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Abstract

Video Question Answering (VideoQA) is the task of an-
swering questions about a video. At its core is understand-
ing the alignments between visual scenes in video and lin-
guistic semantics in question to yield the answer. In lead-
ing VideoQA models, the typical learning objective, empiri-
cal risk minimization (ERM), latches on superficial corre-
lations between video-question pairs and answers as the
alignments. However, ERM can be problematic, because
it tends to over-exploit the spurious correlations between
question-irrelevant scenes and answers, instead of inspect-
ing the causal effect of question-critical scenes. As a result,
the VideoQA models suffer from unreliable reasoning.

In this work, we first take a causal look at VideoQA
and argue that invariant grounding is the key to ruling out
the spurious correlations. Towards this end, we propose a
new learning framework, Invariant Grounding for VideoQA
(IGV), to ground the question-critical scene, whose causal
relations with answers are invariant across different inter-
ventions on the complement. With IGV, the VideoQA mod-
els are forced to shield the answering process from the
negative influence of spurious correlations, which signifi-
cantly improves the reasoning ability. Experiments on three
benchmark datasets validate the superiority of IGV in terms
of accuracy, visual explainability, and generalization abil-
ity over the leading baselines. Our code is available at
https://github.com/yl3800/IGV .

1. Introduction
Video Question Answering (VideoQA) [9] is growing in

popularity and importance to interactive AI, such as vision-
language navigation for in-home robots and personal assis-
tants [2, 35]. It is the task of multi-modal reasoning, which
answers the natural language question about the content of
a given video. Clearly, inferring a reliable answer requires
a deep understanding of visual scenes, linguistic semantics,
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Figure 1. Running example. (a) Superficial correlations between
visual scenes and answers; (b) Suffering from the spurious corre-
lations, VideoQA model fails to answer the question.

and more importantly, the visual-linguistic alignments.
Towards this end, a number of VideoQA models have

emerged [8–10,18,38]. Scrutinizing these models, we sum-
marize their common paradigm as a combination of two
modules: (1) video-question encoder, which encapsulates
the visual scenes of video and the linguistic semantics of
question as representations; and (2) answer decoder, which
exploits these representations to model the visual-linguistic
alignment and yield an answer. Consequently, the criterion
of empirical risk minimization (ERM) is widely adopted as
the learning objective to optimize these modules — that is,
minimizing the loss between the predictive answer and the
ground-truth answer.

However, the ERM criterion is prone to over-exploiting
the superficial correlations between video-question pairs
and answers. Specifically, we use the metric of local mutual
information (LMI) [27] to quantify the correlations between
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the “track” scene and answers. As Figure 1a shows, most
videos with “track” scene are associated with the “race” an-
swer. Instead of inspecting the visual-linguistic alignments
(i.e. which scene is critical to answer the question), ERM
blindly captures all statistical relations. As Figure 1b shows,
it makes VideoQA model naively link the “track”-relevant
videos with the strongly-correlated “race” answer, instead
of the gold “jump” answer. Taking a causal look [23, 24]
at VideoQA (see Section 3), we partition the visual scenes
into two parts: (1) causal scene, which holds the question-
critical information, and (2) its complement, which is irrel-
evant to the answer. We scrutinize that the complement is
spuriously correlated with the answer, thus ERM hardly dif-
ferentiates the effects of causal and complement scenes on
the answer. Worse still, the unsatisfactory reasoning obsta-
cles the VideoQA model to own the intriguing properties:

• Visual-explainability to exhibit “Which visual scene are
the right reasons for the right answering?” [6,26]. Taking
Figure 1b as an example to answer “What is the man do-
ing?”, the model should attend the “jump” event present
in the last three clips, rather than referring to the “track”
complement in the first two clips. One straightforward so-
lution is “learning to attend” [31, 36, 39] to ground some
scenes via the attentive mechanism. Nonetheless, guided
by ERM, such attentive grounding still suffers from the
spurious correlations, thus making the highly-correlated
complement grounded.

• Introspective learning to double-check “How would the
predictive answer change if the causal scenes were ab-
sent?”. On top of attentive grounding, the model needs to
introspect whether the learned knowledge (i.e. attended
scene) reliably and faithfully reflects the logic behind the
answering. Briefly put, it should fail to answer the ques-
tion if the causal scenes were removed.

• Generalization ability to enquire “How would the pre-
dictive answer response to the change of spurious corre-
lations?”. As spurious correlations poorly generalize to
open-world scenarios, the model should instead latch on
the causal visual-linguistic relations that are stable across
different environments.

Inspired by recent invariant learning [3, 16, 33], we con-
jecture that invariant grounding is the key to distinguishing
causal scenes from the complements and overcoming these
limitations. By “invariant”, we mean that the relations be-
tween question-critical scenes and answers are invariant re-
gardless of changes in complements. Towards this end, we
propose a new learning framework, Invariant Grounding for
VideoQA (IGV). Concretely, it integrates two additional
modules with into the VideoQA backbone model: a ground-
ing indicator, a scene intervener. Specifically, the grounding
indicator learns to attend the causal scenes for a given ques-
tion and leaves the rest as the complement. Then, we collect

visual clips from other training videos to compose a mem-
ory bank of complement stratification. For the causal part of
interest, the scene intervener conducts the causal interven-
tions [23, 24] on its complement — that is, replace it with
the stratification sampled from the memory bank and com-
pose the “intervened videos”. After pairing the casual, com-
plement, and intervened scenes with the question, we feed
them into the backbone model to obtain the correspond-
ing predictions: (1) causal prediction, which approaches the
gold answer, so as to achieve visual explainability; (2) com-
plement prediction, which contains no critical clues to the
ground-truth answer, thus enforces the backbone model to
perform introspective reasoning; and (3) intervened predic-
tion, which is consistent with the causal prediction across
different intervened complements. Jointly learning these
predictions enables the backbone model to alleviate the neg-
ative influence of multi-modal data bias. It is worthwhile
emphasizing that IGV is a model-agnostic strategy, which
trains the VideoQA backbones in a plug-and-play fashion.

Our contributions are summarized as follows:

• We highlight the importance of grounding causal scenes
from the complements to visual-explainability, general-
ization, and introspective learning of VideoQA models.

• We propose a new model-agnostic training scheme, IGV,
which incorporates invariant grounding into the VideoQA
models, to mitigate the negative influence of multi-modal
data bias and enhance the multi-modal reasoning ability.

• On three benchmark datasets (i.e. MSRVTT-QA [38],
MSVD-QA [38], NExT-QA [37]), we conduct extensive
experiments to justify the superiority of IGV in training
the VideoQA backbones. In particular, IGV significantly
outperforms the state-of-the-art models.

2. Preliminaries
In this section, we summarize the common paradigm of

VideoQA models. Throughout the paper, we denote the ran-
dom variables and their deterministic values by upper-cased
(e.g. V ) and lower-cased (e.g. v) letters, respectively.

Modeling. Given the video-question pair (V,Q), the primer
task of VideoQA is to generate an answer Â as:

Â = fÂ(V,Q), (1)

where fÂ is the VideoQA model, which is typically com-
posed of two modules: video-question encoder, and answer
decoder. Specifically, the encoder includes two compo-
nents: (1) a video encoder, which encodes visual scenes of
the target video as a visual representation, such as motion-
appearance memory design [9, 10], structural graph repre-
sentation [12, 15, 20, 34], hierarchical architecture [8, 17];
and (2) a question encoder, which encapsulates linguis-
tic semantics of the question into a linguistic represen-
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tation, such as global/local representation of textual con-
tent [14, 32], graph representation of grammatical depen-
dencies [20]. On top of these representations, the decoder
learns the visual-linguistic alignments to generate the an-
swer. In particular, the alignments are modeled via cross-
modal interaction like graph alignment [20], cross-attention
[14, 15, 18, 40] and co-memory [10], etc.

Learning. To optimize these modules, most of the leading
VideoQA models [9,10,14,15,17] cast the multi-modal rea-
soning problem as a supervised learning task and adopt the
learning objective of empirical risk minimization (ERM) as:

min
h

LERM(Â, A), (2)

where LERM is the risk function to measure the loss between
the predictive answer Â and ground-truth answer A, which
is usually set as cross-entropy loss [10, 17] or hinge loss
[9, 15, 37]. In essence, ERM encourages these VideoQA
modules to capture the statistical correlations between the
video-question pairs and answers.

3. Causal Look at VideoQA
From the perspective of causal theory [23,24], we revisit

the VideoQA scenario to show superficial correlations be-
tween video-question pairs and answers. We then analyze
ERM’s suffering from the spurious correlations.

3.1. Causal Graph of VideoQA
In general, multiple visual scenes are present in a video.

But only part of the scenes are critical to answering the
question of interest, while the rest hardly offers informa-
tion relevant to the question. Moreover, the linguistic varia-
tions in different questions should activate different scenes
of a video. These facts inspire us to split the video into the
causal and complement parts in terms of the question. Here
we use a causal graph [23, 24] to exhibit the relationships
among five variables: input video V , input question Q,
causal scene C, complement scene T , ground-truth answer
A. Figure 2 illustrates the causal graph, where each link is
a cause-and-effect relationship between two variables:

• C  V ! T . The input video V consists of C and T .
For example, the video in Figure 1b is the combination of
the first two clips (i.e. C) and the last three clips (i.e. T ).

• V ! C  Q. The causal scene C is conditional upon
the video-question pair (V,Q), which distills Q-relevant
information from V . For a given V , the variations in Q
result in different C.

• Q ! A  C. The answer A is determined by the ques-
tion Q and causal scene C, reflecting the visual-linguistic
alignments. Considering the example in Figure 1b again,
C is the oracle scene that perfectly explains why “jump”
is labeled as the ground truth to answer the question.
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Figure 2. Causal graph of VideoQA

• T L9999K C. The dashed arrow summarizes the addi-
tional probabilistic dependencies [21, 22] between C and
T . Such dependencies are usually caused by the selection
bias or inductive bias during the process of data collection
or annotation [5, 30]. For example, one mostly collects
the videos with the “jump” events on the “track”. Here
we list three typical scenarios: (1) C is independent of T
(i.e. T?C); (2) C is the direct cause of T (i.e. C ! T ),
or vise versa (i.e. C  T ); (3) C and T have a common
cause E (i.e. C  E ! T ). See Appendix A for details.

3.2. Spurious Correlations
Taking a closer look at the causal graph, we find that the

complement scene T and the ground-truth answer A can be
spuriously correlated. Specifically, as the confounder [22–
24] between T and A, Q and V open the backdoor paths:
T  V ! C ! A and T  V ! C  Q ! A, which
make T and A spuriously correlated even though there is no
direct causal path from T to A. Worse still, T L9999K C
can amplify this issue. Assuming C ! T , C becomes an
additional confounder to yield another backdoor path T  
C ! A. Such spurious correlations can be summarized as
the probabilistic dependence: A 6?T .

As ERM naively captures the statistical correlations be-
tween video-question pairs and answers, it fails to distin-
guish the causal scene C and complement scene T , thus
failing to mitigate the negative influence of spurious cor-
relations. As a result, it limits the reasoning ability of
VideoQA models, especially in the following aspects: (1)
visual-explainability to reason about “Which visual scenes
are the supporting evidence to answer the question?”; (2)
introspective learning to answer “How would the answer
change if the causal scenes were absent?”; and (3) general-
ization ability to enquire “How would the answer response
to the change of spurious correlations?”.

4. Methodology
We get inspiration from invariant learning [3,16,33] and

argue that invariant grounding of causal scenes is the key to
reducing the spurious correlations and overcoming the fore-
going limitations. We then present a new learning frame-
work, Invariant Grounding for VideoQA (IGV).

4.1. Invariant Grounding for VideoQA
Upon closer inspection on the causal graph, we notice

that the ground-truth answer A is independent of the visual
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complement T , only when conditioned on the question Q
and the causal scene C, more formally:

A?T | C,Q. (3)

This probabilistic independence indicates the invariance —
that is, the relations between the (C,Q) pair and A are in-
variant regardless of changes in T . The causal relationship
Q! A C is invariant across different T . Taking Figure
1b as an example, if the question and the causal scene (i.e.
the last three clips) remain unchanged, the answer should
arrive at “jump”, no matter how the complement varies1

(e.g. substitute the “track” clips by the “cloud”- or “sea”-
relevant ones). This highlights that the (C,Q) pair is the
key to shielding A from the influence of T .

Modeling. However, only the (V,Q) pair and A are avail-
able in the training set, while neither C nor the grounding
function towards C is known. This motivates us to incor-
porate visual grounding into the VideoQA modeling, where
the grounded scene Ĉ aims to estimate the oracle C and
guide the prediction of answer Â. More formally, instead of
the conventional modeling (cf . Equation (1)), we system-
atize the modeling process as:

Ĉ = fĈ(V,Q), Â = fÂ(Ĉ, Q), (4)

where fĈ is the grounding model, and fÂ is the VideoQA
model that relies on the (Ĉ, Q) pair instead. See Section 4.2
for our implementations of fĈ and fÂ.

Learning. Nonetheless, simply integrating visual ground-
ing with the VideoQA model falls into the “learning to at-
tend” paradigm, which still suffers from the spurious cor-
relations and erroneously attends to the complement scenes
as Ĉ. To this end, we exploit the invariance property of C
(cf . Equation (3)) and reformulate the learning objective of
invariant grounding as:

min
fÂ,fĈ

LIGV(Â, A), s.t. A?T̂ | Ĉ, Q, (5)

where LIGV is the loss function to our IGV; T̂ = V \ Ĉ is
the complement of Ĉ. In the next section, we will elaborate
how to implement LIGV and achieve invariant grounding.

4.2. IGV Framework
Figure 3 displays our IGV framework, which involves

two additional modules, the grounding indicator and scene
intervener, beyond the VideoQA backbone model fÂ.

4.2.1 Grounding Indicator

For a video-question pair instance (v, q), at the core of the
grounding indicator is to split the video instance v into two

1Note that the complement substitutes will not involve the question-
relevant scenes, in order to avoid creating additional paths from T to A.
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Figure 3. Overview of our IGV framework.

parts, ĉ and t̂, according to the question q. Towards this end,
it first employs two independent LSTMs [11] to encode the
visual and linguistic characteristics of v and q, respectively:

vg, vl = LSTM1(v), qg, ql = LSTM2(q), (6)

where the features of v are K fixed visual clips, while q is
associated with L language tokens; LSTM1 outputs vl 2
RK⇥d as the local representations of clips, and yields the
last hidden state vg 2 Rd as the global representations of the
holistic video. Analogously, LSTM2 generates ql 2 RL⇥d

as the local representations of tokens, and makes the last
hidden state qg 2 Rd represent the question holistically,
here d is the hidden dimension.

Upon these representations, the attention scores are con-
structed to indicate the importance of each visual clip. Here
we devise pĉ 2 RK to exhibit the probability of each clip
belonging to the causal scene ĉ, while pt̂ 2 RK is in con-
trast to pĉ to show how likely each clip composes the com-
plement t̂. The formulations are as follows:

pĉ = Softmax(MLP1(vl) · MLP2(qg)
>), (7)

pt̂ = Softmax(MLP3(vl) · MLP4(qg)
>), (8)

where four multilayer perceptrons (MLPs) are employed to
distill useful information: MLP1(vl), MLP3(vl) 2 RK⇥d0

,
MLP2(qg), MLP4(qg) 2 Rd0

; d0 is the feature dimension.
However, as the soft masks make ĉ and t̂ overlapped, the
attentive mechanism cannot shield the answering from the
influence of the complement. Hence, the grounding indi-
cator produces discrete selections instead to make ĉ and t̂
disjoint. Nonetheless, simple sampling or selection is not
differentiable. To achieve differentiable discrete selection,
we apply Gumbel-Softmax [13]:

I = Gumbel-Softmax([pĉ, pt̂]), (9)

where Gumbel-Softmax is built upon the concatenation of
pĉ and pt̂ (i.e. [pĉ, pt̂] 2 RK⇥2), and outputs the indicator
vector I 2 RK⇥2 whose first and second column indexes ĉ
and t̂ over k clips, respectively. As such, we can devise ĉ
and t̂ as follows:

ĉ = {Ik0 · vk|Ik0 = 1}, t̂ = {Ik1 · vk|Ik1 = 1}, (10)

where I0k and I1k suggests that the k-th clip belongs to the
causal and complement scenes, respectively.
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Figure 4. Illustration of interventional distribution.

4.2.2 Scene Intervener

It is challenging to learn the grounding indicator, owing to
the lack of supervisory signals of clip-level importance. To
remedy this issue, we propose the scene intervener, which
preserves the estimated causal scene ĉ but intervenes the
estimated complement t̂ to create the “intervened videos”,
as Figure 4 shows.

Specifically, for the observed video-question pairs dur-
ing training, the scene intervener first collects visual clips
from other training videos as a memory bank of comple-
ment stratification, T̂ = {t̂}. Then, for the video of in-
terest v = ĉ [ t̂, the intervener conducts causal interven-
tions [23, 24] on its t̂ — that is, random sample a comple-
ment stratification t̂⇤ 2 T̂ to replace t̂ and combine it with
ĉ at hand as a new video v⇤ = ĉ [ t̂⇤.

It is worthwhile mentioning that, distinct from the cur-
rent invariant learning studies [3, 16, 33] that only parti-
tion the training set into different environments, our scene
intervener exploits the interventional distributions [29] in-
stead. The interventional distribution (i.e., the videos with
the same interventions) can be viewed as one environment.

4.2.3 VideoQA Backbone Model

Inspired by [15], we design a simple yet effective architec-
ture as our backbone predictor, where the video encoder is
shared with the grounding indicator. It embodies convo-
lutional graph networks (GCN) to propagate clip-level vi-
sual messages, then integrates cross-modal fused local and
global representations via BLOCK fusion [4]. See Ap-
pendix B for the detailed architecture.

4.2.4 Joint Training

For a video-question pair instance (v, q), we have estab-
lished the causal scene ĉ, complement scene t̂, and inter-
vened video v⇤ via the grounding indicator and scene inter-
vener. Pairing them with q synthesizes three new instances:
(ĉ, q), (t̂, q), (v⇤, q). We next feed these instances into the
backbone VideoQA model fÂ to obtain three predictions:

• Causal prediction. As the causal scene ĉ is expected to
be sufficient and necessary to answer the question q, we
leverage its predictive answer fÂ(ĉ, q) to approach the
ground-truth answer a solely:

Lĉ = XE(fÂ(ĉ, q), a), (11)

where XE denotes the cross-entropy loss.
• Complement prediction. As no critical clues should ex-

ist in the complement scene t̂ to answer the question q, we
encourage its predictive answer fÂ(t̂, q) to evenly predict
all answers. This uniform loss is formulated as:

Lt̂ = KL(fÂ(t̂, q), u), (12)

where KL denotes KL-divergence, and u is the uniform
distribution over all answer candidates.

• Intervened prediction. According to the invariant con-
straint (cf . Equation (3)), the causal relationship between
the causal scene and the answer is stable across different
complements. To parameterize this constraint, we enforce
all v’s intervened versions to hold the consistent predic-
tions:

Lv⇤ = Et̂⇤2T
(KL(fÂ(v

⇤, q), fÂ(ĉ, q))). (13)

Aggregating the foregoing risks, we attain the learning ob-
jective of IGV:

LIGV = E(v,q,a)2O+Lĉ + �1Lt̂ + �2Lv⇤ , (14)

where O
+ is the training set of the video-question pair

(v, q) and the ground-truth answer a; �1 and �2 are the
hyper-parameters to control the strengths of invariant learn-
ing. Jointly learning these predictions enables the VideoQA
backbone model to uncover the question-critical scene, so
as to mitigate the negative influence of spurious correlations
between the question-irrelevant complement scene and an-
swer. In the inference phase, we use the causal prediction
fÂ(ĉ, q) to answer the question.

5. Experiments
We conduct extensive experiments to answer the follow-

ing research questions:

• RQ1: How effect is IGV in training VideoQA backbones
as compared with the State-of-the-Art (SoTA) models?

• RQ2: How do the loss component and feature setting af-
fect the performance?

• RQ3: What are the learning patterns and insights of IGV
training?

Settings: We compare IGV with seven baselines from fami-
lies of Memory, GNN and Hierarchy (Appendix C) on three
VideoQA datasets: NExT-QA [37] which features causal
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Table 1. Comparison of accuracy on NExT-QA test set. The best
and second-best results are highlighted.

Models Causal Temp Descrip All

Co-Mem [10] 45.85 50.02 54.38 48.54
HCRN [17] 47.07 49.27 54.02 48.82
HME [9] 46.76 48.89 57.37 49.16
HGA [15] 48.13 49.08 57.79 50.01

IGV(Ours) 48.56 51.67 59.64 51.34
Abs. Improve +0.43 +1.65 +1.85 +1.33

and temporal action interactions among multiple objects.
It contains about 47.7K manually annotated questions for
multi-choice QA collected from 5.4K videos with an aver-
age length of 44s. MSVD-QA [38] and MSRVTT-QA [38]
are two prevailing datasets that focus on the description of
video elements. They respectively contain 50K and 243K
QA pairs with open answer space over 1.6K and 6K. For all
three datasets, we follow their official data splits for exper-
iments and report accuracy as evaluation metric.

Implementation Details: For the visual feature, we follow
previous works [15, 17, 37] and extract video feature as a
combination of motion and appearance representations by
using the pre-trained 3D ResNeXt-101 and ResNet-101, re-
spectively. Specifically, each video is uniformly sampled
into K=16 clips, where each clip is represented by a com-
bined feature vector vdv

k , where dv equals 4096. Similar
to [37], we obtain the contextualized word representation
from the finetuned BERT model, and the feature dim dq is
768. For our model, the dimension of the hidden states are
set to d = 512, and the number of graph layers in IGV back-
bone predictor is 2. During training, IGV is optimized by
Adam optimizer with the initial learning rate of 1e-4, which
will be halved if no validation improvements in 5 epochs.
We set the batch size to 256 and a maximum of 60 epochs.
(See Appendix D for more details and complexity analysis).

5.1. Main Results (RQ1)
5.1.1 Comparisons with SoTA Methods

As shown in Table 1 and Table 2, our method outperforms
SoTAs with questions of all sub-types surpassing their com-
petitors. Specifically, we have two major observations:

First, on NExT-QA, IGV gains remarkable improvement
on temporal type (+1.65%), the underlying explanation are:
1) temporal question generally corresponds to video content
with a longer time span, which requires more introspective
grounding of the causal scene. Fortunately, IGV’s design
philosophy comfort such demand by wiping out the trivial
scenes, which takes up a huge proportion in temporal type,
thus making the predicting faithful. 2) temporal questions
tend to include a temporal indicative phase (e.g. ”at the end
of the video”) that serves as a strong signal for grounding

Table 2. Comparison of accuracy on MSVD-QA and MSRVTT-
QA test set. ”†” indicates the result is re-implementation with the
publicly available code

Models MSVD-QA MSRVTT-QA

Memory
AMU [38] 32.0 32.0
HME [9] 33.7 33.0
Co-Mem† [10] 34.6 35.3

GNN HGA† [15] 35.4 36.1
B2A [20] 37.2 36.9

Hierarchy HCRN [17] 36.1 35.6
HOSTR [8] 39.4 35.9

Causal view IGV (Ours) 40.8 38.3
Abs. Improve +1.4 +1.4

indicator to locate the target window.
Second, along with descriptive questions on NExT-QA,

the result on MSRVTT-QA and MSVD-QA (both emphases
on question of descriptive type) demonstrate the superior-
ity in descriptive question across all three datasets (+1.85%
on NExT-QA, +1.4% on MSRVTT-QA and MSVD-QA).
Such improvement is underpinned by logic that answering
descriptive questions requires scrutiny on the scene of in-
terest, instead of a holistic view of the entire sequence. Ac-
cordingly, targeted prediction inducted by IGV concentrates
reasoning on keyframes, thus achieving better performance.
As a consequence, such improvement strongly validates that
IGV generalizes better over various environments.

5.1.2 Backbone Agnostic

By nature, our IGV principle is orthogonal to backbone de-
sign, thus helping to boost any off-the-shelf SoTAs with-
out compromising the underlying architecture. We there-
fore experimentally testify the generality and effectiveness
of our learning strategy by marrying the IVG principle with
methods from two different categories: Co-Mem [10] from
memory-based architecture and HGA [15] from Graph-
based method. Table 3 shows the results on three backbone
predictors (including ours). Our findings are:

1. Better improvement for severe bias. We notice
that the improvement on MSVD-QA (+3.1%⇠4.7%) is con-
siderably larger than that on MSRVTT-QA (+1.4%⇠2%).
Such expected discrepancy is caused by the fact that, al-
though identical in question type, MSRVTT-QA is almost
5 times larger than MSVD-QA (#QA pairs 243K vs 50K).
As a result, the baseline model trained on MSRVTT-QA is
gifted with better generalization ability, whereas the model
on MSVD-QA still suffers from severe shortcut correla-
tion. For the same reason, the IGV framework achieves
much better improvement in the severe-shortcut situation
(e.g. MSVD-QA). Such discrepancy validates our motiva-
tion of eliminating statistic dependency.

2. Constant improvement for each method. Through
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Table 3. IGV strategy is applied to different SoTAs methods.
”+IGV” denoted our strategy is incorporated.

Models
MSVD-QA MSRVTT-QA

Baseline +IGV Baseline +IGV

Co-Mem [10] 34.6 37.7 35.3 37.3
HGA [15] 35.4 38.8 36.1 37.5
Our Backbone 36.1 40.8 36.3 38.3

Table 4. Study of IGV loss components

Variants
MSVD-QA MSRVTT-QA

Our Backbone Co-Mem [10] Our Backbone Co-Mem [10]

Baseline 36.1 34.6 36.3 35.3
Lĉ 36.0 33.3 36.7 36.0
Lĉ + Lt̂ 37.4 36.1 37.8 36.8
Lĉ + Lv⇤ 38.2 36.3 37.4 36.2
Lĉ + Lt̂ + Lv⇤ 40.8 37.7 38.3 37.3

row-wise inspection, we notice that for each bench-
mark, IGV can bring considerable improvement across
different backbone models (+3.1%⇠4.7% for MSVD-QA,
+1.4%⇠2% for MSRVTT-QA). Such stable enhancement
strongly verifies our modal-agnostic statement.

5.2. In-Depth Study (RQ2)
5.2.1 Contributions of Different Loss Components

An in-depth comprehension of IGV framework requires
careful scrutiny on its components. Alone this line, we ex-
haust the combination of IGV loss components and design
three variants: Lĉ, Lĉ + Lt̂ and Lĉ + Lv⇤ . Table 4 shows
the result of the above variants on two benchmarks across
two backbone predictors. Our observations are as follow:

• Using Lĉ solely, which can be viewed as a special case of
ERM-guided attention, hardly outperforms the baseline,
because grounding indicators can not identify the causal
scene without clip-level supervision. Such an expected
result reflects our motivation in interventional design.

• Lĉ + Lt̂ and Lĉ + Lv⇤ matched equally in accuracy that
consistently surpass baseline and Lĉ in all cases. Such
progress shows the effectiveness of intervention strategy
and introspective regularization imposed on complement.

• In all cases, Lĉ+Lt̂+Lv⇤ further boosts the performance
significantly, which shows Lt̂ and Lv⇤ contribute in dif-
ferent aspects and their benefits are mutually reinforcing.

5.2.2 Study of Feature
By convention, we study the effect of the input condition
by ablation on the visual feature. Particularly, we denote
APP for tests that adopt only appearance feature as input
and MOT for tests that utilize motion feature alone. Figure
6a delivers results on two benchmarks, where we observe:

First, IGV can improve the performance significantly for
all input conditions, which generalizes the effectiveness of
our framework. Similar to Table 3, the improvement on

MSVD-QA is larger than that on MSRVTT-QA, which so-
lidifies our finding in Section 5.1.2.

Second, compared to motion feature, IGV brings distinc-
tively larger improvements using appearance feature. Con-
sidering the causal nature of IGV, we conclude that static
correlation tends to bias more in appearance feature.

5.2.3 Study of Hyper-parameter
To validate the sensitivity of IGV against the hyper-
parameters, we conduct experiments with variations of �1

and �2 on two datasets. Without loss of generalization, we
tune �1 (�2) as sample of

�
1.3i | �10  i  10, i 2 Z

 
,

while keeping the �2 (�1) as 1. According to Figure 6b, we
have follow observations:

For MSVD-QA, we observe consistent peaks around
0.8 for both �1 and �2. Comparatively, fluctuation on
MSRVTT-QA is more moderate, where tuning on � only
causes a 1.5% difference in their accuracy. It’s noteworthy
that IGV outperforms the baseline by a large margin (+3%)
under all tests, which indicates IGV’s robustness against
variation of hyper-parameters. Additionally, comparing to
�2, IGV is more sensitive to �1. Typically, the performance
suffers a drastic degradation for �1 larger than 5 on both
datasets. Whereas �2 maintain above 39% (MSVD-QA)
and 37.5% (MSRVTT-QA) for all tests.

5.3. Qualitative analysis (RQ3)
As mentioned in Section 1 , IGV is empowered with

visual-explainability, and is apt to account for the right
scene for its prediction. Following this essence, we grasp
the learning insight of IGV by inspecting some correct ex-
amples from the NExT-QA dataset and show the visualiza-
tion in Figure 5. Concretely, each video comes with two
questions that emphasize different parts of the video. We
notice that, even for the same video, our grounding window
is question-sensitive to enclose the explainable content with
correct prediction. Nonetheless, we also observe results of
insufficient-grounding on the third row Q2, where the girl
starts to bend down before the last two frames, even though
the most informative last two frames are encompassed.

6. Related works
Video Question Answering (VideoQA). Aiming to answer
the question in a video scenario, VideoQA is defined as an
escalation of imageQA, because the temporal nature of the
input has enriched its reasoning process as well as the an-
swer space. Previous efforts towards VideoQA establish
their contribution on either a better multi-modal interac-
tion or stronger video representation. Specifically, early
studies tend to impose sophisticated cross-modal fusion
via attention [15, 18, 40] or dynamic memory [9, 10, 38],
while more recent approaches perform relation reasoning
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Q1. Why did the baby hold the ball in front of the dog?
- give to dog

Q2. How did the baby play with the toy car?
- push it around

Q1. Why does the boy reach out his hand to the man at the beginning?
- get food

Q2. How did the girl behave friendly with the boy?
- bend down

Q1. what is the lady doing with the trimmer?
- cutting hair for boy

Q2. why is the baby sitting in the toy car and watching tv?
- haircut

Figure 5. Visualization of grounding result on the correct prediction cases from NExT-QA. Each video comes with two questions that
demand causal scene of different time span. The green and pink windows indicate the causal scenes for the corresponding questions.

(a) (b)

Figure 6. (a) Study of feature setting.; (b) Study of �1 and �2.

through visual or textual graph [12, 15, 20]. In addition,
current efforts that model video as a hierarchical struc-
ture also intrigue wide interest. Among them, HCRN [17]
stack conditional relation blocks in different feature gran-
ularity, whereas HOSTR [8] employs a spatio-temporal
graph for multilevel reasoning. Despite their effectiveness,
their visual-explainability still dwells on ERM-guided at-
tention weights, which only reflect the intensity of feature-
prediction correlation.

Invariant Learning. Multi-modal datasets tend to display
inherent bias in some forms [1, 19, 25, 28]. In contrast to
overarching reality, the collection process [5, 30] degrades
its generalization ability by introducing undesirable corre-
lations between the inputs and the ground truth annotations.

To overcome such correlation, invariant learning is de-
veloped to discover causal relations from the causal factors
to the response variable, which remains constant across dis-
tributions. As the most prevailing formulation, IRM [3] pro-

motes this philosophy from feature level to representation
level by finding a data representation ⌥, from which the op-
timal predictor ' can yield the prediction ⌥�' that is stable
across all environments. In terms of environment acquisi-
tion, previous studies either manually partition the training
set by prior knowledge [2], or generates data partition iter-
atively via adversarial environment inference [7, 33]. Our
method, instead of partitioning the training, assumes no
prophets about environments but performs causal interven-
tion to perturb the original distribution. To the best of our
knowledge, IGV is the first work that introduces invariant
learning as a model-agnostic framework to VideoQA.

7. Conclusions
In this paper, we pinpoint that the spurious visual-

linguistic correlations in VideoQA are triggered by
question-irrelevant scenes. We propose a novel invariant
grounding framework, IGV, to distinguish the causal scene
and emphasize its causal effect on the answer. With the
grounding indicator and scene intervener, IGV captures the
causal patterns that remain stable across complements. Ex-
tensive experiments verify the effectiveness of IGV on dif-
ferent backbone VideoQA models.

Our future work includes two aspects: 1) the spurious
correlations can nest in entities, object-level invariant learn-
ing is promising to alleviate this issue; 2) as the current
intervention strategy might threaten the causal prediction
by introducing complement with new shortcuts, we will ex-
plore new intervention methods.
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