gen-
erate better contrastive features. (4) In [33, 37], contrasts
are made between noisy attention-pooled video features and
the class-specific central features, while in our DCC, con-
trasts are made between the denoised region-level features
and abundant “global” features in a novel region-level mem-
ory bank.

4. Experiments
4.1. Datasets and Evaluation Metrics

Empirical analysis are carried out on two popular bench-
mark datasets including THUMOS14 [14] and ActivityNet
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v1.3 [2]. THUMOS14 includes untrimmed videos with 20
categories. The videos are densely annotated with frame-
wise labels, in which their temporal lengths vary greatly.
Note that we only use the video-level labels in WS-TAL.
By convention [18, 41], we use 200 videos in the validation
set for training and 213 videos in the test set for evaluation.
ActivityNet v1.3 [2] is a superset of ActivityNet v1.2, which
consists of 10024 training videos, 4926 validation videos
and 5044 testing videos belonging to 200 action categories.
Since the annotations for the test set are not released, fol-
lowing the common practice [33,63], we train our model on
the training set and evaluate it on the validation set.

Following the standard protocol, the mAP (mean Av-
erage Precision) under different IoU (Intersection-over-
Union) is used together with the benchmark code provided
by ActivityNet2 for evaluation.

4.2. Implementation Details

The network is implemented in PyTorch toolbox on a PC
with a single Tesla P40 GPU. Optical flow frames are gen-
erated using TV-L1 algorithm [61]. Following [18, 64], the
number of sampled snippets T is set to 750 and 50 for THU-
MOS14 and ActivityNet v1.3, respectively. For fair com-
parisons, the I3D [3] feature extractor is not fine-tuned. The
foreground selection module contains two fully-connected
layers with ReLU [35] activation. The projection head [5]
is implemented in a similar way with the output dimension
d set to 512. We use Adam optimizer [17] with learning
rate 0.0001. τ is set to 0.1 following [5]. The cluster cen-
ter K and region number M are both set to 5 for THU-
MOS14, and 2 for ActivityNet v1.3. The training takes 4
hours for THUMOS14 and 15 hours for ActivityNet v1.3.
The GPU memory consumption for THUMOS14 is about
3.5GB. Empirically, to avoid model collapse where all snip-
pets are classified to be background, we adopt a two-stage
training mode, i.e., the baseline network is first trained to
generate pseudo-labels, with which we then optimize the
whole network from scratch. θv is set to 0.2. θl spans from
0 to 0.9 with a step size of 0.025.

4.3. Ablation Studies

In this section, we provide detailed analysis on the effec-
tiveness of our core model designs, using THUMOS14.
Effect of each component. Table 1 presents the compar-
ison results of eliminating different modules of DCC. The
DCC model without denoising improves the baseline per-
formance greatly by 12.2% (from 37.7% to 42.3%) in terms
of average mAP of IoU thresholds from 0.1 to 0.7, verify-
ing the effectiveness of our method to improve feature dis-
criminability. More detailed analyses and visualizations of
cross-video contrastive algorithm are in the following sub-
sections. When equipped with PLD module, our DCC fur-

2https://github.com/activitynet/ActivityNet/

Table 1. Ablation studies on THUMOS14 test set. “DCC w/o de-
noising” means only cross-video contrastive learning are adopted.
“DCC” is our final model with denoised cross-video contrastive
algorithm.

mAP@IoU(%) Avg
Ablation Models 0.1 0.3 0.5 0.7 (0.1:0.7)

Baseline 61.7 48.2 29.3 10.9 37.7
DCC w/o denoising 67.3 53.9 33.8 12.5 42.3

DCC (Ours) 69.0 55.9 35.7 13.7 44.0

Table 2. The average confidence scores of both correct and incor-
rect labels computed on THUMOS14 training set.

Average conf Action Background All snippets
Correct label 0.662 0.849 0.799

Incorrect label 0.577 0.707 0.638
Diff (∆) +0.085 +0.142 +0.161

Table 3. Comparison results with different K on THUMOS14.
We report the average mAP under IoU thresholds from 0.1 to 0.7.
“w/o denoise” means without pseudo-label denoising module.

Cluster K w/o denoise 3 5 10 15 50 100
mAP@Avg 42.3 43.3 44.0 43.8 43.9 43.5 43.2

ther improves the action localization performance by 4%.
The average confidence scores for both correct and incorrect
labels are shown in Table 2. It is observed that, the correct
pseudo-label achieves higher average confidence score than
these incorrect ones, verifying the effectiveness of our PLD
module to distinguish correct pseudo-labels from incorrect
ones. In Table 3, we experiment with different number of
cluster K using K-means. It is observed that under a wide
range of K, the results are all better than the model with-
out considering the noisy issue, which further demonstrates
the usefulness and robustness of our proposed pseudo-label
denoising module.
Action-background separation. To study the effective-
ness of our model in capturing action-background separa-
tion, we conduct a comparison experiment with results pre-
sented in Table 4. It is observed that the action localization
performance is significantly improved by an absolute value
of 1.1% for average mAP@0.1:0.7, verifying the effective-
ness of our model to learn action-background separation.
Moreover, in Fig. 3, we visualize the embedded features of
a video example from the THUMOS14 test set for baseline
and our DCC, respectively. The embeddings are projected
to 2-dimensional space using t-SNE tool [48] for visualiza-
tion. As we can see, our method can better separate actions
from backgrounds than the baseline model.
Intra-class compactness & inter-class separability. To
investigate the importance of modeling intra-class compact-
ness & inter-class separability, we further introduce the con-
trast between different action classes to enforce inter-class
separability (3rd row in Table 4). These results show that
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Table 4. Ablation studies of different contrastive learning designs
on THUMOS14. “Intra&Inter”: intra-class compactness and inter-
class separability. “Act-bkg”: action-background separation.

Contrastive features Contrastive strategies mAP@IoU(%)
Video-level Region-level Act-bkg Intra & Inter 0.5 Avg

7 7 7 7 29.3 37.7
3 7 3 7 30.7 38.8
3 7 3 3 31.5 39.6
3 3 3 3 33.8 42.3

Table 5. Analysis on region number M on THUMOS14. We
report the average mAP under IoU thresholds from 0.1 to 0.7. We
also show the number of features in the memory bank, where Nv

is the total number of training videos.

Region numberM 1 3 5 10
Number of features 2Nv 8Nv 12Nv 22Nv

mAP@Avg 39.6 41.2 42.3 41.7

Table 6. Analysis on contrastive features from different videos on
THUMOS14.

Ablation Models Avg
(0.1:0.7)

Baseline (w/o contrast) 37.7
Intra-video Contrast 38.5
Inter-video Contrast w/o memory (Mini-batch) 39.7
Inter-video Contrast w/ memory (Entire dataset) 42.3

the performance of the average mAP@0.1:0.7 is further im-
proved by an absolute value of 0.8% thanks to modeling
intra-class compactness & inter-class separability. We then
visualize the learned feature distribution of various classes
in Fig. 4, where the left part shows the feature space of
the model trained with baseline MIL loss and the right part
shows the feature space of our DCC model. It is observed
that the snippet embeddings of our model are more compact
and well separated, which can produce more discriminative
features and improve action localization performance.
Different level of contrastive features. When using only
video-level features (3rd row in Table 4) for contrastive
learning, the model gets 39.6% average mAP@0.1:0.7.
With our region-level features (4th row), we achieve signifi-
cant performance gain (39.6%→ 42.3% for average mAP),
which strongly verifies the effectiveness of our region-level
contrastive feature design. In addition, in Table 5, we eval-
uate the effect of different region numberM, which repre-
sents the granularity for segmenting videos. The larger the
M value is, the finer the feature granularity is. Experimen-
tal results in Table 5 suggest that: (1) within a relatively
coarse granularity, larger M usually leads to higher mAP
score since more features are retained in the contrastive
training process; (2) too fine-grained granularity (M > 5)
does not further improve the performance. We conjecture
that this is because too fine-grained features are prone to
introduce noisy contrastive features and lead to suboptimal
contrastive training.

Action-background separation

video 156&203

(a) Baseline (b) Ours

BackgroundCleanAndJerk

Figure 3. T-SNE visualizations of action-background separation.

(a) Baseline (b) Ours
Figure 4. T-SNE visualization of intra-class compactness and
inter-class separability.

Table 7. Generalization analysis on different backbones.

mAP@IoU(%) Avg
Ablation Models 0.1 0.3 0.5 0.7 (0.1:0.7)

STPN 57.0 42.8 24.7 10.0 33.5
STPN+DCC 64.5 51.6 32.5 11.3 40.5

BaSNet 61.7 48.2 29.3 10.9 37.7
BaSNet+DCC 69.0 55.9 35.7 13.7 44.0

Contrastive features from different videos. Table 6
presents the ablation experiments for verifying the contribu-
tions of various contrastive features within the same video,
within mini-batch, and across entire dataset. It is observed
that our “Inter-video Contrast” on entire dataset is shown
to significantly boost the performance over “Intra-video
Contrast” and “Inter-video Contrast” on Mini-batch. This
demonstrates the superiority of our DCC in learning better
snippet embeddings by exploiting “global” contrast across
the entire dataset. Meanwhile, the mAP scores are gradually
increased as more video features are engaged in contrastive
training. This observation is consistent with many recent
unsupervised contrastive learning works [5, 12, 53].
Generalization analysis. We verify the generalization abil-
ity of our DCC algorithm by applying it to two recent base-
line models, STPN [38] and BaSNet [18]. Experimental re-
sults are presented in Table 7. After integrating with DCC,
the performances of these two methods are significantly im-
proved by 20.9% and 16.7% on the average mAP@0.1:0.7
scores. This verifies the good generalization ability of our
approach on different backbones.
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Table 8. Performance comparison on THUMOS14 testing set. The ‘Avg’ columns show average mAP under IoU thresholds of 0.1:0.5 and
0.1:0.7. † indicates access to newly-collected data or additional annotations. ∗ means using I3D features.

mAP(%)@IoU Avg Avg
Supervision Methods Publication 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1:0.5) (0.1:0.7)

Full

S-CNN [45] CVPR’16 47.7 43.5 36.3 28.7 19.0 10.3 5.3 35.0 27.3
SSN [68] ICCV’17 66.0 59.4 51.9 41.0 29.8 - - 49.6 -
TAL-Net [4] CVPR’18 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 45.1
BSN [24] ECCV’18 - - 53.5 45.0 36.9 28.4 20.0 - -
GTAN [28] CVPR’19 69.1 63.7 57.8 47.2 38.8 - - 55.3 -

Weak†

BM∗ [39] ICCV’19 64.2 59.5 49.1 38.4 27.5 17.3 8.6 29.8 37.8
3C-Net∗ [37] ICCV’19 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5 -
STAR∗ [57] AAAI’19 68.8 60.0 48.7 34.7 23.0 - - 47.0 -
SF-Net∗ [31] ECCV’20 71.0 63.4 53.2 40.7 29.3 18.4 9.6 51.5 40.8

Weak

UntrimNet [50] CVPR’17 44.4 37.7 28.2 21.1 13.7 - - 29.0 -
STPN∗ [38] CVPR’18 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 27.0
W-TALC∗ [41] ECCV’18 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 -
AutoLoc [44] ECCV’18 - - 35.8 29.0 21.2 13.4 5.8 - -
CleanNet [27] ICCV’19 - - 37.0 30.9 23.9 13.9 7.1 - -
Liu et al.∗ [25] CVPR’19 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9 32.4
BaSNet∗ [18] AAAI’20 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6 35.3
DGAM∗ [42] CVPR’20 60.0 56.0 46.6 37.5 26.8 17.6 9.0 45.6 37.0
EMMIL∗ [30] ECCV’20 59.1 52.7 45.5 36.8 30.5 22.7 16.4 45.0 37.7
TSCN∗ [63] ECCV’20 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 37.8
A2CL-PT∗ [33] ECCV’20 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9 37.8
UM∗ [19] AAAI’21 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 41.9
CoLA∗ [64] CVPR’21 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 40.9
AUMN∗ [29] CVPR’21 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 41.5
FAC-Net∗ [13] ICCV’21 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 42.2
D2Net∗ [36] ICCV’21 65.7 60.2 52.3 43.4 36.0 - - 51.5 -
DCC (Ours)∗ - 69.0 63.8 55.9 45.9 35.7 24.3 13.7 54.1 44.0

Table 9. Performance comparison on ActivityNet v1.3 dataset.
The average mAP is computed on thresholds 0.5:0.05:0.95.

mAP(%)@IoU
Supervision Methods 0.5 0.75 0.95 Avg

Weak

STPN [38] 29.3 16.9 2.6 16.3
CMCS [25] 34.0 20.9 5.7 21.2

BM [39] 36.4 19.2 2.9 19.5
TSM [59] 30.3 19.0 4.5 -

BaSNet [18] 34.5 22.5 4.9 22.2
TSCN [63] 35.3 21.4 5.3 21.7

A2CL-PT [33] 36.8 22.0 5.2 22.5
AUMN [29] 38.3 23.5 5.2 23.5
DCC (Ours) 38.8 24.2 5.7 24.3

4.4. Comparison with State-of-the-Arts

We compare our method with state-of-the-art approaches
under different level of supervisions on THUMOS14 test
set in Table 8. Note that “Full” means training using frame-
wise annotations; “Weak†” indicates using newly collected
data [39] or additional annotations [31,37,57]. Our method
outperforms recently proposed weakly-supervised methods,
e.g. UM [19] and FAC- Net [13], with a large margin. The
average mAP of IoU thresholds from 0.1 to 0.7 even reaches
44.0%, bringing the state-of-the-art to a new level. Our
method also outperforms weak† approaches at almost all

IoU thresholds, and obtains competitive results even com-
pared with fully-supervised methods, which substantially
closes the gap between weakly-supervised TAL and fully-
supervised one. Evaluation on ActivityNet v1.3 benchmark
is displayed in Table 9. We report the mAP score at various
IoU thresholds and report the average mAP for IoU thresh-
olds from 0.5 to 0.95 with a step size of 0.05. As can be
seen, our method performs favourably compared with state-
of-the-art approaches.

5. Conclusion
In this paper, we propose a novel denoised cross-video

contrastive algorithm tailored for weakly-supervised tem-
poral action localization. Our key insight is to enhance the
feature discrimination ability by three critical ingredients,
namely pseudo-label denoising module in addressing noisy
contrastive features, region-level feature contrast strategy
and region-level memory bank to capture “global” cross-
video contrast, and a diverse contrastive learning strategy to
regularize the snippet embedding representation. Extensive
experiments on two benchmarks demonstrate the superior
performance of our approach.
Acknowledgement. This research was supported by CCF-
Tencent Open Fund, the University of Alberta Start-up
Grant, UAHJIC Grants, and NSERC Discovery Grants (No.
RGPIN-2019-04575).

19921



References
[1] Shyamal Buch, Victor Escorcia, Bernard Ghanem, Li Fei-

Fei, and Juan Carlos Niebles. End-to-end, single-stream tem-
poral action detection in untrimmed videos. In Procedings of
the British Machine Vision Conference (BMVC), 2019. 2

[2] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 961–970, 2015. 6

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6299–6308, 2017. 3, 6

[4] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster r-cnn architecture for temporal action lo-
calization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1130–
1139, 2018. 1, 2, 8

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In Proceedings of the 33rd In-
ternational Conference on Machine Learning (ICML), pages
1597–1607, 2020. 1, 3, 5, 6, 7

[6] Tsai-Shien Chen, Wei-Chih Hung, Hung-Yu Tseng, Shao-
Yi Chien, and Ming-Hsuan Yang. Incremental false neg-
ative detection for contrastive learning. arXiv preprint
arXiv:2106.03719, 2021. 3

[7] Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S Davis, and
Yan Qiu Chen. Temporal context network for activity local-
ization in videos. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 5793–5802,
2017. 1, 2

[8] Thomas G Dietterich, Richard H Lathrop, and Tomás
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