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Abstract

Pedestrian trajectory prediction is an essential and chal-
lenging task for a variety of real-life applications such as
autonomous driving and robotic motion planning. Besides
generating a single future path, predicting multiple plausi-
ble future paths is becoming popular in some recent work
on trajectory prediction. However, existing methods typ-
ically emphasize spatial interactions between pedestrians
and surrounding areas but ignore the smoothness and tem-
poral consistency of predictions. Our model aims to fore-
cast multiple paths based on a historical trajectory by mod-
eling multi-scale graph-based spatial transformers com-
bined with a trajectory smoothing algorithm named “Mem-
ory Replay” utilizing a memory graph. Our method can
comprehensively exploit the spatial information as well as
correct the temporally inconsistent trajectories (e.g., sharp
turns). We also propose a new evaluation metric named
“Percentage of Trajectory Usage” to evaluate the compre-
hensiveness of diverse multi-future predictions. Our exten-
sive experiments show that the proposed model achieves
state-of-the-art performance on multi-future prediction and
competitive results for single-future prediction. Code re-
leased at https://github.com/Jacobieee/ST-MR.

1. Introduction

Trajectory prediction is an indispensable part of social
behavior analysis for a variety of applications including
autonomous driving [5, 49], motion tracking [28, 34] and
robotic systems [33]. Such tasks require a high-level under-
standing of videos and human social behaviors to precisely
forecast the future locations of pedestrians based on the ob-
served trajectories and scenes.

Trajectory prediction requires simultaneous processing
of spatial and temporal information. While walking paths
naturally exhibit a temporal consistency, it is also impor-
tant to model spatial interactions among pedestrians such
as talking, grouping and avoiding collisions. Other objects
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Figure 1. Illustration of multi-future trajectory prediction and ex-
isting issues. The yellow and green lines are the observed and
ground truth trajectories. (a) Multiple future trajectories (red ar-
rows) influenced by different intentions and destinations. (b) Mul-
tiple options of paths (orange arrows) heading to the same des-
tination. (c) An imperfect prediction (with heatmap) in Multi-
verse [24] that goes through a vehicle. (d) An imperfect prediction
(with heatmap in the red circle) in Multiverse [24] that violates
temporal consistency.

in a scene also affect the future paths, as pedestrians tend
to avoid obstacles (e.g., street lamps, trees, vehicles) or un-
necessary change of paths (e.g., walk from the pavement to
the middle of the road). However, reactions to spatial in-
teractions may also undermine the original intentions based
on temporal information. Even if both of them are properly
processed, it is still a conundrum to predict spatially reason-
able trajectories while conforming to temporal consistency.

Real-world datasets [2,19,30] have enabled the research
on trajectory prediction and current approaches [11, 25]
have made great progress on single-future trajectory predic-
tion, where the predicted trajectories are evaluated against
the ground truth trajectories recorded in the videos. How-
ever, the human mind is capricious and realistic situations
are complicated. Given an observed trajectory, there can be
multiple different destinations and multiple plausible future
trajectories. Fig. 1(a) demonstrates that multiple intentions
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and destinations can drive the pedestrian at the bottom to
walk in different paths. Fig. 1(b) shows the pedestrian can
select different paths to the same destination.

To evaluate models that generate multiple possible tra-
jectories, Liang et al. [24] recently proposed a simulated
dataset named “Forking Paths”, which provides multiple
ground truth trajectories for the same historical trajectory.
And in the same work, a two-stage end-to-end probabilistic
model named “Multiverse” is designed for multi-future tra-
jectory prediction. However, there are still some issues with
this model. For example, Fig. 1(c) shows a path through
the vehicle; Fig. 1(d) is an example of temporal inconsis-
tent prediction which violates the normal pattern of human
motion with a sharp turn.

In this paper, we propose an encoder-decoder network
to address the aforementioned issues. To effectively pro-
cess the spatial information, we first construct a multi-scale
graph to represent scene segmentation and trajectory fea-
tures. Then, we design a graph-based spatial transformer
to learn the interactions between a pedestrian and other
pedestrians as well as scene objects. Moreover, to integrate
global temporal information, we develop a “Memory Re-
play” algorithm, which utilizes a memory graph to accu-
mulate temporal information and “replay” it to the trans-
former at each time step to ensure the smoothness of tra-
jectories. In addition, we propose a new evaluation met-
ric “Percentage of Trajectory Usage” to evaluate the com-
prehensiveness of multi-future prediction, to complement
the existing minADEK and minFDEK metrics in [24]. We
show that our model achieves state-of-the-art performance
on multi-future prediction on the Forking Paths dataset; and
our results on single-future prediction are comparable to
the current state-of-the-art models on the VIRAT/ActEV [2]
dataset. We summarize our main contributions as follows:

1. We propose a graph-based spatial transformer for spa-
tial interactions of pedestrians. By integrating the
attention mechanism and graph structure, the spatial
transformer can comprehensively generate and aggre-
gate spatial features.

2. We design a novel trajectory smoothing algorithm,
Memory Replay, for improving the temporal consis-
tency of predicted trajectories and minimizing the con-
flicts between spatial and temporal information.

3. We define a new evaluation metric, Percentage of Tra-
jectory Usage (PTU), to evaluate the comprehensive-
ness of multi-future prediction.

2. Related Work
Pedestrian trajectory prediction. There have been various
methods that aim to forecast multiple possible future trajec-
tories. Recent approaches [11,18,35] apply Generative Ad-
versarial Networks (GANs) to generate a distribution of tra-

jectories. Inverse Reinforcement Learning (IRL) [7, 17, 27]
is also becoming popular on multi-future trajectory pre-
diction tasks. Besides, predicting multiple trajectories is
emerging in vehicle trajectory prediction [5, 22, 37, 49].
These approaches, however, have been evaluated using
single-future trajectories, as the ground truth contains a
single path for each pedestrian. Currently, the Multiverse
model [24] achieves the state-of-the-art performance on the
new 3D simulated dataset, the Forking Paths, which is the
first public benchmark designed specifically for evaluating
the generation of multi-future trajectories. Our model out-
performs Multiverse on the Forking Paths dataset for multi-
future trajectory prediction.
GNN-based models. In recent years, Graph Neural Net-
works (GNNs) have become popular. Traditional GNN
models such as Graph Convolutional Network (GCN) [16],
GraphSAGE [13] and Graph Attention Network (GAT) [39]
are widely used in computer vision tasks such as pose es-
timation [44, 51], panoptic segmentation [42], point cloud
analysis [50], etc. For pedestrian trajectory prediction, Sun
et al. [36] construct a GCN-based recursive social behav-
ior graph (RSBG) given the annotations by sociologists.
STGAT [14] models a spatial-temporal graph attention net-
work to encode the pedestrian interaction. Other works
[12, 15, 29, 48] also implement improvements on GNNs
to contribute to pedestrian trajectory prediction. We con-
struct a multi-scale graph to model the interactions between
pedestrians and multiple scales of surrounding areas.
Transformer-based methods. Transformer-based meth-
ods [38] have been a trend in deep learning tasks. It was first
used in Natural Language Processing [8, 31, 40], then flour-
ishes in computer vision [4, 9, 10, 53]. Modeling both spa-
tial and temporal transformer [45, 52] can compete or even
outperform the traditional sequence-to-sequence models in
trajectory prediction, demonstrating their effectiveness in
complex spatio-temporal feature processing. Other meth-
ods [3,20,47] have also inserted transformer-based modules
and achieved high performance on both pedestrian and ve-
hicle trajectory prediction. We design a novel graph-based
spatial transformer containing an attention-based message
generation and a GAT-based aggregation method to effec-
tively collect and process spatial information.

3. Methods

3.1. Overview

Given a series of scene semantic segmenta-
tion maps S = S1, S2, . . . , STobs

and positions
X = (x1, y1), (x2, y2), . . . , (xTobs

, yTobs
) of a pedes-

trian for time 1 : Tobs, our model aims to predict multiple
possible future trajectories where the ith prediction
of a pedestrian is denoted as Ŷ i = (x̂i

t, ŷ
i
t) for time

t = Tobs+1 : Tpred by learning and inferring P (Ŷ |S,X).

2232



Figure 2. Overview of our model. Graph encoder and location encoder each encodes the node level and coordinate level features processed
by the multi-scale graph. At each time step in decoding, our proposed graph-based spatial transformers infer the possible neighboring
locations at the next step. Then, our trajectory smoothing algorithm smooths and corrects the locations that violate the temporal consistency
based on a memory graph that stores the temporal information of the earlier trajectory.

Fig. 2 shows the overall structure of our proposed model.
Our model takes the observed trajectory X and scene seg-
mentation S for video frames in the observation period as
inputs. A multi-scale graph is constructed, which is a two-
dimensional grid where the areas of the grid cells change
with different scales. Each grid cell contains a sub-area
of the scene segmentation and trajectory information. The
inputs processed by the multi-scale graph are passed into
an encoder-decoder network to generate future trajectories.
The encoder encodes the motion pattern of pedestrians as
well as the scene feature over time. The decoder consists
of two main components: a multi-scale graph-based spa-
tial transformer and a trajectory smoothing algorithm which
is named “Memory Replay”. The spatial transformer pro-
cesses the information and makes prediction of the next
step. Memory Replay smooths the prediction by reading
and writing in a memory graph that contains the overall
temporal information of the decoded trajectory. At each
time step, the decoder generates a probability distribution
of locations at the next time step using these two compo-
nents, followed by a convolutional LSTM cell [43]. The
most probable locations that we select at each time is deter-
mined by the diverse beam search [21].

3.2. Multi-scale Graph Generation

We formulate a video frame as a graph G(V,E) with a
set of nodes V and edges E. Specifically, we use a 2D reg-
ular grid with |V | grid cells to split a frame into multiple
areas, where each area can be considered a node v ∈ V that
connects to adjacent nodes with an undirected edge e ∈ E.
Each grid cell can establish connections to the horizontal,
vertical and diagonal neighbors. Inspired by the idea of fea-
ture pyramid [24,26], we design the graph in different scales
to process spatial information in multiple levels. There are
two scales of grids which are the same as those in [24], and
subsequently, the number of nodes can be 36×18 and 18×9.

Our implementation differs from feature pyramid where
we change the amount of features included in a node instead
of resizing the whole image (video frame). Nodes in the
larger scale have less but finer features, and nodes in the
smaller scale have more but coarser features. By learning
on the multi-scale graph, our model can be more adaptive
to different levels of information and make comprehensive
decisions based on surrounding areas of a pedestrian.

3.3. Spatio-temporal Encoder

Inspired by recent studies [24,32], we propose two types
of trajectory encoder: graph encoder and location encoder.
In each graph scale, the graph encoder encodes the node
level feature which is the index of the grid cell where the
current location belongs to, and the location encoder record
the specific coordinate which is the offset from the center
of the area covered by the node. These two encoded hidden
states are passed into the decoder separately.

In contrast to recent approaches [1,11,36] that model the
motion of all pedestrians in a scene to enrich the spatial fea-
tures, we utilize convolutional LSTM [43] to encode both
spatial and temporal features simultaneously:

H(g)Gt = ConvLSTM(gGt , H(g)Gt−1) (1)

H(l)Gt = ConvLSTM(lGt , H(l)Gt−1) (2)

which denote the hidden states of graph encoder and loca-
tion encoder at the graph scale G at time t, respectively.
Since the subsequent process in the encoder and decoder all
operates in the same way on these two hidden states, we de-
note both hidden states collectively as HGt . To embed the
pedestrian location (xt, yt) for the graph encoder in graph
scale G at time t, we adapt one-hot encoding multiplied by
the scene segmentation:

gGt = one-hot(idx(xt, yt)
G)⊙ SGt (3)
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where the idx() function converts the coordinate to the in-
dex of the grid cell in G. Then, the one-hot function projects
the indexed cell onto the corresponding position on the
graph. For the location encoder, we further calculate the
offset from the center of the indexed cell:

lGt = x′
G

t , y′
G

t = (xt, yt)− C(idx(xt, yt)
G) (4)

where C() function obtains the center coordinate of the
indexed cell. The offset (x′

G

t , y′
G

t ) can be calculated by
subtracting such center coordinate from the real coordinate
(xt, yt). We denote this offset coordinate as lGt .

We keep the hidden state HGTobs
at time Tobs after finish-

ing encoding. And following [24], we also calculate an av-
erage of semantic segmentation map S̄G = 1

Tobs

∑Tobs

t=1 SGt
and construct the hidden state to be passed into the decoder
under graph scale G as:

HGTobs
= (HGTobs

||S̄G) (5)
where || is concatenation. The scene segmentation map pro-
vides the pedestrians with awareness of the content and lo-
cation for each object in the scene, which facilitates model-
ing of human-to-scene interactions.

3.4. Graph-based Spatial Transformer

Although RNN models are commonly used for address-
ing sequence prediction tasks [14], they have limitations in
collecting nearby information of a person. Recently, [20,52]
have made some progress on trajectory prediction by ex-
ploiting attention mechanism spatially and temporally. [14]
has employed GAT to model human-to-human relationship.
However, compared to the crowded scenes in the ETH [30]
and UCY [19] datasets, most scenes in the VIRAT/ActEV
and Forking Paths datasets [2, 24] have much fewer pedes-
trians, whereas the spatial interaction with scene objects is
also important.

Therefore, we design a graph-based spatial transformer
to effectively model the relationship between both human-
to-scene and human-to-human with the help of scene se-
mantic segmentation features. The transformer takes the
graph structured encoded hidden states HGTobs

from Eq. (5)
as input node states. We use an attention mechanism to gen-
erate messages for all node pairs and aggregate them by
the graph structure. The transformer will finally produce
a group of updated node states that indicates the possible
locations for the next time step.
Attention-based message generation. We generate two
types of messages from node vj to node vi: attention mes-
sage and global message.

To extract the interactions between the pedestrian and
neighboring areas, we first generate an attention message:

MGAttn[i←j] = fGV [i] ⊙ (fGQ[i]||f
GT

K[j]) + b⃗G (6)

where MGAttn is a matrix containing messages between all

pairs of nodes in the graph scale G. We learn a query ma-
trix fGQ, key matrix fGK and value matrix fGV from the graph
structured hidden state HGTobs

. Inspired by GAT, we con-
catenate the query matrix and the transpose of key matrix
to create an entry for calculating attention value of each
node pair vi and vj . Then, we assign an importance value
to each entry by conducting an element-wise multiplication
between the concatenated matrix and the value matrix and
add bias b⃗G . We denote the message from node vj to node
vi as MGAttn[i←j].

The spatial transformer adapts both advantages of self-
attention mechanism and graph structure so that a pedes-
trian can attach different importance on the neighboring ar-
eas. However, distant objects (e.g., people, vehicles, ob-
stacles) also provide essential spatial context in trajectory
planning. Therefore, we also calculate a similarity score
between each node pair vGi and vGj as a global message:

MGglobal[i←j] = h⃗Gi h⃗
GT

j (7)

where MGglobal[i←j] estimates the distance between features
of node vi and vj in the hidden space. Finally, we obtain the
total message passed from node vj to node vi by summing
these two types of messages together:

MG[i←j] = MGAttn[i←j] ⊕MGglobal[i←j] (8)
where ⊕ is element-wise addition. The total message in-
cludes both unique information from neighboring nodes and
similarity estimation from a global view.
Update of node states. To update node states, we first cal-
culate the edge weights based on the total message in Eq.
(8):

eG[i←j] =
exp(MG[i←j])∑

k∈NG
i
exp(MG[i←k])

(9)

where calculated edge weight eG[i←j] is normalized by the
softmax function and node k belongs to the neighbors of
node i. To update the new node states, we apply a simple
dot product between calculated edge weight and the node
state in the previous time step:

H̃Gt (i) = eG[i←j]h
G
i (10)

where H̃Gt is the calculated node state for all nodes. The
output at time t and the new hidden state at time t + 1 are
generated by:

P̂Gt = σ(δ1(HGt )) (11)

HGt+1 = ConvLSTM(H̃Gt , δ2(P̂
G
t )) (12)

where P̂Gt is the prediction at time t. For each node vi,
P̂Gt (i) can be considered a probability if the input is from
the graph encoder, or a coordinate value offset from the cen-
ter of node vi if the input is from the location encoder. The
output at time t will be the input at t+ 1 and be passed into
the convolutional LSTM cell with the updated node states
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H̃Gt . δ1 and δ2 are two different linear layers. The hidden
state at time t+ 1 is represented as HGt+1.

3.5. Memory Replay

Our spatial transformer can encourage the model to fo-
cus more on the most probable areas but neglects to take into
account the temporal consistency. In the decoder, decoded
hidden states from the transformer at time step t is heavily
based on the decoded states at t−1. However, the locations
at the current time is also influenced by the hidden states at
all previous time steps. In other words, if we only consider
the computations based on the most recent time step, our
predictions sometimes deviate from the originally intended
destinations implied by the hidden states further before. To
address this issue, we propose a trajectory smoothing algo-
rithm “Memory Replay” that utilizes a memory graph G(V )
to dynamically record the decoded temporal information of
a trajectory, where |V | is the same as the number of nodes
in the hidden state graph scale G. Memory Replay operates
on the edge weights calculated by the transformer. At each
time step, the memory graph G carries the smoothed edge
weights of all node pairs (including a node to itself) in the
past decoding time steps and decreases the weights of edges
that point to the temporally inconsistent locations.

The processing steps are shown in Algorithm 1. Before
decoding, we initialize the memory graph to all zeros. Dur-
ing each time step in decoding, we first pass the hidden state
at the previous time into our spatial transformer to calculate
the edge weights eG for each node by Eq. (9) (Line 5).
Then, we smooth the value of eG by element-wise addition
with G (Line 6). G is populated with the smoothed eG at
every time step (Line 7) to ensure that it includes the most
recent decoded states. The hidden state at the current time
is calculated by combining the updated node states based
on the smoothed edge weights and the hidden state at the
previous time in Eq. (10), as well as the output at the previ-
ous time (observed trajectory when the time is Tobs) in Eq.
(12) (Line 9). Finally, we generate the output at the cur-
rent time based on the new hidden state by Eq. (11) (Line
10). Therefore, the memory graph can record the newest
edge weights at each time step, where the edge weights are
smoothed by the memory graph at the previous time step.
Memory Replay effects in such a recursive manner.

3.6. Loss

Following [24], we split our training as a classification
task (graph encoder stream) and regression task (location
encoder stream). We consider the ground truth output for
each graph scale G at each time t as PGi (t) and the duration
for loss calculation as T1:loss. We use cross-entropy loss for

Algorithm 1: Memory Replay.

input : Encoded last hidden state HGTobs
and the last

observed trajectory P̂GTobs
in Graph scale G

at time Tobs

1 for G ∈{(18, 32), (9, 16)} do
2 G← zeros× G
3 HGTprev

, P̂GTprev
← HGTobs

, P̂GTobs

4 for Tcurr ←− Tobs+1 to Tpred do
5 eG ← calculate edge weights by the spatial

transformer in Eq. (9)
6 eG ← σ(eG ⊕G)

7 G← eG

8 Tprev ← Tcurr

9 HGTprev
← prepare for hidden state in the

next time step by Eq. (10) and Eq. (12)
10 P̂GTprev

← generate output with HGTprev
by

Eq. (11)
11 end
12 end

the graph encoder stream:

LGc = − 1

Tloss

Tloss∑
t=T1

∑
i∈G

PGi (t) log(P̂
G
i (t)) (13)

In addition, inspired by [36], we propose exponential
smooth L1 loss for the location encoder stream:

LGr =
1

Tloss

Tloss∑
t=T1

∑
i∈G

SmoothL1(P
G
i (t), P̂

G
i (t))×e

Tloss−t+1

µ

(14)
where we define a penalty term e

Tloss−t+1

µ to guide the
model focus more on the predictions at earlier time steps as
the quality of earlier trajectories can greatly affect the later
ones. The hyperparameter µ is used to control the strength
of the penalty term.

To benefit from the multi-scale graph, we refer to multi-
scale discriminators [41] and sum the loss calculated in both
scales Scales ∈ [36× 18, 18× 9]:

L =
∑

G∈Scales

αLGc + βLGr (15)

and L is used to optimize the training in both scales.

3.7. Generation of Multiple Trajectories

We refer to [21,24] utilizing diverse beam search to gen-
erate multiple trajectories in the graph encoder stream. At
time t−1 in the graph scale G, we obtain a set of K decoded
trajectories with their conditional logarithmic probabilities
denoted as CG,k1 , CG,k2 . . . CG,kt−1 where k ∈ [1,K] and K is
the beam size. Given the probability P̂G,kt inferred by the
model at time t, we calculate the new logarithmic probabil-
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ity of the graph node i in the beam k as:
CG,kt (i) = CG,kt−1 + log(P̂G,kt (i))− γ(i) (16)

where i ∈ G and k ∈ [1,K]. γ(i) is the diversity rate.
In total, we need to calculate |V | × K such probabilities
for all nodes and beams, where |V | is the number of nodes.
Finally, we select top K of them as the predictions. For the
location encoder stream, we apply the offset values to the
predicted nodes to obtain the precise coordinates.

4. Experiments

4.1. Evaluation Metrics

Single Future Evaluation. Same as previous studies
[1, 11, 25], we use the following two common evaluation
metrics: 1) Average Displacement Error (ADE): the aver-
age L2 distance between the ground truth locations and pre-
dicted locations over all time steps. 2) Final Displacement
Error (FDE): the L2 distance between the ground truth lo-
cations and predicted locations at the final time step.
Multi-future Evaluation. We assume that for each data
sample, there are J ground truth trajectories and the model
makes K predictions. Following the recent public bench-
mark [24] on the Forking Paths dataset, we use: 1) Min-
imum Average Displacement Error Given K Predictions
(minADEK); and 2) Minimum Final Displacement Error
Given K Predictions (minFDEK). For each ground truth
j ∈ J in the data sample i ∈ N , we choose one of the K
predictions with the smallest overall distance to j to calcu-
late the average displacement and the one with the smallest
final distance to calculate the final displacement.
Percentage of Trajectory Usage. We propose a new
method of evaluation named “Percentage of Trajectory Us-
age” (PTU) to evaluate the comprehensiveness of the per-
formance of multi-future prediction.

Figure 3. An illustration of low percentage of predicted trajec-
tories usage by minADEK evaluation. There are 5 ground truth
trajectories (black arrows) and 8 predictions (dotted lines). But
only 2 predictions (green dotted lines) are used while evaluating
with minADEK and others (red dotted lines) are unused.

Although minADEK and minFDEK can evaluate the
displacement between prediction and ground truth, they ig-
nore the diversity of prediction distribution. As illustrated

in Fig. 3, there are 5 ground truth trajectories and 8 pre-
dicted trajectories. However, according to the definitions of
minADEK and minFDEK , only 2 predictions are included
in the evaluation, which are the closest prediction for each
ground truth. We consider this an incomprehensive predic-
tion, where several ground truth trajectories share the same
predicted trajectory. Ideally, we expect to have 5 distinct
predictions corresponding to 5 ground truth trajectories. In
addition, Yuan et al. [46] developed Average Self Distance
(ASD) and Final Self Distance (FSD) to evaluate the diver-
sity of prediction distribution by calculating the L2 distance
between each prediction with its nearest prediction. How-
ever, diversity of prediction that calculated by ASD and
FSD fails to consider the number of predicted trajectories
that lie in the distribution of ground truth.

To evaluate the comprehensiveness of prediction distri-
bution, we define PTU as:

PTU =

∑N
i=1 |p̂i|/|Yi|

N
(17)

where |p̂i| denotes the number of predictions used while
evaluating with minADEK and minFDEK and |Yi| denotes
the number of ground truth trajectories in a data sample. We
sum such percentage for all N data samples then average it.
Under the same result of minADEK and minFDEK , a larger
PTU represents a more comprehensive prediction.

4.2. Implementation Details

We use the same data processing method as [11] and, fol-
lowing [24], we apply the pre-trained scene segmentation
model [6] to obtain scene segmentation features. We uti-
lize a single convolutional LSTM layer for both the encoder
and decoder; and aggregate features of one-hop neighbors
in our graph-based transformer. We set the learning rate as
0.3 with decay value of 0.95 and weight decay of 0.001,
which are the same as [24]. We embed the graph features
with an embedding size of 32 and the hidden state sizes for
both the encoder and decoder are 256. For hyperparame-
ters α and β in total loss, we set α = 1.0 and β = 0.2;
and µ in our exponential smooth L1 loss is 10. We only
apply such exponential loss on single-future prediction as it
will affect the diversity of multi-future prediction through
experiments. In order to align with [24], we also generate
K = 20 most possible predictions for each data sample in
multi-future prediction.

4.3. Multi-future Prediction

The Forking Paths Dataset. The Forking Paths dataset
[24] is a simulated dataset specifically designed for multi-
future prediction. This dataset was constructed by 5 scenes
in VIRAT/ActEV and 4 scenes in ETH/UCY. There are
127 scenarios, each of which is rendered in three 45-degree
views and one top-down view. There is one controlled agent
in each scenario which has on average 5.9 future trajecto-

2236



Method minADE20 ↓ minFDE20 ↓
45-degree top-down all PTU ↑ 45-degree top-down all PTU ↑

LSTM 201.0 183.7 196.7 N/A 381.5 355.0 374.9 N/A
Social-GAN(PV) 191.2 176.5 187.5 44.70% 351.9 335.0 347.7 42.82%
Social-GAN(V) 187.1 172.7 183.5 43.00% 342.1 326.7 338.3 41.85%
Next 186.6 166.9 181.7 N/A 360.0 326.6 351.7 N/A
Multiverse 168.9 157.7 166.1 47.45% 333.8 316.5 329.5 44.35%
Ours 165.5 154.5 162.8 48.65% 318.9 302.5 314.8 50.83%

Table 1. Quantitative evaluation of multi-future trajectory prediction. minADEK and minFDEK results are presented on 45-degree, top-
down and all views. PTU results are only evaluated for multi-future prediction models. All models are trained on the VIRAT/ActEV
dataset and tested on the Forking Paths dataset.

ries. We aim to predict multiple trajectories for each con-
trolled agent. The length of observation time is Tobs = 8
frames and prediction time is Tpred−obs = 12 frames.

Baselines. We compare our model with 4 baseline models.
LSTM: A simple LSTM implementation which only mod-
els the trajectory inputs. Social GAN [11]: A recent GAN-
based model that generates multimodal prediction distribu-
tions. We report two configurations: the model with only
variety loss (Social-GAN(V)) and with both variety loss and
global pooling (Social-GAN(PV)). Next [25]: the state-of-
the-art model on the VIRAT/ActEV for single-future pre-
diction. Since the model utilizes rich visual features, we
compare our model with Next without activity prediction
module. Multiverse [24]: the recent state-of-the-art prob-
abilistic model for multi-future prediction on the Forking
Paths dataset.

Quantitative Evaluation. Table 1 shows the comparisons
of multi-future prediction between basline models and our
model in minADE20, minFDE20 and PTU metrics. We can
see that our model outperforms all baseline methods. Com-
pared to the current state-of-the-art model Multiverse, the
average minADE20 reduces by 3 points and the average
minFDE20 reduces by 15 points on all views. The PTU
value is higher than Multiverse under minADEK by 1.2%
and under minFDEK by 6.5%, which demonstrates that our
model generates more comprehensive predictions.

Qualitative Evaluation. Fig. 4(a) are the results of Multi-
verse and Fig. 4(b) are those of ours. From the three sets of
comparisons on the left, we can see that the predictions of
Multiverse go through the vehicles, whereas ours can make
predictions that lie in the ground truth distribution without
colliding with other objects. These cases demonstrate that
our spatial transformer can detect objects and make reason-
able decisions accordingly. Furthermore, the three sets on
the right in Fig. 4(a) show the temporal inconsistent cases
of Multiverse, whereas ours can make smooth predictions,
which reflects that our Memory Replay is effective in re-
taining the temporal consistency of predictions.

Method ADE↓ FDE↓
LSTM 23.98 44.97

Social-GAN(V) 30.40 61.93
Social-GAN(PV) 30.42 60.70

Next 19.78 42.43
Multiverse 18.51 35.84

Ours 18.58 36.08

Table 2. Quantitative evaluation of single-future trajectory predic-
tion on VIRAT/ActEV dataset in ADE and FDE metrics.

Method ADE↓ FDE↓
Single-scale graph 19.71 37.32

No Location Encoder 41.18 61.23
No Memory Replay 19.34 37.05
No exponential loss 19.39 37.09

Full Model 18.58 36.08
Table 3. Ablation study for key components in our model on
single-future prediction.

4.4. Single Future Prediction

VIRAT/ActEV Dataset. Following [24], we use VI-
RAT/ActEV [2] as the dataset for single-future trajectory
prediction. This dataset is designed to evaluate tasks such
as activity detection and object tracking. We use the same
training, validation and testing split as [23–25] to make fair
comparisons. Observation length is 3.2 seconds (8 frames)
and prediction length is 4.8 seconds (12 frames), which are
the same as the previous works [1, 11, 23–25].
Quantitative Evaluation. The results of single-future pre-
diction are shown in Table 2. The result of our model is the
second best and very close to that of Multiverse, exhibit-
ing large improvement over GAN-based models. This im-
plies that our model performs effectively for both simulated
multi-future and real-world single-future scenarios.

4.5. Ablation Study

Ablations of key components. For single-future predic-
tion, we verify four components: without multi-scale graph
and only keep a scale of 36 × 18, no Memory Replay mod-
ule, no Location Encoder, and no Exponential Smooth L1
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(a) Imperfect/Error cases of Multiverse

(b) Improved cases of our model
Figure 4. Qualitative comparisons between the Multiverse and our model. The yellow and green lines are observed and ground truth
trajectories. The heatmaps are prediction distributions.

Method minADE20 ↓ minFDE20 ↓
45-degree top-down all PTU ↑ 45-degree top-down all PTU ↑

Single-scale graph 170.9 160.3 168.3 44.89% 337.9 315.8 332.4 39.96%
No Location Encoder 245.4 237.3 243.4 31.14% 463.0 441.7 457.7 28.56%
No Memory Replay 167.3 153.2 163.7 46.53% 330.1 306.2 324.1 42.43%
Ours (Full Model) 165.5 154.5 162.8 48.65% 318.9 302.5 314.8 50.83%

Table 4. Ablation study for key components in our model on multi-future prediction.

Value of µ ADE↓ FDE↓
+∞ 19.39 37.09
µ=20 19.19 36.83
µ=10 18.58 36.08
µ=5 18.56 36.24

Table 5. Ablation study for different values of µ in our Exponential
Smooth L1 loss on single-future prediction.

loss. For multi-future prediction, we only test on the first
three components as the exponential loss is only designed
for promoting performance of single-future prediction in
training. As indicated in Tables 3 and 4, without any of
these key components, our model shows performance drop
in varying degrees. Additionally, we apply PTU on all key
components on multi-future prediction. From Table 4, we
can see that our model achieves the highest PTU under both
minADEK and minFDEK .
Exponential smooth L1 loss. Multiplying the penalty term
can lead to small improvement, as it guides the model to
focus more on the earlier data in a sequence, which can
affect the overall performance of predictions in the whole
sequence. We select the values of µ as +∞, 20, 10 and 5
(+∞ means only using smooth L1 loss) for comparisons.
Table 5 shows that when µ = 10, our model achieves the
overall best performance, which reduces the ADE by 3.6%
and FDE by 2.4% on average.
Limitations. We show some imperfect cases of our model
as limitations. Fig. 5(a) is a case that our model only pre-
dicts trajectories that go straight ahead, whereas there are
some ground truth trajectories turning right in diverse de-
grees. It might be improved if diversity control is applied

on loss functions or during selecting final predictions. Fig.
5(b) shows our model sometimes is not aware of the walk-
ing speed and makes prediction apparently longer than the
ground truth. Data augmentation would help reduce simi-
lar occurrences. These imperfect cases and possible ideas
would inspire our future research.

(a) (b)
Figure 5. Example of limitations of our model.

5. Conclusion
This paper focuses on multi-future pedestrian trajectory

prediction when there are multiple plausible future trajec-
tories for each pedestrian in the ground truth. We model
the spatial interactions by a graph-based spatial transformer,
which utilizes an improved attention-based message gener-
ation and aggregation method as well as adopting a multi-
scale graph structure. We also introduce the Memory Re-
play algorithm to generate smooth trajectories by coordi-
nating with the transformer. Moreover, we propose Percent-
age of Trajectory Usage to evaluate the comprehensiveness
of multi-future prediction. Our proposed model achieves
state-of-the-art performance for multi-future prediction on
the Forking Paths dataset and our single-future prediction
results can compete with those by current state-of-the-art
models on the VIRAT/ActEV dataset.
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