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Abstract

Graph convolutional network (GCN) has achieved great
success in single hand reconstruction task, while interact-
ing two-hand reconstruction by GCN remains unexplored.
In this paper, we present Interacting Attention Graph Hand
(IntagHand), the first graph convolution based network
that reconstructs two interacting hands from a single RGB
image. To solve occlusion and interaction challenges of
two-hand reconstruction, we introduce two novel attention
based modules in each upsampling step of the original
GCN. The first module is the pyramid image feature at-
tention (PIFA) module, which utilizes multiresolution fea-
tures to implicitly obtain vertex-to-image alignment. The
second module is the cross hand attention (CHA) module
that encodes the coherence of interacting hands by build-
ing dense cross-attention between two hand vertices. As
a result, our model outperforms all existing two-hand re-
construction methods by a large margin on InterHand2.6M
benchmark. Moreover, ablation studies verify the effec-
tiveness of both PIFA and CHA modules for improving
the reconstruction accuracy. Results on in-the-wild im-
ages and live video streams further demonstrate the gen-
eralization ability of our network. Our code is available at
https://github.com/Dw1010/IntagHand.

1. Introduction

Interacting two-hand reconstruction is one of the fun-
damental tasks towards manifold industrial applications
such as virtual reality (VR), human-computer-interaction
(HCI), robotics, holoportation, digital medicine, etc. Re-
cently, monocular single hand pose and shape recovery has
witnessed great success owing to deep neural networks [3,
12,21,49,52] and large scale datasets [13,16,25,26,53,54].
However, two-hand reconstruction is more challenging and
remains unsolved for two reasons. First, severe mutual oc-
clusions and appearance similarity confuse the feature ex-
tractors, making it difficult for networks to align hand poses
with image features. Second, the interaction context be-
tween two hands is difficult to be effectively formulated
during network design and training.

Figure 1. Illustration of our IntagHand for two-hand reconstruc-
tion. Top: results on InterHand2.6M [25] dataset. Bottom: real-
time two-hand motion capture results on live video streams. Our
method produces high quality two-hand mesh reconstruction of
flexible hand poses under severe occlusions.

Monocular depth-based two-hand tracking [22, 27, 28,
38–40] has been studied for years and promising results
have been demonstrated. However, the energy demand
and algorithm complexity restrict the ubiquitous application
of depth-based methods. Recently, Wang et al. [40] con-
tributes a monocular RGB based two-hand reconstruction
by tracking dense matching map. However, the tracking
procedure itself is inherently sensitive to fast motion, and
does not take full advantage of prior knowledge between
interacting hands. Since the proposal of the large scale
two-hand dataset InterHand2.6M [25], learning based sin-
gle image two-hand reconstruction methods have emerged.
Existing methods [11, 18, 25, 46] either employ 2.5D
heatmaps to estimate hand joint positions [11, 18, 25], or
use them as attention maps to extract sparse image fea-
tures [46]. However, such sparse local image features en-
coded in the heatmaps could not effectively model hand
surface occlusions, and could not extract dense interaction
context. In contrast, vertex-based graph convolutional net-
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work (GCN) has achieved great success in single hand re-
construction [12,23,24,37], yet it has not been demonstrated
in two-hand conditions, and the previously mentioned chal-
lenges remain to be addressed.

In this paper, we propose Interacting Attention Graph
Hand (IntagHand), a novel GCN based single image two-
hand reconstruction method. As a basic pipeline, we ini-
tially utilize GCN to regress mesh vertices of each hand
in a coarse-to-fine manner, similar to traditional GCN [12].
However, for the two-hand task, naively using a two-stream
GCN to generate two hand vertices fails to utilize the inter-
action context between two hands, making the network con-
fused regarding two-hand mutually occluded parts. More-
over, without any image feature feedback, the network has
difficulty aligning vertices to image features as suggested
by [24,47]. To address these issues, we equip the GCN with
two novel attention modules. The first module is a pyra-
mid image feature attention (PIFA) module, which uses a
transformer encoder to update the latent vertex features with
patched image features. Unlike projection based vertex-
image alignment [47], PIFA benefits from the global sens-
ing ability of the attention mechanism to help each vertex
seek alignment over all image patches. Furthermore, as
GCN upsamples mesh vertices in a coarse-to-fine manner,
we design an encoder-decoder based image feature extrac-
tion module to extract pyramid features, forcing the high
resolution mesh to leverage fine-grained features. The sec-
ond module is a cross hand attention (CHA) module that
encodes interaction context into hand vertex features. The
CHA module allows vertices of each hand to pay dense at-
tention to the other hand’s vertex features in order to dis-
ambiguate interhand occlusions. Benefiting from the GCN
structure and the novel attention based modules, the Intag-
Hand outperforms existing methods on InterHand2.6M [25]
by a large margin (8.8mm v.s. 13.5mm). Moreover, our
method is efficient for real-time applications, producing
well-aligned two-hand results on in-the-wild images and
live video streams, as shown in Fig. 1 and our project page.
Overall, our contributions are summarized as:

• We propose the first two-hand reconstruction method
using GCN based mesh regression, named IntagHand,
demonstrating the effectiveness of GCN for the two-
hand reconstruction task.

• We propose a pyramid image feature attention (PIFA)
module to distill local occlusion information with
global image patch attention, producing better align-
ment between the hand vertices and the image features.

• We propose a cross hand attention (CHA) module to
implicitly model the two-hand interaction context, im-
proving the reconstruction accuracy for closely inter-
acting poses.

• Our method achieves the new state-of-the-art results

and outperforms existing solutions by a large margin
on the InterHand2.6M benchmark. Furthermore, We
demonstrate the generalization ability of our method
on in-the-wild images.

2. Related Works
2.1. Single Hand Reconstruction

Since the last century, hand pose estimation and ges-
ture recognition have attracted a substantial interest [15,
42, 43]. In the deep learning era, estimating the 3D
hand skeleton from a single image has achieved great suc-
cess [4, 26, 35, 53]. Since the proposal of the popular para-
metric hand model MANO [30] and various large scale
datasets [16, 25, 33, 54], reconstructing both hand pose and
shape [1,5,12,21,23,24,37,48,49,52] has become a main-
stream approach. Among all of these methods, the most
recent transformer–based models [23, 24] yield the best re-
sults, demonstrating the ability of the attention mechanism
to learn the nonlocal relationship between any two vertices.
This excellent performance inspires us to use the attention
mechanism to improve mesh-image alignment and model
mesh-mesh interaction.

2.2. Two-Hand Reconstruction

Although nearly all single-hand reconstruction methods
could extend to two-hand reconstruction tasks, few works
demonstrate a result for close interacting hands. Two-hand
reconstruction is one of the key challenges for human to-
tal motion capture. Previous body and hand simultane-
ous reconstruction methods [6, 17, 31, 44, 50, 51] all treat
each hand in a separate manner and thus cannot handle
close hand interaction cases such as finger knots. A re-
cent multiview tracking based method [34] could recon-
struct high-quality interactive hand motions, however, its
hardware setup is expensive, and the algorithm is time-
consuming. Monocular kinematic tracking based two-hand
motion estimation methods, regardless of whether a depth
sensor [22, 27, 28, 38, 39] or an RGB camera [40] is in-
corporated, are sensitive to fast motion and possible track-
ing failure. However, their dense mapping strategy, which
queries correspondences between hand vertices and image
pixels, inspires us to seek mesh-image alignment using
dense features. In contrast, deep learning based methods
such as [11, 18, 25, 32, 46] directly reconstruct per-frame
two-hand interaction. Unfortunately, all of these methods
either employ 2.5D heatmaps to estimate hand joint po-
sitions [11, 25], or use them as attention maps to extract
sparse image features [46], or reconstruct each hand re-
spectively and fine-tune later [18, 31]. As hands are natu-
rally 3D surfaces, sparse local image features encoded in
the heatmaps may not effectively capture hand surface oc-
clusions and hands interaction context. Therefore, the men-

2762



tioned methods usually fail to obtain two-hand reconstruc-
tions well aligned to images.

2.3. Convolutional Mesh Regression

Convolutional mesh regression (CMR), which directly
regresses mesh vertices in a coarse-to-fine manner from im-
age features using a graph convolutional network (GCN),
has been proven successful for generating image-aligned
3D objects [7, 41], faces [29], bodies [20] or hands [12]. A
typical CMR pipeline passes the global image feature vec-
tor through two or more cascaded graph convolution and
upsampling layers and produces per-vertex 3D coordinates
of the target object. Compared with joint based or rotation
parameter based methods, the CMR method has denser and
more semantic model representation and thus has the ability
to better align image features in a per-vertex manner. How-
ever, existing CMR methods build a single forward pass
without explicit image feature feedback strategy, limiting
their mesh-image alignment performance as suggested by
[47]. Some recent single hand reconstruction works [24,37]
also employ GCN as part of the network structure; however,
they discard the coarse-to-fine nature of CMR and simply
use a single GCN to enhance local sensing ability.

3. Formulation
3.1. Two-Hand Mesh Representation

Unlike previous two-hand reconstruction methods [18,
25, 32, 46] that use joints or articulated models as hand rep-
resentations, we only require surface vertices with a fixed
mesh topology of two hands. For convenience, we adopt
the same mesh topology of the popular MANO [30] model
for each hand which contains N = 778 vertices. To assist
the attention mechanism, we define dense matching encod-
ing for each vertex similarly to [40] as positional embed-
ding. Specifically, we assign different colors for different
vertices while maintaining smoothness among adjacent ver-
tices, denoted as {ci ∈ R3, i = 0, 1, ..., N}. As shown in
Fig. 2, our IntagHand has a hierarchical architecture that
reconstructs hand mesh using three coarse-to-fine blocks,
with each block followed by the upsampling layer. To con-
struct the coarse-to-fine mesh topology for each block, we
leverage the graph coarsening method introduced by [9]
and build Nb = 3 level submeshes with vertex number
N0 = 63, N1 = 126, N2 = 252 and reserve the topological
relationship between adjacent levels for upsampling. After
the third block, a simple linear layer is employed to upsam-
ple the final submesh (N2 = 252) to the full MANO mesh
(N = 778), producing the final two-hand vertices.

3.2. System Overview

Our system contains two main parts: the image encoder–
decoder (red dashed wireframes in Fig. 2) and the inter-

acting attention graph (blue dashed wireframe in Fig. 2).
Given a single RGB image, we first feed it to an im-
age encoder-decoder structure that yields an intermediate
global feature vector FG and several bundled feature maps
{Φt ∈ RCt×Ht×Wt , t = 0, 1..., Nb − 1}, where t indicates
that the tth feature level corresponds to the tth IntagHand
block, Nb = 3 is the block number, Ht × Wt is the res-
olution of the feature maps which gradually increases, and
Ct is the feature channel. Afterwards, the IntagHand takes
in global feature vector FG and produces vertices of both
the left and right hands. Note that each block of the In-
tagHand is formed by 3 submodules: a graph convolutional
network (GCN) and a pyramid image feature attention mod-
ule (PIFA) for each hand, together with a cross–hand atten-
tion module (CHA) between two hands. These modules are
illustrated in Fig. 2 and will be discussed in Sec.4.1, Sec.4.2
and Sec.4.3, respectively.

4. Interacting Attention Graph
4.1. Graph Convolution for Two-Hand Modeling

To directly produce two-hand vertices, our IntagHand
is basically built upon previous GCN [12] by extending
one hand stream to two-hand streams. However, different
from vanilla GCN [12] which transforms the latent vector
FG to a larger unshared per-vertex feature, we utilize fully-
connected (FC) layer gh(·) to map FG to a more compact
feature vector gh(FG) which is shared across vertices, and
concatenate dense matching encoding (positional embed-
ding) ci of the ith vertex with the shared vector to form
per-vertex feature F i

V (Fig. 2), which can be denoted as:

F i
V = concat(gh(FG), ci),

i = 0, 1..., N0; h = L,R,
(1)

where F i
V ∈ Rf is the initial graph feature, N0 = 63 is

the coarsest submesh vertex number, f = 512 is the feature
length, and h indicates left (L) or right (R) hand. Such op-
eration acts as part of the attention mechanism, and reduces
the model size for faster training.

By stacking F i
V , we obtain F t

V ∈ RN×f , t = 0. After-
wards, similar to [12], we perform the Chebyshev spectral
graph CNN [7] operation (named as GraphConv for short
in Fig. 3) at each tth(t = 0, 1, 2) block to transform input
vertex features F t

V to F t
GCN as

F t
GCN = σ(

K−1∑
k=0

T t
k(L̂

t)F t
V W

t
k), (2)

where L̂t is the scaled Laplacian matrix, T t
k is the kth term

of the K-order Chebyshev polynomial, W t
k is the learnable

parameter and σ is a nonlinear activation function. F t
GCN

denotes the intermediate features that are passed to the PIFA
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Figure 2. Our network structure. Given an RGB image as input, our network first distills a global feature vector FG, a sequence of pyramid
image features {Φt, t = 1, 2, 3} along with other auxiliary predictions (2D pose, segmentation, dense mapping encoding). Then our model
directly regresses the 3D coordinates of two hands surface vertices after three steps of IntagHand blocks and upsampling. Each IntagHand
block contains a GCN module, a pyramid image feature attention (PIFA) module and a cross-hand attention (CHA) module.

Figure 3. IntagHand Block. Our IntagHand block is formed by
three parts: 1.residual GCN module, 2.pyramid image feature at-
tention (PIFA) module and 3.cross-hand attention (CHA) module.

module. Inspired by ResNet [14], we add residual connec-
tion for every two GraphConv operations to assist gradient
propagation and enhance learning ability; see Fig. 3.

4.2. Pyramid Image Feature Attention Module

Directly reconstructing model mesh from a single global
feature FG without any feedback has difficulty in guarantee-
ing pixel alignment with the input image [47]. Additionally,
a GCN is suggested to pay more attention to local vertex
features [24]. To solve these issues, we progressively in-
sert hierarchical image features {Φt ∈ RCt×Ht×Wt , t =
0, 1, 2} into GCN to guarantee better mesh-image align-
ment using both local and global context. Note that, each
image feature is a combination of both encoder feature and
intermediate decoder feature for alignment to richer con-
text (see Fig. 2). Specifically, the output from encoder’s
last layer is passed through different convolutional layers to
predict certain 2D information similar to [37,47]. In our im-
plementation, our model predicts (1) the heatmaps of joints
H, (2) the foreground mask of each hand ML, MR and (3)
the dense matching encoding of each hand DL, DR.

To effectively use image features, we evenly divide the
image feature map Φt ∈ RCt×Ht×Wt into Nt × Nt im-
age patches at tth block, and the size of each patch is
Ht

Nt
× Wt

Nt
. Then, the patches are flattened and compacted

by a linear layer to yield a sequence of feature vectors
F t
I ∈ R(Nt·Nt)×f with the same feature size f to the ver-

tex features. Afterwards, the image features F t
I are con-

catenated with vertex features F t
GCN and fed into a Multi-

Head Self-Attention (MHSA) module, producing attention
enhanced vertex features F t

PIFA using the following equa-
tion

F t
PIFA = MHSA(concat(F t

GCN , F t
I )). (3)
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Although Mesh Graphformer [24] utilizes image feature
attention (called ‘grid feature’) as well, they use the same
low–resolution image feature (7 × 7) in the whole network
while our image features are multi-scale (8×8 → 16×16 →
32×32). While low–resolution image features encode more
compact (or global) information, high–resolution features
contain more semantic (or local) knowledge as they are
closer to the input and output. Therefore, the pyramid struc-
ture forces the sparse mesh to attend to the global image
features while the dense mesh to the local image features,
and could yield better vertex-image alignment.

To demonstrate the function of PIFA, we compute the
attention map between the vertex domain and the image do-
main (please refer to ViT [10] for details). By adding up the
PIFA attention maps of all three blocks, we observe that our
PIFA module could distinguish between left and right hands
on image pixels, and we note that PIFA pays more attention
to the area of close interaction. That means PIFA module
learns correct vertex-image mapping as we expect.

Figure 4. Visualization of attention maps in pseudo color. Six
independent examples are shown. In each example, from left to
right is input image, PIFA attention map overlaid on image, CHA
attention map. For PIFA attention map, the red represents the at-
tention from right hand and the blue represents the left hand. The
brighter color means the stronger attention. For CHA attention
map, the redder means the stronger cross-hand attention. All at-
tention maps have been normalized for better visualization.

4.3. Cross Hand Attention Module

It has been shown that the poses of two interacting hands
are correlated [46]; therefore, it is important to model hands
interacting context for two-hand reconstruction. Instead of
simply representing interaction as one hand’s joints in the
other hand’s coordinate system [25,46], we use a symmetric
cross-hand attention (CHA) module to implicitly formulate
this correlation between two hands. For simplicity, we ig-
nore t in F t

PIFA and use FL and FR to indicate FPIFA for
the left and right hands, respectively.

As shown in Fig. 3, we first perform MHSA on each
individual hand to get Qh,Kh, Vh (h ∈ L,R) indicating the
query, key and value feature of each hand. Then we use the

query feature Qh of one hand to fetch the key feature Kh

and the value feature Vh of the other hand through Multi-
Head Attention (MHA, see Fig. 3) as

FR→L = softmax(
QLK

T
R√

d
)VR,

FL→R = softmax(
QRK

T
L√

d
)VL,

(4)

where FR→L and FL→R are the cross-hand attention fea-
tures encoding the correlation between two hands, and d is
a normalization constant. Afterwards, the cross-hand atten-
tion features are merged into the hand vertex features by a
pointwise MLP layer fp(·) as

F
′

L = fp(FL + FR→L),

F
′

R = fp(FR + FL→R),
(5)

where F
′

L and F
′

R are the output hand vertex features, which
act as F t+1

V of both hands for the next t + 1th block (t <
Nb).

It is shown in Fig. 4 that CHA also pays more attention to
the closely interacting area, especially the finger-tips. This
indicates that the CHA module helps to address mutual col-
lision between hands implicitly.

4.4. Loss Functions

For training the image encoder-decoder, we use smooth
L1 loss to supervise the 2D dense matching encoding and
mean square error (MSE) loss to supervise 2D heatmaps.

For training IntagHand, we utilize (1) vertex loss, (2) re-
gressed joint loss and (3) mesh smooth loss.
Vertex Loss. We use L1 loss to supervise the 3D coordi-
nates of hand vertices and MSE loss to supervise the 2D
projection of vertices:

LV =

N∑
i=1

∥Vh,i − V GT
h,i ∥1 + ∥Π(Vh,i)−Π(V GT

h,i )∥22,

(6)
where Vh,i is ith vertex, h = L,R means left or right hand,
and Π is the 2D projection operation, the same below. Ver-
tex loss is applied for each submesh, which we ignore here
for simplicity.
Regressed Joint Loss. By multiplying the predefined joint
regression matrix J , hand joints can be regressed from the
predicted hand vertices. We penalize the joint error by the
following loss:

LJ =

V∑
i=1

∥J Vh,i − J V GT
h,i ∥1

+

V∑
i=1

∥Π(J Vh,i)−Π(J V GT
h,i )∥22.

(7)
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Mesh Smooth Loss. To ensure the geometric smoothness
of the predicted vertices, two different smooth losses are ap-
plied. First, we regularize the normal consistency between
the predicted and the ground truth mesh:

Ln =

F∑
f=1

3∑
e=1

∥ef,i,h · nGT
f,h∥1, (8)

where f is the face index of the hand mesh, ef,i(i = 1, 2, 3)
are the three edges of face f and nGT

f is the normal vector
of this face calculated from the ground truth mesh. Second,
we minimize the L1 distance of each edge length between
the predicted mesh and the ground truth mesh:

Le =

E∑
e=1

∥ei,h − eGT
i,h ∥1. (9)

Note that, both the image encoder-decoder and the Intag-
Hand are trained simultaneously in an end-to-end manner.

5. Experiments

5.1. Experimental Settings

Implementation Details. Our network is implemented us-
ing PyTorch. We use ResNet50 [14] pretrained on Ima-
geNet [8] as backbone to encode the image feature. Fol-
lowing [45], our image decoders utilize three simple decon-
volutional layers to predict 2D joint heatmaps, 2D segmen-
tations and dense mapping encodings.
Training Details. We train our model using the Adam opti-
mizer [19] on 4 NVIDIA RTX 2080Ti GPUs with the mini-
batch size for each GPU set as 32. The whole training takes
100 epochs across 2.5 days, with the learning rate decay-
ing to 1×10−5 at 50th epoch from the initial rate 1×10−4.
During training, data augmentations including scaling, rota-
tion, random horizontal flip and color jittering are applied.
Note that, we pretrain the last upsampling layer of GCN
(see Fig. 2) using posed MANO meshes and fix its weights
during further training.
Evaluation Metrics. To evaluate both the pose and shape
accuracy of reconstructed hands, we compare the Mean Per
Joint Position Error (MPJPE) and Mean Per Vertex Posi-
tion Error (MPVPE) in millimeters. For fair comparison,
we follow Zhang et al. [46] to scale the length of the mid-
dle metacarpal of each hand to 9.5cm during training and
rescale it back to the ground truth bone length during eval-
uation. This is performed after root joint alignment of each
hand. We also report the Percentage of Correct Keypoints
(PCK) curve and Area Under the Curve (AUC) across lin-
early spanned thresholds between 0 and 50 millimeters to
compare reconstruction accuracy.

5.2. Datasets

InterHand2.6M Dataset. As the only dataset with two-
hand mesh annotation, all networks in this paper are trained
on InterHand2.6M [25] dataset1. Because we only focus
on two-hand reconstruction, we pick out the interacting
two-hand (IH) data with both human and machine (H+M)
annotated, and discard invalid labeling according to the
hand type valid annotation provided by [25]. Ultimately,
366K training samples and 261K testing samples from In-
terHand2.6M are utilized. At preprocessing, we crop out
the hand region according to the 2D projection of hand ver-
tices and resize it to 256× 256 resolution.
RGB2Hands and EgoHands Datasets. RGB2Hands [40]
dataset consists of 4 sequences of videos with different
types of two-hand interactions, and EgoHands [2] dataset
contains 48 egocentric videos capturing complex two peo-
ple interactions such as playing chess. Both datasets have
no mesh annotation, therefore we only use them for quali-
tative evaluation.

5.3. Qualitative Results

Our qualitative results on InterHand2.6M [25] are shown
in Fig. 5 and Fig. 6. As shown in Fig. 5, our method could
generate high quality two-hand reconstruction results under
severe occlusions and various kinds of interaction context.
Compared with previous state-of-the-art method [46], our
method produces more realistic finger interactions and less
mutual collisions of two hands (see Fig. 6).

Beyond existing methods [11, 25, 46] which only show
results in dome setting [25], we further demonstrate the gen-
eralization ability of our method on in-the-wild images. As
shown in Fig. 7, our method performs well on our real-life
data captured by a common USB camera. Besides, with-
out additional training, our model yields excellent results
on images from RGB2Hands dataset and EgoHands dataset,
showing the potential to be applied in both third/egocentric
viewpoint conditions. Moreover, our model runs at 30fps
on single NVIDIA RTX 3090 GPU during inference, which
enables future real-time applications.

5.4. Quantitative Comparisons

We first compare our IntagHand network with state-of-
the-art single-hand reconstruction methods, as shown in
Tab. 1. Within single-hand reconstruction methods, each
hand is cropped from image by ground truth bounding box
and processed separately. It is shown that reconstructing
each hand individually works poorly due to heavy occlu-
sion and appearance confusion.

We further compare IntagHand with recent two-hand re-
construction methods. One is Moon et al. [25] which re-

1We use the v1.0 5fps version of the InterHand2.6M which is CC-BY-
NC 4.0 licensed.
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Figure 5. Qualitative results of our method on InterHand2.6M test dataset. Our method works well under various kinds of interactions.
Note that, our method could even produce correct finger-level interactions without explicit collision detection.

Figure 6. Qualitative comparison with Zhang et al. [46] on InterHand2.6M dataset. Our method produces more accurate two-hand poses,
while Zhang et al. [46] produces more collisions and miscalculates relative depth between the left and right hands.

MPJPE MPVPE
† Zimmermann et al. [53] 36.36 -
† Zhou et al. [52] 23.48 23.89
† Boukhayma et al. [3] 16.93 17.98
† Spurr et al. [36] 15.40 -
Moon et al. [25] 16.00 -
Zhang et al. [46] 13.48 13.95
Ours 8.79 9.03

Table 1. Comparison on InterHand2.6M. † means single hand
methods whose results are taken from [46]. We report MPJPE
and MPVPE in mm, the lower the better. Our method outperforms
all other methods by a huge margin.

gresses 3D skeletons of two hands directly. Another is
Zhang et al. [46], which predicts the pose and shape param-
eters of two MANO [30] models. For a fair comparison, we
run their released source code on the same subset of Inter-
Hand2.6M [25] to that we utilize (see Sec. 5.1). Compari-

son results are shown in Tab. 1 and Fig. 8. It is clearly shown
in Tab. 1 that our method significantly reduces MPJPE and
MPVPE. We attribute this success to the dense mesh rea-
soning ability of GCN and our novel attention based mod-
ules, which better align the mesh with the input image. The
PCK curve in Fig. 8 further demonstrates the superior per-
formance of our method at all error threshold levels.

5.5. Ablation study

Baseline GCN. We train a baseline GCN model by di-
rectly modifying the GCN decoder of Ge et al. [12] for
two-hand output (see ‘GCN baseline’ in Tab. 2). Although
directly leveraging GCN structure shows excellent numeric
performance, inaccurate interaction reconstructions still ex-
ist without the attention modules.
Adding Attention Modules. Based on ‘GCN baseline’,
we first add the CHA module to model interaction context
(+CHA) and then add the PIFA module to further enhance
vertex-mesh alignment (+CHA +PIFA), as shown in Tab. 2.
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Figure 7. Qualitative results on in-the-wild images. Left 4 cases
are real-life data captured using a USB camera. Top right 2 cases
are taken from RGB2Hands [40] videos. Bottom right 2 cases are
taken from EgoHands [2] videos.

Figure 8. Comparison on InterHand2.6M dataset. ‘Zhang et al’
refers to [46], while ‘InterNet’ refers to [25].

By modeling interaction context with CHA, we achieve
more than 0.6mm performance gain, proving the effective-
ness of CHA for occlusion handling. By adding PIFA, our
method further achieves more than 0.5mm performance im-
provement, affirming the ability of PIFA for vertex-image
alignment. Qualitative comparison is shown in Fig. 9.
Pyramid or Not. Note that our model utilizes pyramid im-
age features with increasing resolutions (8×8 → 16×16 →
32 × 32). By removing pyramid structure, we use the con-
sistent small (8 × 8) or large (32 × 32) image features in
all the three IntagHand blocks (see ‘IFA-8’ and ‘IFA-32’ in
Tab. 2). Similar to [24], we find that using the small image
feature performs better than using the large one. More im-

Figure 9. Qualitative ablation study on InterHand2.6M. ‘w/o
PIFA’ means removing PIFA module from the full model, ‘w/o
CHA’ means removing CHA module. It is shown that PIFA helps
to align vertices and image features (top row), and CHA helps to
address mutual occlusions (bottom row).

MPJPE MPVPE
GCN baseline 9.97 10.63
GCN + CHA 9.34 9.59
GCN + CHA + IFA-32 8.90 9.16
GCN + CHA + IFA-8 8.83 9.07
GCN + CHA + PIFA(Ours) 8.79 9.03

Table 2. Ablation study of module choice on InterHand2.6M.

portantly, our pyramid structure further improves the recon-
struction accuracy by leveraging both the global and local
information for mesh regression.

6. Discussion
Conclusion. We present the interacting attention graph
hand (IntagHand) method to reconstruct two interacting
hands from a single RGB image. Specifically, we introduce
a novel pyramid image feature attention (PIFA) module to
formulate the attention relationship between hand meshes
and image features, together with a novel cross-hand atten-
tion (CHA) module to encode the interaction context be-
tween two hands. Comprehensive experiments demonstrate
the supreme performance of our network on InterHand2.6M
dataset and in-the-wild images, and verify the effectiveness
of our PIFA and CHA modules.
Limitation & Impact. The major limitation of our method
is the absence of explicit mesh collision handling, resulting
in occasional mesh intersections between hands. Note that,
it is possible for our method to work with more than two
hands where a preliminary detection network is necessary
to extract hand regions and predict the hand number in each
region. It is also possible to extend our method to other 2-
way interactions (hand-object, human-human, etc.) as long
as the subjects are encoded as vertex feature.
Acknowledgement: This paper is sponsored by NSFC
No.62125107, NSFC No.62171255 and National Key R&D
Program of China (2021ZD0113503).
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