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Abstract

To address the huge labeling cost in large-scale point
cloud semantic segmentation, we propose a novel hy-
brid contrastive regularization (HybridCR) framework in
weakly-supervised setting, which obtains competitive per-
formance compared to its fully-supervised counterpart.
Specifically, HybridCR is the first framework to leverage
both point consistency and employ contrastive regulariza-
tion with pseudo labeling in an end-to-end manner. Fun-
damentally, HybridCR explicitly and effectively considers
the semantic similarity between local neighboring points
and global characteristics of 3D classes. We further de-
sign a dynamic point cloud augmentor to generate diver-
sity and robust sample views, whose transformation param-
eter is jointly optimized with model training. Through ex-
tensive experiments, HybridCR achieves significant perfor-
mance improvement against the SOTA methods on both in-
door and outdoor datasets, e.g., S3DIS, ScanNet-V2, Se-
mantic3D, and SemanticKITTI.

1. Introduction

Learning the precise semantic meanings of large-scale
point clouds is a fundamental perception task for intelli-
gent machines to understand complex 3D scenes. Exist-
ing deep-learning-based methods heavily rely on the avail-
ability and quantity of labeled point cloud data for train-
ing [5,21,22,29]. However, 3D point-wise labeling is time-
consuming and labor-intensive. Hence, we aim to explore
weakly-supervised learning to maximize the data efficiency
and reduce efforts to annotate 3D point clouds.

Recently, several 3D point cloud weakly-supervised se-
mantic segmentation methods have been emerged, which
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Figure 1. Hybrid contrastive regularization at local and global.
Left: The anchor point is encouraged to be similar to the matched
positive point and its neighbors (in green circle) while being
dissimilar to negative points and their neighbors (in red circle).
Right: The anchor point is encouraged to be similar to the
matched positive point and other points that belong to the same
class (in green box) while being dissimilar to negative points of
different classes (in red box).

can be generally divided into three groups: (1) Consis-
tency regularization [33, 38] employs consistency constrain
from the distribution of prediction after randomly modify-
ing the input or model function. (2) Pseudo labeling, a.k.a.
self-training [4, 18, 37], uses the model predictions as su-
pervision. (3) Contrastive pre-training [9, 32] focuses on
model pre-trained, which is then followed by fine-tuning
with fewer labels for downstream tasks.

Although the existing methods have achieved encourag-
ing results, some limitations remain to be addressed. Firstly,
they do not adequately consider the semantic properties of
neighbors and global characteristics of 3D classes for large-
scale scenarios, failing to fully exploit the limited yet valu-
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able annotations [33]. Secondly, many pipelines [33, 38]
used fixed/handcrafted data augmentation to get multi-view
representation resulting in sub-optimal learning, as the
strength and types of the augmentation depends strongly on
model and dataset size. Besides, the shape complexity of
the samples is ignored in the fixed augmentation. Thirdly,
the existing methods [9, 37] usually involve multiple stages
pre-training and fine-tuning, which raise difficult training
and deploy in practice compared to the end-to-end training
scheme.

To address the above shortcomings, we explore to simul-
taneously leverage the consistency and contrastive property
in label space and feature space, respectively. Inspired by
recent 3D PSD [38] and 2D FixMatch [27], we combine the
pseudo label and consistency regularization strategy in an
end-to-end training scheme for large-scale point clouds. To
better use contrastive information, we redesign the positive
pairs and negative pairs of anchor points. A key observation
is that high-level semantic scene understanding requires not
only local but also global geometric features, making point
cloud instances contrasting more sufficiently Besides, mo-
tivated by PointAugment [15] in the classification task, we
further introduce dynamic point cloud augmentor to provide
transformations for consistency and contrastive regulariza-
tion with jointly optimization.

To implement the above idea, we propose a new
paradigm, called hybrid contrastive regularization (Hy-
bridCR), for weakly-supervised semantic segmentation on
large-scale point clouds, which consists of local and global
guidance contrastive learning along with dynamic point
cloud transformations. As shown in Fig. 1, local guid-
ance contrastive regularization forces data sample of differ-
ent views to be close to their neighbors and far away from
other points. For global guidance contrastive regularization,
each sample is imposed to to be close to the prototype of its
class and far away from different classes prototypes. Fun-
damentally, HybridCR explicitly and effectively considers
the semantic similarity among the local neighboring points
and global characteristics of 3D point cloud classes. Fur-
thermore, the proposed dynamic point cloud augmentor use
multi-layer perceptrons (MLPs) and Gaussian noises to en-
rich the data diversity in context-wise displacement, where
the parameters of augmentor can be jointly optimized with
model training. Extensive experiments show that HybridCR
achieves the SOTA performance for both indoor scenes, i.e.,
S3DIS [1] and ScanNet-V2 [6], and outdoor scenes, i.e.,
Semantic3D [8] and SemanticKITTI [2], demonstrating the
effectiveness of our proposed framework.

To summarize, our contributions are four-fold:

• We propose the first framework HybridCR to leverage
both point consistency and contrastive properties for
weakly-supervised point cloud semantic segmentation
in an end-to-end manner.

• We introduce the local and global guidance con-
trastive regularization to promote high-level 3D se-
mantic scene understanding tasks.

• We design a novel dynamic point cloud augmentor to
transform diverse and robust sample views, which is
jointly optimized with the whole training process.

• HybridCR achieves significant performance over re-
cent weakly-supervised methods and gains 2.4% and
1.0% AP improvements on average in indoor and out-
door datasets, respectively.

2. Related Work
2.1. Weakly-supervised point cloud segmentation

Weakly-supervised learning is an effective way to reduce
high labor costs. Some weakly labeling methods have made
preliminary attempts, such as labeling a tiny fraction of
points [18, 33, 38] or semantic classes [31]. Existing meth-
ods use various means to improve the expressive ability of
models. They can be roughly divided into three categories:

Consistency regularization achieves a perspective per-
formance in weakly-supervised image classification [28,
36, 40]. Xu et al. [33] introduce a multi-branch supervi-
sion method for point cloud feature where two types of
point cloud augmentation and consistency regularization
are adopted. Zhang et al. [38] provide additional supervi-
sion by perturbed self-distillation for implicit information
propagation. Shi et al. [26] investigate label-efficient learn-
ing and introduce a super-point-based active learning strat-
egy. Despite benefiting from the consistency of different
network branches, they fail to consider the contrastive prop-
erty in feature space.

Pseudo labeling creates supervision from the predic-
tions of a trained models [14, 24], assigned by neighbor-
hood graphs [11], or self-training [19, 35]. In the weakly-
supervised setting. Zhang et al. [37] propose a transfer
learning-based method and introduced sparse pseudo labels
to regularize network learning. Hu et al. [18] propose a self-
training strategy to utilize the pseudo labels to improve the
network performance. Cheng et al. [4] utilize a dynamic
label propagation scheme to generate pseudo labels based
on the built super-point graphs. However, they only use the
pseudo labels to gain more supervised signals and ignore
the consistency property in label space.

Contrastive pre-training first proposed by Xie et
al. [32] and initiate the efforts through presenting a con-
trastive learning framework for point cloud scenes. How-
ever, it mainly focuses on downstream tasks with 100%
labels. Hou et al. [9] leverage the inherent properties
of scenes to expand the network transferability. Li et
al. [12] propose the guided point contrastive loss and lever-
age pseudo-label to learn discriminative features. However,
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Figure 2. The original point clouds are first fed into the dynamic augmentor to generate augmented points. Then, the original points
and augmented ones pass through the Siamese network to generate the model’s predictions on all points, as well as pseudo labels for
unlabeled points with high confidence. Point-level consistency loss Lcon and contrast loss Lcra are used for the predictions of all points,
while softmax cross-entropy loss Lseg performs on the supervision of labeled points. Meanwhile, pseudo labels are used to compute
the prototypes for each class. Finally, HybridCR is conducted on both local and global perspectives to form local and global guidance
contrastive losses (i.e., Llcl and Lgcl) to provide regularization for feature learning. By this way, HybridCR serves for the weakly-
supervised framework in the end-to-end training scheme

they only conduct the point-level contrast in feature space
while ignoring the inherent property of point clouds, i.e.,
geometry structures and classes semantics.

HybridCR redesigns the local and global positive and
negative pairs of large-scale point clouds and fully explores
how to leverage and simultaneously enforce both consis-
tency and contrastive properties in an end-to-end manner.

2.2. Point cloud augmentation

The data augmentation in existing networks [33, 38]
mainly includes random rotation, scaling, and jittering,
which are handcrafted/fixed throughout the training pro-
cess. Li et al. [15] propose an auto-augmentation frame-
work by leveraging adversarial learning strategy. Chen et
al. [3] present this by interpolation between examples.
Kim et al. [13] leverage local weighted transformations to
produces non-rigid deformations. However, they merely fo-
cus on the object-level point clouds. Besides, it is com-
plex to implement them in practical applications, which
brings difficulties to tune the parameters during training and
merely focus on the object-level point clouds. We introduce
a dynamic point cloud augmentor to generate diverse trans-
formations for large-scale point clouds during training.

3. Method

In this part, we first describe the notations and prelimi-
naries in Sec. 3.1. Then, we present the general framework

of HybridCR with the local and global guidance contrastive
regularization in Sec. 3.2. Next, we introduce the dynamic
point cloud augmentor in Sec. 3.3. Lastly, we present the
overall objective for training in Sec. 3.4.

3.1. Preliminaries

Problem setup and notation. We let D be the point
cloud dataset, which is defined as

{(
X l, Y l

)
, (Xu,∅)

}
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1, y

l
1

)
, . . . ,

(
xl
M , ylM

)
, xu

M+1, . . . , x
u
N

}
, where N de-

notes the total number of points, M is the number of la-
beled points, X l and Xu are the sets of the labeled and
unlabeled points. For Xu, the labels are absence that is
often replaced by pseudo labels Y p generated on-the-fly.
Thus, Y = Y l ∪ Y p are the whole label sets for weakly-
supervised semantic segmentation. Note that Y l is fixed,
but Y p is updated during training. Formally, given a large-
scale point clouds with a tiny fraction of labels as input,
weakly-supervised semantic segmentation aims to learn the
function: fθ : X l ∪Xu 7→ Y . Specifically, for 1% setting,
the number of labeled points is M = 1%×N , and all the la-
beled points are selected randomly. The 1pt represents only
one point labeled with the ground truth for each class, so the
number of labeled points M equals to the number of classes
C. Note that all the labeled points are selected randomly.

Point-level consistency and contrast. Point-level con-
sistency [33,38] has been widely used in weakly-supervised
point cloud semantic segmentation, which enforces a cor-
responding point pair with different augmentations into a
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Siamese network to have same feature representation. For-
mally, the point-level consistency loss is formulated as:

Lcon =
1

2N

N∑
i=1

JS (ỹi∥ŷi) , (1)

where ỹi = fθ(xi) and ŷi = fθ(x̂i) are the predicted prob-
abilities of the i-th point through the original branch and
the data augment branch, respectively. JS is the Jensen-
Shannon divergence.

Point-level contrast in self-supervised learning [32] is
promoted by the supervised dense prediction tasks, e.g., se-
mantic segmentation, which performs dense per-point clas-
sification. Point-level contrast aims to pull the anchor (point
xi) to data-augmentation point while pushing it away from
other points in the prediction space. Therefore, point-level
contrastive loss is formulated as:

Lcra = − 1

N

N∑
i=1

log
exp (ỹi · ŷi/τ)∑N

j=1 1[j ̸=i] exp (ỹi · ŷj/τ)
, (2)

where 1[j ̸=i] ∈ {0, 1} is an indicator function evaluating to
1 iff j ̸= i and τ is a temperature hyper-parameter. Note
that Eq. 1 and Eq. 2 are computed across all points.

Pseudo label generation and selection. Pseudo label-
ing [14] uses the model’s class prediction as supervision to
train again, and benefits from the popular 2D Fixmatch [27].
It estimates the probability for all points by ground truth la-
bels Y l and generated pseudo labels Y p. Let pi be the prob-
ability outputs of the network with parameter θ of point xi,
the pic represents the probability of class c being present in
xi. Using these output probabilities, the pseudo-label ypic
of xi is generated. After generation, the pseudo-labels are
selected with the high-confidence predictions by obtain a
binary vector gi. Let gi = [gi1, . . . , giC ] ⊆ {0, 1}C be the
selected pseudo-labels, which is obtained as:

gic = 1 [pic ≥ τp] , (3)

where gic = 1 if ypic is selected and gic = 0 otherwise. τp
is the confidence thresholds for labels. The label is selected
when the probability score is sufficiently high (pic ≥ τp).

High-level semantic scene understanding tasks require
not only local but also global information, directly con-
trasting 3D instances merely on the point-level is insuffi-
cient [17, 32]. Therefore, this motivates us to explore more
effective contrastive strategies to fully leverage the inherent
properties of point clouds in both geometry structures and
classes semantics.

3.2. Hybrid Contrastive Regularization

As depicted in Fig. 2, we propose a compact weakly-
supervised semantic segmentation framework for large-
scale point cloud that contains the novel hybrid contrastive

regularization strategy (HybridCR) with the effective dy-
namic point cloud augmentor. The original point clouds
are firstly fed into the dynamic point cloud augmentor to
generate different transformations. Then, the original in-
put points and augmented points pass through the Siamese
network to generate pseudo labels using the model’s predic-
tions on unlabeled points. The model is encouraged to learn
similar and robust features during training by matching 3D
point pairs with different transformations. Meanwhile, the
generated pseudo labels are used to compute the prototypes
for each class. Finally, HybridCR is conducted on both lo-
cal and global guidance perspectives to learn the feature
relationship between unlabeled and labeled points, which
also leverages the traditional segmentation loss for labeled
points with point-level consistency and contrast losses.

3.2.1 Local guidance contrastive regularization

The local neighbor information is essential for feature learn-
ing on the objects of the point clouds. For example, occlu-
sions and holes always exist in objects in indoor and out-
door scenes. If the model learns the local structure informa-
tion (sphere, corner, etc.) from other complete objects, it can
enhance the robustness of the model on incomplete objects
during training. While the local feature of the point clouds
mainly comes from the points and their neighbors, which
inspires us to model the local information of the point cloud
by the proposed local guidance contrastive regularization.
To accomplish this, we first query the neighbor points for
the anchor, and then force differently augmented views of
each point to be close to their neighbors and far away from
other points.

Given a 3D query point xi with its coordinates xyz, we
search its nearest K neighbor points by the point-wise Eu-
clidean distance, and their encoded feature vectors are ag-
gregated to generate a mean vector κi, which is computed
by 1

|N (xi)|
∑

j∈N (xi)
yj . Based on this, we construct the lo-

cal guidance contrastive loss Llcl following InfoNCE [20]
by pulling ỹi close to κi, while pushing it away from the
neighbor vector of other points:

Llcl = − 1

N

N∑
i=1

log
exp (ỹi · κik/τ)∑N

j=1 1[j ̸=i] exp (ỹi · κjk/τ)
. (4)

In fact, the proposed local guidance contrastive loss is
more generalized to Eq. 2. Note that Eq. 4 is degenerated
to Eq. 2 if K is set to 1.

3.2.2 Global guidance contrastive regularization

The global information is critical for point cloud objects and
scenes recognition, where the objects from the same class
should share the similar semantic features, even though they
are very different in appearances. On the contrary, objects
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belonging to different classes should be distinguishable in
the feature space, no matter how similar they look. For ex-
ample, chairs and tables are similar in appearance but be-
long to different classes. Thus, it is necessary for the net-
work to obtain the critical information to avoid this trap. To
end this, we leverage the semantic information from class
labels by the proposed global guidance contrastive regular-
ization. To accomplish this, we take the mean embedding of
labeled points to generate its prototype ρ for each class, and
ρic is the prototype of the i-th point belonging to the c-th
class. According to this, we construct the global guidance
contrastive loss Lgcl by pulling ỹi close to ρi, while pushing
it far away from the prototypes of the remaining classes:

Lgcl = − 1

Ml

Ml∑
i=1

log
exp (ỹi · ρic/τ)∑Ml

j=1 1[j ̸=i] exp
(
ỹi · ρjc′/τ

) , (5)

where Ml = M +Mp and Mp is the number of the selected
pseudo labels (defined in Eq. 3), and c

′
is the class different

with class c. Therefore, negative samples are from the pro-
totype of C − 1 classes except the c-th class. Note that, if
the dataset has C classes, this is essentially equivalent to a
negative size of C − 1. This is practically important when
dealing with dataset with large number of classes. Thus,
Lgcl can retain the feature learning property of Lcra in Eq. 2
mostly as well as resolve the memory bottleneck issue.

3.3. Dynamic point cloud augmentor

Data augmentation is an essential component in the pro-
posed HybridCR, which generates varied anchors, positive
and negative examples, and extract invariant representations
by adding the particular noise in the input. Inspired by [15],
we use MLPs and Gaussian noises to implement the learn-
able dynamic point cloud augmentor, which enrichs the data
diversity in context-wise displacement and generate differ-
ent transformations in the same scene.

Fig. 3 presents the proposed augmentor architecture.
First, we use shared 4-layer MLPs with progressive di-
mensions of [64, 128, 1024, 512] to extract F ∈ RN×d.
Then, two separate linear projection layers compute H and
G. We regress the augmentation function specific to input
sample D using two separate components in the architec-
ture: (1) global-wises regression to produce transformation
M ∈ RN×N , and (2) context-wise regression to produce
displacement S ∈ RN×3. In particular, we introduce two
d dimension noise vectors based on a Gaussian distribution
and concatenate them with H and G. Then, we employ
MLPs to obtain M and S. Note that the noise vectors en-
able the augmentor to explore more diverse choices in re-
gressing the transformation matrix. Using M and S, we
then generate the augmented sample D′ = D ·M+S. The
proposed dynamic point cloud augmentor is more flexible

Figure 3. The architecture of dynamic point cloud augmentor.

to the traditional augmentor adopted in [33,38] with jointly
optimizing during training.

3.4. Overall objective.

As discussed above, HybridCR could serve as the
effective contrastive regularization strategy for weakly-
supervised point cloud semantic segmentation framework
in end-to-end training scheme. The overall objective of net-
work is formulated as:

Ltotal = Lcon + Lseg + λ(Lcra + Llcl + Lgcl), (6)

where λ is a balance parameter. Lseg is the cross-entropy
based segmentation loss on the labeled points, which is for-
mulated as:

Lseg = − 1

CM

M∑
i=1

C∑
c=1

yic log
exp (ỹic)∑C
c=1 exp (ỹic)

, (7)

where yic denotes the ground truth label of point xi. We
also apply Eq. 7 into the augmentation data to learn the net-
work parameter θ. We solve Eq. 6 by Adam optimizer. Fur-
ther, HybridCR can serves as an effective auxiliary feature
learning loss when expanded to fully-supervised manner.

4. Experiments
4.1. Experiment setting

Experimental datasets contains S3DIS [1], ScanNet-
V2 [6], Semantic3D [8] and SemanticKITTI [2]. S3DIS
is a commonly-used indoor 3D point cloud dataset for se-
mantic segmentation. It has 271 point cloud scenes across
6 areas with 13 classes. ScanNet-V2 is also an indoor 3D
point cloud datasets, which contains 1,613 3D scans with
the total of 20 classes. The whole data is split into a train-
ing set (1201 scans), a validation set (312 scans), and a test-
ing set (100 scans). Semantic3D is an outdoor dataset that
provides a large-scale labeled 3D point cloud with over 4
billion points. It covers a range of diverse urban scenes, and
the raw 3D points have 8 classes with multiple informa-
tion, such as 3D coordinates, RGB information, and inten-
sity. SemanticKITTI is a large-scale outdoor point cloud
dataset for 3D semantic segmentation in an autonomous
driving scenario and has 19 classes. The dataset contains 22
sequences that are divided into a training set (10 sequences
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Settings Methods mIoU(%) ceil. floor wall beam col. wind. door chair table book. sofa board clutter

Fully

PointNet [21] 41.1 88.8 97.3 69.8 0.1 4.0 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2
KPConv [29] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
RandLA-Net [10] 62.4 91.2 95.7 80.1 0.0 25.2 62.3 47.4 75.8 83.2 60.8 70.8 65.2 54.0
RFCR [7] 68.7 94.2 98.3 84.3 0.0 28.5 62.4 71.2 92.0 82.6 76.1 71.1 71.6 61.3
PSD [38] 65.1 92.3 97.1 80.7 0.0 32.4 55.5 68.1 78.9 86.8 71.1 70.6 59.0 53.0
HybridCR 65.8 93.6 98.1 82.3 0.0 24.4 59.5 66.9 79.6 87.9 67.1 73.0 66.8 55.7

10% Xu et al. [33] 48.0 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8

1%
Zhang et al. [37] 61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.3 68.9 65.0 50.2
PSD [38] 63.5 92.3 97.7 80.7 0.0 27.8 56.2 62.5 78.7 84.1 63.1 70.4 58.9 53.2
HybridCR 65.3 92.5 93.9 82.6 0.0 24.2 64.4 63.2 78.3 81.7 69.0 74.4 68.2 56.5

1pt(0.2%)
Π Model [25] 44.3 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7
MT [28] 44.4 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8
Xu et al. [33] 44.5 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5

1pt(0.03%)
RandlA-Net [10] 40.7 83.7 90.7 61.2 0.0 11.9 40.8 15.2 52.0 51.7 14.9 50.5 25.3 31.8
PSD [38] 48.2 87.9 96.0 62.1 0.0 20.6 49.3 40.9 55.1 61.9 43.9 50.7 27.3 31.1
HybridCR 51.5 85.4 91.9 65.9 0.0 18.0 51.4 34.2 63.8 78.3 52.4 59.6 29.9 39.0

Table 1. Quantitative results on Area-5 of S3DIS. “*” denotes the results of the method trained by us using the official code. Note that
our 1pt denotes only one labeled point for each class in the entire rooms instead of small blocks (e.g., 1 × 1 meter) of Xu et al. [33]. The
number of labeled points in our 1pt setting accounts for 0.03% of the total points, which is about 0.2% in Xu et al. [33].

Figure 4. Visualization results on the test set of S3DIS Area-5.
Raw point cloud, semantic labels, results of the baseline and ours
are presented separately from left to right.

with ∼19k frames), a validation set (1 sequence with ∼4k
frames), and a testing set (11 sequences with ∼20k frames).

Implementation details. We use Adam Optimizer with
an initial learning rate of 0.001 and momentum of 0.9 to
train 100 epochs for all datasets on an NVIDIA RTX Titan
GPU. The number of neighbor points K is 16, the batch
size is 6, the initial learning rate is 0.01 with the decay rate
0.98, and the iteration steps for each epoch are set to 500.
Note that we choose point-based backbone PSD [38] as our
baseline due to its effectiveness and efficiency.

Evaluation Protocols. We evaluate the final perfor-
mance on all points of the original test set. For quantita-
tive comparison, we use the mean Intersection-over-Union
(mIoU) as the standard metrics. We experimentally study
two types of weak labels: 1pt and 1% settings. Further, we
extend HybridCR to the fully-supervised manner.

Figure 5. Visualization results on the validation set of ScanNet-
V2. Raw point cloud, semantic labels, results of the baseline and
ours are presented separately from left to right.

4.2. Comparison with the SOTA Methods

Quantitative Results on S3DIS and ScanNet-V2.
First, we compare HybridCR with the SOTA methods on
S3DIS Area-5, whose quantitative results are summarized
in Tab. 1. Obviously, the proposed HybridCR achieves
the highest mIoU in the settings of 1pt and 1%, compared
to Zhang et al. [37], PSD [38], Π Model [25], MT [28],
Xu et al. [33] and RandLA-Net [10]. For example, our
method outperforms PSD and RandLA-Net by 3.3% and
10.8% at the setting of 1pt(0.03%), respectively. More-
over, our method also achieves 7.0% performance gains
over Xu et al. [33], which utilizes the more labeled points
about 0.2%. In the aspect of specific class at the setting
of 1pt(0.03%), our method significantly improve the per-
formance with 8.7%, 16.4% and 8.9% improvements in
“chair”, “table”, and “sofa” against PSD, respectively.

For the setting of 1%, our method achieves 1.8% mIoU
gains over the PSD baseline, and even surpasses Xu et
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Set. Method
S3DIS ScanNet-V2 Sem3D. SemKitti.

6-fold val test test val. test

Fu
lly

PointCNN [16] 65.4 - 45.8 - - -
DGCNN [30] 56.1 - - - - -
ShellNet [39] 66.8 - - 69.4 - -
PointASNL [34] 68.7 66.4 63.0 - - 46.8
KPConv [29] 70.6 69.2 68.4 74.6 - 58.8
RandLA-Net [10] 70.0 - 57.8* 77.4 - 53.9
RFCR [7] 70.9* - 70.2 77.8 - -
PSD [38] 70.3* - - - - -
HybridCR 70.7 59.5 59.9 77.4 53.2 54.0

sub.
WyPR [23] - 31.1 24.0 - - -
MPRM [31] - 43.2 41.1 - - -

1%
Zhang et al. [37] 65.9 - 51.1 72.6 - -
PSD [38] 68.0 - 54.7 75.8 - -
HybridCR 69.2 56.9 56.8 76.8 51.9 52.3

Table 2. Quantitative results (mIoU(%) on S3DIS 6-fold, ScanNet-
V2 validation set, Semantic3D (reduced-8) and SemanticKITTI
validation set, with fully labeled data and 1% labeled data. Par-
ticularly, in experiments with 100% labeled data, our hybrid con-
trastive loss serves as an auxiliary feature learning loss. “*” de-
notes the results of the method trained by us using the official code.

al. [33] at the setting of 10%. To explain, our method learns
diverse geometry structures from the large-scale point cloud
data by adding the proposed hydrid contrastive regulariza-
tion. Based on that, our method only uses the 1% points
to outperform the fully supervised RandLA-Net and PSD.
For a fair comparison, we also expand the comparison with
other methods on S3DIS at the 6-fold setting, whose re-
sults are presented in Tab. 2. For ScanNet-V2, compared to
WyPR [23] and MPRM [31] based on scene/subcloud-level
annotation, HybridCR achieves the highest mIoU of 56.8%
at 1% setting on test set. Meanwhile, HybridCR achieves
5.7% mIoU gains over Zhang et al. at the same number of
label annotation. Besides, our method achieves 2.1% mIoU
gains over RandLA-Net at fully supervised situation.

Qualitative Results on S3DIS and ScanNet-V2. We
present the qualitative results of S3DIS and ScanNet-V2
in Fig. 4 and Fig. 5, respectively. On S3DIS, HybridCR
achieves better segmentation on “board” and “chair” com-
pared to PSD. Moreover, the segmentation results of Hy-
bridCR are very consistency to the ground-truth. On
ScanNet-V2, we observe that HybridCR achieves good and
truthfully segmentation results. On ScanNet-V2, HybridCR
achieves good performance on “ sofa” and “desk” compared
to PSD. The reason could be that HybridCR can effectively
leverage the diverse transformations generated by dynamic
point cloud augmentor to improve the representation ability
and promote segmentation performance.

Quantitative Results on Semantic3D and Se-
manticKITTI. We further evaluate HybridCR on outdoor
large-scale point cloud datasets Semantic3D (reduced-8)
and SemanticKITTI and present the results in Tab. 2,

Figure 6. Visualizations on validation set of Semantic3D. Raw
point cloud, semantic labels, results of the baseline and ours are
presented separately from left to right.

Figure 7. Visualization results on the validation set of Se-
manticKITTI. Semantic labels, results of the baseline and ours are
presented separately from left to right.

respectively. For Semantic3D, our method also achieves a
better performance with 4.2% and 1.0% mIoU improve-
ments at the setting of 1% compared to Zhang et al. [37]
and PSD. For SemanticKITTI, our method reports the
results as 51.9% and 52.3% on validation and test dataset at
the setting of 1%. It can be seen that our method surpasses
other point-based approaches by a large margin with
limited annotations.

Qualitative Results on Semantic3D and Se-
manticKITTI. We give the qualitative results of Se-
mantic3D and SemanticKITTI in Fig. 6 and Fig. 7,
respectively. On Semantic3D, our method improvement
over the PSD, especially achieves precisely segmentation
on “buildings”. On SemanticKITTI, it can be seen that
our method achieves consistency segmentation results to
ground-truth, especially in “road” and “car”, which are dif-
ficult to distinguish while critical on sparse outdoor scenes
in the auto-driving application. The results demonstrate the
effectiveness of our method on outdoor datasets.

Results on fully supervised settings. We further ex-
pand the comparison with current SOTA methods on fully-
supervised setting in both indoor and outdoor datasets,
whose quantitative results are summarized in Tab. 2. It
can be observed that HybridCR is competitive among
them. e.g., HybridCR surpass RandLA-Net with 0.7%
and 2.1% mIoU improvements on S3DIS and ScanNet-V2,
respectively, and gains 0.1% mIoU improvement on Se-
manticKITTI. Moreover, HybridCR outperforms KPConv
by 1.8% in mIoU on Semantic3D.
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Figure 8. Visualization of point embedding at 1% setting. (a) is
the embedding of PSD, (b) is the embedding of HybridCR. The
scene is randomly selected from the test set of S3DIS. (c) is the
relation between the number of labeled points and performances.

4.3. Ablation Study

We further evaluate the effectiveness of the essential
components for ablation study, including dynamic point
cloud augmentor and local/global guidance contrastive reg-
ularization. All experiments are conducted on the S3DIS
Area-5 and results are shown in Tab. 3. Note that, the #1 is
reported by PSD, the #8 is reported by HybridCR, we report
the results with mean and std.dev.(5 runs).

Effectiveness of dynamic data augmentor. To verify
that the improvement caused by the data augmentation, we
compare the Base. with the Aug.. Comparing #1 and #2 at
1pt and 1% setting, it achieves 2.5% and 1.0% gains over
Base., respectively. For #5 and #8 at 1pt and 1% setting, it
achieves 0.4% and 0.3% gains over HybridCR, respectively.
The results indicate the HybridCR gains much benefits from
the Aug. with the diverse transformations.

Effectiveness of local guidance contrastive loss. From
the comparison between #1 and #3 at 1pt and 1% setting,
it outperforms 1.6% and 0.4% in mIoU over Base., respec-
tively. For #7 and #8, it gains 0.5% and 0.2% improve-
ments over HybridCR, respectively. These results show that
the Local. further improves the performances because it
leverages the neighboring information during model train-
ing while enhancing the feature learning.

Effectiveness of global guidance contrastive loss. Sim-
ilarly, from the comparison of #1 and #4, it outperforms
Base. by 2.0% and 0.5% at the setting of 1pt and 1% set-
ting, respectively. For #6 and #8, it achieves 1.3% and 0.6%
gains over HybridCR, respectively. The results demonstrate
that the Global. effectively improves the performances
of the weakly-supervised semantic segmentation task with
classes prototypes.

4.4. Analysis

Visualization of point embedding. As shown in Fig. 8
(a) and (b), compared with PSD, the learned point embed-
dings of HybridCR become more compact and separate.
It suggests that the segmentation network generates more
discriminative features and produce promising results by
enjoying the advantage of local and global guidance con-
trastive losses and the effective transformations generated
by dynamic point cloud augmentor.

Labeled points and the performance. We further dis-

Base. Aug. Local. Global. 1pt 1%

#1 ✓ 48.2±(0.3) 63.5±(0.1)

#2 ✓ ✓ 50.7±(0.3) 64.5±(0.3)
#3 ✓ ✓ 49.8±(0.5) 63.9±(0.4)
#4 ✓ ✓ 50.2±(0.2) 64.0±(0.2)

#5 ✓ ✓ ✓ 51.1±(0.2) 65.0±(0.3)
#6 ✓ ✓ ✓ 50.8±(0.3) 64.7±(0.4)
#7 ✓ ✓ ✓ 51.0±(0.1) 65.1±(0.2)

#8 ✓ ✓ ✓ ✓ 51.5±(0.4) 65.3±(0.3)

Table 3. Ablations of different components on Area-5 of S3DIS.

cuss the relationship between performances and label ra-
tios {1pt, 0.1%, 1%, 10%, 50%, 100%} in Fig. 8 (c). With
the increase of ratios, the performances of the two meth-
ods are improved, and the growth trend is gradually slow-
ing down. Note that the performances decreases marginally
with the ratio less than 1%, which indicates that keeping a
certain amount of supervising signal is essential. Moreover,
the performance at the ratio 10% is near to 100%, which
shows that the dense annotations are unnecessary to obtain
favorable segmentation results.

5. Conclusion
In this paper, we propose a hybrid contrastive regular-

ization framework for weakly supervised large-scale point
cloud semantic segmentation. With our proposed local
and global guidance contrastive regularization, the network
learns more discriminative features by leveraging the neigh-
boring points and the pseudo-labels. Meanwhile, we pro-
pose a dynamic point cloud augmentor to benefit contrastive
strategy with more diverse transformations with jointly op-
timizing during training. Extensive experimental results
on indoor and outdoor dataset demonstrate that HybridCR
achieves significant gains compared with the SOTA meth-
ods. Moreover, the effectiveness of the introduced key com-
ponents is verified by ablation studies. The results fur-
ther demonstrate our method’s effectiveness in exploiting
limited labeled large-scale point clouds and improving the
model generalization ability.
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