
Learning to Collaborate in Decentralized Learning of Personalized Models

Shuangtong Li1 Tianyi Zhou2,3 Xinmei Tian1 Dacheng Tao4

1University of Science and Technology of China; 2University of Washington, Seattle
3University of Maryland, College Park; 4JD Explore Academy

lst2015@mail.ustc.edu.cn, tianyizh@uw.edu, xinmei@ustc.edu.cn, dacheng.tao@gmail.com

Abstract

Learning personalized models for user-customized
computer-vision tasks is challenging due to the limited
private-data and computation available on each edge de-
vice. Decentralized learning (DL) can exploit the images dis-
tributed over devices on a network topology to train a global
model but is not designed to train personalized models for
different tasks or optimize the topology. Moreover, the mix-
ing weights used to aggregate neighbors’ gradient messages
in DL can be sub-optimal for personalization since they are
not adaptive to different nodes/tasks and learning stages.
In this paper, we dynamically update the mixing-weights to
improve the personalized model for each node’s task and
meanwhile learn a sparse topology to reduce communication
costs. Our first approach, “learning to collaborate (L2C)”,
directly optimizes the mixing weights to minimize the local
validation loss per node for a pre-defined set of nodes/tasks.
In order to produce mixing weights for new nodes or tasks,
we further develop “meta-L2C”, which learns an attention
mechanism to automatically assign mixing weights by com-
paring two nodes’ model updates. We evaluate both methods
on diverse benchmarks and experimental settings for image
classification. Thorough comparisons to both classical and
recent methods for IID/non-IID decentralized and federated
learning demonstrate our method’s advantages in identifying
collaborators among nodes, learning sparse topology, and
producing better personalized models with low communica-
tion and computational cost.

1. Introduction

Training large models for computer-vision tasks, like
deep neural networks (DNNs) and vision transform-
ers [6, 38, 40], is known to be data hungry but data in many
applications are distributed over millions or even billions
of personal/IoT devices. Transmitting their local data is
usually forbidden due to privacy protection and limited
communication bandwidth, so centralized learning on all

2

Node3:
bird vs. duck

Node3:
bird vs. duck

Node3:
bird vs. duck

Node2:
dog vs. cat

Node2:
dog vs. cat

Node1:
truck vs. car

Node1:
truck vs. car

Node1:
truck vs. car

L2C Meta-L2C
i

j()f

21w
23w

3 1
1

3

Figure 1. Decentralized learning alternates between local model update
and aggregation of neighbors’ model updates. We propose “learning to col-
laborate (L2C)” and meta-L2C to optimize and produce the mixing weights
wi,j for model aggregation in each round to achieve better personalization
of local models on their own tasks/data. While L2C directly optimizes the
mixing weights, meta-L2C learns an attention mechanism to automatically
produce mixing weights between two models θi and θj .

data is infeasible. Instead, federated learning (FL) [29] and
decentralized learning (DL) [24], as two widely studied dis-
tributed learning schemes, aim at training a global model by
only sharing local models/gradients across multiple devices
without leaking their private data. Both FL and DL iterates
between on-device local model updates and cross-device
model aggregation, i.e., each node uses its local data to
update its model for iterations before updated by aggregating
the models of other nodes. Their main difference is that FL
periodically updates a global model on a central server by
aggregating local models and synchronizes all nodes with
the updated global model. In contrast, DL neither presumes
a central server nor an explicit global model: each device
can only communicate with its neighbor nodes on a network
topology and aggregate their messages to update its own
local model without global synchronization. Under certain
assumptions to the topology and mixing weights for the
aggregation [24], the local models in DL provably converge
to a “consensus” global model. FL and DL target different

9766

distributed learning settings in practice.
However, in practice, devices and their users may target

different tasks and their local data distributions are not identi-
cal, e.g., when they belong to separate geographic groups, so
one global model may not perform well on all devices. How
to personalize each local model for its own task/distribution
and meanwhile exploit the knowledge shared across devices
is a key challenge emerging in both FL and DL. Recently,
there has been a growing interest to address the data/task het-
erogeneity across devices by personalization [5,8,20,32,33].
In FL, since the global model is explicitly optimized and
broadcasted, the trade-off between global consensus and
local model personalization is inevitable and may rely
on careful hyperparameter tuning [20]. It becomes even
more challenging when taking other criteria, e.g., fairness
and robustness of the global model, into account. On the
contrary, it is more natural to formulate local personalization
in DL: the main challenge is to optimize the aggregation of
neighbors’ messages for each device’s own task instead of
the global consensus. Recently, CGA [7] considers learnable
mixing weights for each node in non-IID DL and finds a
descent direction positively correlated with its neighbors’
gradients. However, this does not directly optimize the
personalization performance and introduces an extra
constraint. Moreover, the aggregation is only learned for
a fixed set of nodes/tasks on a predefined topology and thus
cannot generalize to newly added devices or unseen tasks.

In this paper, we take a further step towards more auto-
mated and adaptive decentralized learning of personalized lo-
cal models. To this end, we learn an aggregation scheme, i.e.,
“learn to collaborate (L2C)”, which automatically weighs and
mixes neighbors’ messages to update each local model for
better performance on its local task/data. Similar to FL/DL,
we alternate between local model training and the aggrega-
tion of neighbors’ model updates for each node. Inspired
by meta-learning, we formulate this problem as minimizing
the validation loss of each local model after being updated
by the weighted aggregation per round. L2C optimizes the
mixing weights solely based on the validation loss so every
node is agnostic to other nodes’ tasks or data distributions
for better protection of their privacy. Empirically, the mix-
ing weights learned by L2C can faithfully reflect whether
two nodes have similar tasks and/or data distributions and
thus are usually sparse in practice. Moreover, they quickly
converge in earlier stages so we can leverage their sparsity
to create a sparse network topology, which can substantially
save the communication cost for the rest training.

However, the mixing weights learned by L2C are asso-
ciated with a fixed set of pre-defined nodes/tasks and thus
cannot be adapted to new nodes/tasks or data distributions.
To avoid optimizing the mixing weights from scratch for new
nodes, we propose meta-L2C that learns an attention mecha-
nism to automatically assign the mixing weights given the

models of a node and its neighbors. Similar to meta-learning,
we can train meta-L2C on a training set of nodes with dif-
ferent tasks and then apply it to a new set of nodes/tasks
without re-training or fine-tuning. Hence, a pre-trained meta-
L2C can produce mixing weight with sparse topology that
accurately capture the task similarity at the very beginning
of training, which further improves the training and commu-
nication efficiency of L2C.

We summarize the main framework of L2C and meta-L2C
in Figure. 1, both only requiring light-weight models. In ex-
periments on three benchmark datasets, L2C and meta-L2C
consistently outperform FL/DL methods with and without
specific designs for personalization or data heterogeneity.
We further demonstrate the promising generalization perfor-
mance of meta-L2C when transferred to unseen tasks or data.
Moreover, we present an empirical analysis with case studies
to show that L2C/meta-L2C can produce mixing weights
precisely capturing the task correlation among nodes and a
sparse topology for efficient communication. In addition, we
empirically analyze how sensitive L2C/meta-L2C is to train-
ing/validation splitting and communication rounds/budget.

2. Related Work
Federated learning (FL) [29] trains a global model over
various nodes/clients by alternating between local (stochas-
tic) gradient descent on each node and aggregation of local
models on the server side as an update to the global model.
Previous studies find that the performance of FL degrades in
the non-IID setting when data distributions on devices are
not identical, both empirically [13] and theoretically [16].
Moreover, the statistical heterogeneity weakens the global
model’s performance on some nodes’ local tasks and re-
sults in poor fairness across nodes [22]. Several strategies
have been studied to address this non-IID challenge: (1)
modifying the model aggregation, e.g., by knowledge dis-
tillation [27], clustering and sampling low-variance updates
for aggregation [10], Bayesian reformulation [4], matching
the neurons/channels of different models before aggrega-
tion [35], selecting a diverse subset of clients with repre-
sentative gradient information [2], etc. (2) Regularizing the
local objectives with proximal terms [1, 21]. These methods
focus on improving FL of a global model to be more robust to
non-IID distributions but they are not designed to produce a
personalized model for each node, which is a open challenge
attracting increasing interests in recent literature. When each
node does not have sufficient data for training a personalized
model alone, it can still leverage the knowledge of other
nodes via the global model in FL. A variety of methods ex-
plicitly optimize a personalized model per node in FL: (1)
optimization formulation that performs a trade-off between
the global model and local personalization [20, 33]; (2) clus-
tering of local nodes [11, 31, 37] and applying aggregation
within each cluster; (3) personalizing some layers of local

9767

models, i.e., batch normalization layers [23], shallow layers
[25], local heads [5]; (4) distillation of global-view knowl-
edge of data to the local model training [42]; (5) training the
global model as an initialization [8] or an generator [32] of
local models, or (6) sending prototypes [34] to regularize
the training of local models. Most of methods train a global
model shared by all nodes and meanwhile optimizes a lo-
cal model per node, so it is almost inevitable to perform a
trade-off between the global and local objectives, leading
to sub-optimal personalized models for local clients’ data
distributions.

Decentralized learning does not presume a central server
or an explicit global model aggregation, though its goal is
the consensus of all local models towards the same model.
Earlier works combine the gossip-averaging [3] with SGD.
Under assumptions of the topology like doubly stochastic
mixing-weights [15], all local models can be proved to con-
verge to a “consensus model” [24] after iterating peer-to-
peer communication. Although they show promising per-
formance in the IID setting, [13] points out that they suffer
from severe performance degeneration in non-IID scenar-
ios. To tackle this problem, [26] modifies the momentum
term of decentralized SGD to be adaptive to heterogeneous
data; [13] replaces batch normalization with layer normal-
ization to avoid the divergence of models. [17] assign nodes
to clusters but still need to assume those within each cluster
share the same task and distribution, which may not hold in
general heterogeneous settings. [7] finds a descent direction
per node close to its local gradient and meanwhile positively
correlated with its neighbors’ gradients, which removes the
conflicts caused by heterogeneity. These methods still fo-
cus on achieving a global consensus model, which can be
sub-optimal to each local task. Moreover, various methods
require to communicate and aggregate the local gradients
frequently (e.g., every step), while FL allows multiple local
epochs between aggregations.

Since many works in FL/DL above aim at training a
global model or reaching a consensus over all nodes, local
personalization in them has to perform trade-off between
the global objective and local tasks. In contrast, we solely
focus on personalizing local models in the DL setting and
study how to aggregate neighbors’ gradients to improve
each node’s model for its own task and data distribution.
Inspired by meta-learning such as MAML [9], we explore
the idea of “learning to collaborate” by finding the mixing
weights of neighbors minimizing the validation loss on each
node, which shares similar intuition as relating different
tasks on graph in meta-learning [28] and multi-task learn-
ing [41]. Comparing to DL methods adopting MAML idea,
e.g., which trains a meta model as an initialization [8] or
an generator [32] of local models, our meta model is the
mixing weight matrix or its generator, which is much more

light-weight, easier to train, and generalizes better.

3. Leaning to Collaborate

In this section, we develop a decentralized learning ap-
proach “learning to collaborate (L2C)” that updates each
node’s personalized model by weighted aggregation of its
neighbors’ model updates. Similar to FL/DL, L2C alter-
nates between local updates and model aggregation. Unlike
FL/DL, the mixing weights of aggregation in L2C are learn-
able and dynamic rather than pre-defined and fixed. More-
over, each node collaborates with its neighbors solely for
improving its local model so it does not need to perform
trade-off between global consensus and personalization. We
formulate the problem as minimizing the validation loss of
the personalized model on each node. While L2C directly
optimizes the mixing weights for a fixed set of nodes/tasks,
we further propose meta-L2C that can automatically assign
mixing weights given models of nodes/tasks by an attention
mechanism. We elaborate on algorithms of L2C and meta-
L2C, followed by an analysis of their communication and
computational complexity.

3.1. Decentralized Learning of Personalized Models

We study the non-IID setting for K local nodes/devices
and each node i ∈ [K] has its own task defined on a data
distribution Di, which differs from those for other nodes. A
private dataset Di is available at each node i, which can be
split into a training set Dtrain

i and a validation set Dval
i . In

various practical scenarios, each node does not have suffi-
cient data to train a reliable local model solely by itself. It
cannot leverage data of other nodes due to privacy concerns
but communicating the models and gradients are usually
allowed. By following a similar protocol in distributed learn-
ing, we alternate between local (stochastic) gradient steps
on each node and an aggregation step of model updates from
neighbor nodes. Specifically, at round-t, the local learning
at each device i starts from θti and runs s steps of gradient
descent to minimize its training loss L(θi;Dtrain

i), i.e.,

Initialize θ
t+ 1

2
i ← θti ,

s steps of θ
t+ 1

2
i ← θ

t+ 1
2

i − α∇θL(θ
t+ 1

2
i ;Dtrain

i),
(1)

followed by an aggregation step that updates θ
t+ 1

2
i with a

combination of model updates ∆θtj ≜ θtj − θ
t+ 1

2
j sent from

its neighbor nodes N (i), i.e.,

Aggregation θt+1
i = θ

t+ 1
2

i −
∑

j∈N (i)

wi,j∆θtj

= θti −
∑

j∈i∪N (i)

wi,j∆θtj ,
(2)

where the mixing weight wi,j can be explained as a “collab-
oration score” of node-j for node-i.

9768

3.2. “Learning to Collaborate” with Learnable
Mixing-Weights

Unlike the mixing weights wi,j pre-defined in FL or DL,
whose goal is the convergence of θti for all client i ∈ [K]
towards a consensus global model under an IID distribution,
we train the mixing weights for better personalization per-
formance of local models on their own data distributions. In
particular, our goal is to find mixing weights resulting in an
aggregated model θt+1

i minimizing the validation loss on
Dval

i for every client i ∈ [K], i.e.,

min
αi

L(θt+1
i ;Dval

i), wi,j =
exp(αi,j)∑

ℓ∈i∪N (i) exp(αi,ℓ)
, (3)

where the mixing weights in wi are computed from learn-
able parameters αi by the softmax function. Intuitively,
wi,j should be large if the tasks and data distributions of
client-i and client-j are similar. However, in various prac-
tical settings, this similarity is usually unknown a priori
and is hard to estimate without data sharing or an accurate
similarity metric. Hence, we propose a “learning to collab-
orate (L2C)” framework that learns the mixing weights in
an end-to-end manner. In particular, L2C alternates between
updating/aggregating the local models (i.e., Eq. (1)-(2)) and
optimizing the mixing weights (i.e., Eq. (3)). Thereby, the
mixing weights can be trained to adapt to model aggregation
in multiple rounds and converge to values precisely reflecting
the “collaboration score” between clients. Comparing to the
training cost of FL/DL, we only have K2 additional parame-
ters to optimize, so L2C does not introduce any significant
extra computation per round.

3.3. “Learning to Collaborate” as a Meta-Learner

Despite L2C’s simplicity in parameterizing the mixing
weights, it lacks the flexibility and capability of producing
adaptive mixing weights for different training stages or new
clients with unseen tasks. For example, the most similar
neighbors of a client might be assigned with the largest
mixing weights during earlier stages but their resulted im-
provements might diminish later due to over-exploitation.
On the other hand, it is common in practice to add new
nodes with unseen tasks on the fly to the network, so the
mixing weights optimized for a fixed set of clients cannot
be generalized to those new clients. Inspired by the idea
of meta-learning, we further study a meta-L2C model that
learns to produce mixing weights adaptive to training stages,
new client models, or unseen tasks. In particular, meta-L2C
is composed of an encoder of model weights and an attention
module, where the former produces compact representations
of local models and the latter computes the mixing weights
from pairwise similarity between the representations.

In particular, we compute the mixing weight wi,j from a
learnable similarity f(θi, θj) between θi and θj , i.e.,

wi,j =
exp(f(θi, θj))∑

ℓ∈i∪N (i) exp(f(θi, θℓ))
, (4)

Following the definition of dot-product attention, f(θi, θj)
can be computed as the inner product between the repre-
sentations of θi and θj produced by the encoder E(·;α).
Specifically, at round-t, after the local updates in Eq. (1)
and before the aggregation in Eq. (2), we compute the rep-
resentation of θi as E(θ

t+ 1
2

i − θ0i ;α), which depends on the
change of θi since its initialization θ0i . We remove θ0i so
the encoder’s input is mainly determined by the (stochastic)
gradients computed on the data over the past training rounds.
Hence, f(θi, θj) at round-t is defined as

f(θi, θj) = ⟨E(θ
t+ 1

2
i − θ0i ;α), E(θ

t+ 1
2

j − θ0j ;α)⟩. (5)

We then update each local model by aggregating its neigh-
bors’ model updates (Eq. (2)) with mixing weights produced
by the attention module in Eq. (4). Similar to L2C, we mini-
mize the validation loss of the aggregated models {θti}Ki=1

to train the meta-L2C model, i.e.,

min
E(·;α)

1

K

K∑
i=1

L(θt+1
i ;Dval

i). (6)

In practice, DNNs usually contain millions to billions of
parameters, which can significantly increase the input dimen-
sion of E(·;α) and its model size. For structured DNNs such
as convolutional neural networks, we can adopt a channel-
sharing strategy and apply the same encoder to each chan-
nel’s parameters from the same layer. Specifically, we apply
El(·), e.g., a two-layer fully-connected network, to each fil-
ter in layer-l and concatenate the output embedding for all
the C filters in the same layer, i.e.,

ϕl = [El(θl,1), El(θl,2), · · · , El(θl,C)], (7)

where θl,j is the parameters of filter/channel-j at layer-l. The
representation of the whole model E(θ) concatenates the
embedding for all the L layers, i.e.,

E(θ) = [ϕ1, ϕ2, · · · , ϕL]. (8)

3.4. Algorithms of L2C and meta-L2C

We present the complete algorithms for L2C and meta-
L2C in Algorithm 1: they share most procedures except
the highlighted steps. Each algorithm alternates between
local model updates (line 6-11) and model aggregation (line
15-16), where the aggregation weights are produced by L2C
or meta-L2C in line 13-14. We address the optimization
problems in Eq. (3) and Eq. (6) by (stochastic) gradient
descent in line 18. At the end of the first T0 rounds, we try
to remove the top K0 neighbors with the smallest mixing
weights for each node in order to create a sparse topology
saving communication costs for future training rounds.

9769

Algorithm 1: L2C and meta-L2C

1 Input α, β, neighbour sets {N (i)}Ki=1,
{Dtrain

i }Ki=1, {Dval
i }Ki=1, S, T, T0,K0

2 Output {θTi }Ki=1

3 Initialize {θ0i }Ki=1 and {αi}Ki=1
4 for t = 0 : T do
5 for device i = 1 : K in parallel do
6 // Local SGD updates
7 θ

t+ 1
2

i ← θti
8 for local SGD step m = 0 : S do
9 θ

t+ 1
2

i ← θ
t+ 1

2
i − α∇θL(θ

t+ 1
2

i ;Dtrain
i)

10 end

11 ∆θti ← θti − θ
t+ 1

2
i , ∆θ̂ti ← θ

t+ 1
2

i − θ0i
12 // Mixing weights calculation

13 wi,j ← exp(αi,j)∑
ℓ∈i∪N(i) exp(αi,ℓ)

14 wi,j ←
exp(f(∆θ̂t

i ,∆θ̂t
j))∑

ℓ∈i∪N(i) exp(f(∆θ̂t
i ,∆θ̂t

ℓ))

15 // Aggregation
16 θt+1

i ← θti −
∑

j∈N (i)

wi,j∆θtj

17 // Update L2C/meta-L2C parameters
18 αi ← αi − β∇αi

L(θt+1
i ;Dval

i)
19 // Remove edges for sparse topology
20 if t == T0 then
21 For each device i, remove K0 neighbors

j ∈ N(i) with the smallest wi,j

22 end
23 end
24 αi ← AllReduce(αi)

25 end

...

...

... ...

...
Group 1 Group 2 Group P

......
...

Class 1 Class 2 Class 3 Class M

(a)

(b)

(c)

1 2 ... P

1 2 3 M
Random
shuffle

Random
shuffle

Random
shuffle

1 2 3 M

Device1

(N classes)

Device

(N classes)

M

N

MP
Device K=

N

(N classes)

Device 1

(N classes)

M

N
+

Figure 2. The generation of non-IID tasks in our experiments. Given a
dataset of M classes each having P shards of data, our goal is to draw
K = MP/N tasks, each defined on N < M random classes with one
random shard of data per class. (a) The data of each class is partitioned
into P shards. (b) We randomly draw one shard from every class to form
a group of M shards. Repeating this process yields P groups. (c) We
randomly shuffle the order of shards in each group and then assign every N
shards from left to right to a device.

Communication cost The communication cost of L2C is
O(msNb), where ms is the number of edges on the topology
and Nb is the model size, so the sparse topology in line 21
reduces the cost. On the other hand, meta-L2C needs extra
communication cost for sending/receiving ∆θ̂i in line 11 and
for AllReduce in line 24 of Algorithm 1: the former’s cost is
O(msNb), while the latter’s cost can be much smaller if the
average number of channels per layer c̄ is large and the output
dimension d of El(·) is small, e.g., for Ring-AllReduce [12]
across K nodes, the cost is 2(K−1)dNb

c̄ . Hence, we can
have similar communication cost O(msNb) as existing DL
methods, e.g., DPSGD [24] and CGA [7]. However, this
might be an limitation if the above conditions are violated.

Computational cost Comparing to existing DL methods,
the additional computation required by our method is line 18.
However, its computation can be negligible compared to the
cost of local updates when we apply a large S in line 8. In
our experiments, we apply 5 epochs of local updates in each
round and achieve promising personalization performance.

4. Experiments

Table 1. Non-IID tasks randomly generated by Fig. 2 for the three datasets.

Dataset M P K N model

CIFAR-10 10 20 100 2 two-layer CNN [29]
CIFAR-100 100 10 100 10 two-layer CNN [29]
MiniImageNet 100 10 100 10 four-layer CNN [9]

Experimental Setup Inspired by the non-IID setting used
in FedAvg [29], we randomly assign different classification
tasks and the associated training data to each node. In most
experiments, we generate these non-IID tasks by the pro-
cedure detailed in Fig. 2 unless specified otherwise. We
evaluate L2C and meta-L2C and compare them with several
FL/DL baselines on three datasets: CIFAR-10 [19], CIFAR-
100, and MiniImageNet [30], each having 50,000 training
images and 10,000 test images. In Table 1, we list the param-
eters in Fig. 2 for each dataset. For each node, we randomly
select 80% of its local data as the training set and leave the
rest as the validation set. Following the evaluation setting for
personalized models in previous non-IID DL works [25, 39],
we evaluate each local model on all the available test data be-
longing to the classes in its local task. In order to report the
mean and standard deviation of the evaluated accuracy, we
run each experiment on five random non-IID partitions pro-
duced by Fig. 2. For local models, we choose the two-layer
CNN adopted in FedAvg [29] for CIFAR-10/100 and the
four-layer CNN adopted in MAML [9]. Since batch-norm
may have a detrimental effect on DL [13], we replace all the
batch-norm layers [14] with group-norm layers [36].

Implementation of L2C and meta-L2C models We ap-
ply a lightweight fully connected network of two layers with

9770

output dimensions (10, 5) as the encoder El(·) in meta-L2C.
We use Adam [18] with learning rate of 0.1 and weight
decay of 0.01 to train both L2C and meta-L2C. We apply
Algorithm 1 and train all the local models for T=100 rounds
with 5 epochs of local SGD per round. To achieve a sparse
topology, we remove 90% (i.e., K0 = 90) of neighbors for
each node after T0 = 10 rounds.
Baselines We compare our methods with a diverse set
of baselines from federated learning (FL) and decentral-
ized learning (DL) literature, as well as a local SGD only
baseline without any model aggregation across nodes. FL
baselines include FedAvg [29] (the most widely studied FL
method), Ditto [20] achieving fairness and robustness via
trade-off between the global model and local objectives, and
FOMO [39] training personalized models only with adap-
tive mixing weights. DL baselines include the commonly
used DPSGD [24] with fixed mixing weights and topology,
and CGA [7] with a fixed topology but adaptive mixing
weights for removing the conflict of cross-device gradients.

We run each baseline for 100 (communication) rounds
or equally 500 local epochs (if needing > 100 rounds), the
same as our methods, except FedAvg which needs more (i.e.,
> 1000) epochs to converge. For fair comparisons, we keep
their communication cost per node and local epochs in each
round to be no smaller than that of our methods. For FL
baselines, the communication happens between the global
server and clients, so we randomly select 10% clients for
aggregation and apply 5 local epochs per client in each round.
For DL baselines, i.e., DPSGD and CGA, we let every device
communicate with about 10% nodes in every round. Since
they originally propose to only run one local SGD step per
round on a single mini-batch, we evaluate them with two
settings, i.e., one local step per round and 5 local epochs per
round, and we apply more rounds for the former to match
the total local epochs (i.e., 500 epochs) of other methods. To
match the communication cost of our methods, we extend the
ring and bipartite topology used in previous DL works [7] to
increase the number of neighbors for each node. Specifically,
we study (1) a “group-ring” topology that connects two nodes
i and j if |i− j| ≤ (K−K0)

2 or K − |i− j| ≤ (K−K0)
2 ; and

(2) a generalized bipartite topology that randomly partition
all nodes into two groups and then connect each node in a
group to K − K0 = 10 nodes randomly drawn from the
other group. In our experiments, they both outperform their
original versions with fewer neighbors and communications.
Hence, in the following, we always report the best result
among all the four types of topology for each DL baseline.

Training Hyperparameters In all methods, for local
model training, we use SGD with learning rate of 0.01,
weight decay of 5 × 10−4, and batch size of 10. For other
hyperparameters of baselines, we use the values proposed in
their papers except the learning rate, which is kept constant
and is tuned/selected as the best validation accuracy among

Method CIFAR-10 CIFAR-100 MiniImageNet

Local SGD only 87.50±1.37 55.47±2.08 41.59±2.56
DPSGD(s=1 step) 83.01±1.31 40.56±1.24 30.26±2.39
DPSGD(s=5 epochs) 75.89±1.44 35.03±1.39 28.41±2.23
CGA(s=1 step) 65.65±2.37 30.81±3.82 27.65±3.10
CGA(s=5 epochs) diverge diverge diverge
FedAvg 70.65±3.88 40.15±4.01 34.26±4.44
FOMO 88.72±0.29 52.44±0.70 44.56±0.77
Ditto 87.32±0.69 54.28±0.57 42.73±1.21

L2C(ours) 90.14±0.34 59.00±0.42 50.03±0.75
meta-L2C(ours) 92.10±0.72 58.28±1.26 48.80±1.42

Table 2. Test accuracy (mean±std) of 100 local models on non-IID tasks
produced by Fig. 2. L2C and meta-L2C outperform all FL/DL baselines.

0 100 200 300 400 500
Total local epochs

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Test

local SGD only
meta-L2C
L2C
FOMO
Ditto
CGA(s=1 step)
DPSGD(s=5 epochs)
DPSGD(s=1 step)

0 100 200 300 400 500
Total local epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Tr
ai

ni
ng

 lo
ss

Train
local SGD only
meta-L2C
L2C
FOMO
Ditto
CGA(s=1 step)
DPSGD(s=5 epochs)
DPSGD(s=1 step)

Figure 3. Test accuracy and training loss (mean±std) vs. total local epochs
on CIFAR-10. L2C and meta-L2C converge faster to better test/training per-
formance than FL/DL baselines. All methods run for 100 communication
rounds except CGA(s=1 step) and DPSGD(s=1 step) which communicate
per local SGD step. FedAvg requires > 1000 epochs to converge and is
not included.

[0.01, 0.05, 0.1].

4.1. Main Results

Local test accuracy and convergence In Table 2, we re-
port the test accuracy of all the 100 nodes’ models on their
assigned non-IID tasks. L2C and meta-L2C outperform all
the FL/DL baselines by a large margin over all the three
datasets and different random non-IID partitions. For the
baselines, we notice that those solely targeting a global con-
sensus model without encouraging personalization of local
models, e.g., FedAvg, DPSGD, and CGA, can perform even
worse than the simple “local SGD only” method that solely
focuses on personalization. Ditto, which performs a trade-off
between global consensus and local objectives, and FOMO,
which shares a similar personalization objective (local valida-
tion loss) as ours, perform better than the other baselines but
still worse than our methods. In Fig. 3, we show the conver-
gence of test accuracy and training loss for all methods: al-
though FOMO and local SGD only also converge fast, meta-
L2C achieves the fastest convergence on the test accuracy.

Learned mixing weights and topology In Fig. 4a-4b, we
report how the mixing weights produced by L2C and meta-
L2C over communication rounds for a simpler non-IID set-
ting that there exist groups of nodes assigned with identical
tasks. The results show that our methods can quickly iden-
tify nodes of the same task and assign larger mixing weights
to them in aggregation, which produces better personalized

9771

1 5 10 15

1

5

10
15

Round0

1 5 10 15

1

5

10
15

Round1

1 5 10 15

1

5

10
15

Round2

1 5 10 15

1

5

10
15

Round10

(a) L2C

1 5 10 15

1

5

10
15

Round0

1 5 10 15

1

5

10
15

Round1

1 5 10 15

1

5

10
15

Round2

1 5 10 15

1

5

10
15

Round10

(b) meta-L2C

1 5 10 15

1

5

10
15

Round0

1 5 10 15

1

5

10
15

Round1

1 5 10 15

1

5

10
15

Round2

1 5 10 15

1

5

10
15

Round10

(c) Transfer meta-L2C: CIFAR-100 → CIFAR-10

Figure 4. Mixing weights of 15 nodes produced by (a) L2C, (b) meta-L2C,
and (c) a meta-L2C pretrained on CIFAR-100 tasks, at different rounds
on CIFAR-10. For simplicity, instead of Fig. 2, we randomly partition the
10 classes into five two-class tasks and assign every task to three nodes,
each getting 1/3 of the task’s data. So node 1-3 shares task-1, node 4-6
shares task-2, etc. Both L2C and meta-L2C can produce mixing weights
identifying the nodes with the same task after 10 rounds, while meta-L2C
pretrained on a dataset’s tasks can generalize to unseen tasks and produce
accurate mixing weights after the first round.

1 50 100

1

50

100

Round10

1 50 100

1

50

100

Round15

1 50 100

1

50

100

Round20

1 50 100

1

50

100

Round25

(a) L2C

1 50 100

1

50

100

Round10

1 50 100

1

50

100

Round15

1 50 100

1

50

100

Round20

1 50 100

1

50

100

Round25

(b) meta-L2C

Figure 5. Mixing weights of 100 nodes produced by (a) L2C and (b)
meta-L2C on CIFAR-100. Their non-IID tasks are produced by Fig. 2 so
nodes sharing exactly the same task are rare. However, nodes with shared
classes can still collaborate to improve their own local models, and our
methods can automatically discover a sparse topology of them.

models for the task. In Fig.5, we show a general case when
there are few nodes with identical tasks. However, they may
still share different number of classes and our methods are
capable to learn a sparse topology to reflect such complicated
task correlations after a few rounds. As mentioned before, a
sparse topology can significantly reduce the communication
cost of the later-stage training.
Fairness across nodes Fairness is a critical metric to
evaluate whether all the local models performs equally good
or drastically different on their own tasks. In Table 3, we
report the test accuracy averaged over the worst 10% nodes

ray girl rocket bridge motor
cycle

mountain table orange Pine
tree

porcupine

mountaingirl rocket porcupineforest leopard chair telephone tiger plain

chairhouse cloudgirl Willow
tree

busrocketbutterfly Street
car

elephant

shark shrew lizard spider can cattle orchid crocodile cup elephant

1
0.187kgw =

2
0.196kgw =

3
0.025kgw =

1

2 shared classes
s7 shared

D g

paren

e

t c

la

ice

sse

v

Device k

32.1 38.7→
test acc

2

4 shared classes
Device g

3

0 shared classes
Device g

(a) L2C

wolf fox worm hamster Aquarium_fish woman Lawn
mower

butterfly Pine tree dinasour

fox hamster woman butterflyapple forest bus chimpanzee poppy Palm tree

woman
Lawn

mower
shark caterpillartiger possum crab bridge mountain sunflower

orange orchid keyboard rocket train sea
lion tabletank telephone

1
0.163ijw =

2
0.174ijw =

3
0.012ijw =

Device i
:

30.6 35.4→
test acc

1

2 shared classes
s7 shared

D j

paren

e

t c

la

ice

sse

v

2

4 shared classes
Device j

3

0 shared classes
Device j

(b) meta-L2CFigure 6. A node (k or i) and its three neighbors with mixing weights
produced by (a) L2C and (b) meta-L2C on CIFAR-100. In both cases, the
neighbor nodes with many shared classes (g2 or j2) or with semantically
similar but non-identical classes (e.g., g1 or j1 sharing many parent classes)
are assigned with larger mixing weights, compared to neighbors without
any shared or parent classes (g3 or j3). This explains the improvement
of local test accuracy over the local SGD only baseline without any
collaboration with neighbors.

and worst 20% nodes, as well as its mean and standard
deviation over all nodes. Our methods achieve higher test
accuracy on the worst performed nodes and keep a relative
small variance among all nodes, indicating their advantage
on encouraging fairness of the personalization performance
across different nodes/tasks.

Table 3. Statistics of the test accuracy for non-IID tasks over 100 nodes
on CIFAR-10. For each metric, we report its mean±std over five non-IID
partitions randomly generated by Fig. 2. The “worst 10%”, “worst 20%”,
and “std (standard deviation)” metrics reflect the advantage of L2C/meta-
L2C on the fairness of persoanlization performance across nodes.

Method Mean Worst 10% Worst 20% std

Local SGD only 87.50±1.37 77.35±2.59 81.59±10.03 8.14±5.61
FOMO 88.72±0.29 78.80±10.00 85.20±4.96 9.02±5.72
L2C(ours) 90.14±0.34 83.02±4.99 85.10±0.36 5.85±3.31
meta-L2C(ours) 92.10±0.72 82.90±2.49 88.84±0.21 7.34±4.15

Generalization of pretrained meta-L2C to new tasks
Compared to L2C, a key advantage of meta-L2C is that it
can be adapted to new nodes and new tasks without training
the mixing weights from scratch. We evaluate its general-
ization via transferring a meta-L2C model pretrained on a
dataset’s non-IID tasks (randomly generated by Fig 2) to un-
seen tasks from another dataset. We fix the meta-L2C model
without fine-tuning when deployed to the unseen tasks. We
summarize the transfer learning results between CIFAR-10
and CIFAR-100 in Table 4, which are comparable with the
model trained on the same dataset and thus still outperform
all the baselines. Moreover, we show the mixing weights
of CIFAR-10 tasks in Fig. 4 produced by a meta-L2C pre-
trained on CIFAR-100 tasks in different rounds: in Fig. 4c,

9772

it produces the accurate mixing weights since the first round
and thus can effectively improve the convergence and com-
munication/computational efficiency.

Table 4. Generalization of a meta-L2C pre-trained on a dataset’s tasks to
unseen tasks of another dataset. The second row reports the test accuracy
(mean±std) achieved by a meta-L2C pretrained on CIFAR-100(CIFAR-10)
tasks and then applied to CIFAR-10(CIFAR-100) tasks. The meta-L2C
transferred from another dataset can achieve comparable performance as
the one trained on the same dataset’s tasks.

Method CIFAR-10 CIFAR-100

meta-L2C(pretrain) 92.10±0.72 58.28±1.26
meta-L2C(transfer) 91.33±0.89 56.59±1.40

4.2. Empirical Analysis

0 1 2 3 4 5
Number of shared classes

0.008

0.010

0.012

0.014

0.016

0.018

M
ix

in
g

we
ig

ht

L2C
meta-L2C

Figure 7. Mixing weights wi,j (mean±std over all (i, j) pairs) vs. the
number of shared classes between node i and j on CIFAR-100. L2C and
meta-L2C assign larger mixing weights to nodes sharing more classes and
thus improves their local models’ personalization performance.

In order to explain how the mixing weights produced
by our methods can help training persoanlized models
for non-IID tasks, we investigate the correlation between
mixing weights and task similarities, e.g., the aggregation of
models for similar tasks tend to improve the personalization
performance for all of them. In Fig. 7, on the 100 nodes
assigned with non-IID tasks from CIFAR-100, we observe
that the mixing weight between two nodes grows as
their shared classes increase, which demonstrates that
L2C/meta-L2C encourage a node to collaborate with other
nodes of similar tasks. To take a closer look at the tasks
and mixing weights, we present a case study of two nodes
and their neighbors in Fig. 6. It indicates that our methods
can identify neighbors with not only shared classes but
also semantically similar classes and assign larger mixing
weights to them, hence improving the personalization
performance of each node’s local task.

4.3. Sensitivity Analysis

Train/val ratio For our methods and FOMO that uses a
training set to update the local models and a validation set
to determine the mixing weights, the train/val ratio controls
their trade-off and its choice can be critical to the perfor-
mance. In Fig. 8, we compare the sensitivity of different
methods to this hyperparameter. While FOMO shows a sen-
sitive trade-off, both of our methods are robust to the ratio

99.5:0.5 98:2 90:10 70:30 50:50
Train:val ratio

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

100.0

Av
g

te
st

 a
cc

Performances vs. training/val ratio
L2C
meta-L2C
FOMO

Figure 8. L2C and meta-L2C are more robust to the choices of train/val ra-
tio than FOMO (the only baseline aiming at minimizing the validation loss).

in the evaluated interval, because L2C/meta-L2C only con-
tains a few parameters and a small validation set suffices to
estimate them.

2% 4% 30% 50%
communication budget

60
65
70
75
80
85
90
95

100

Av
g

te
st

 a
cc

Performances vs. communication budget
L2C
meta-L2C
DPSGD(s=5 epochs)

Figure 9. L2C and meta-L2C are more robust to different communication
cost/budgets. We evaluate each method for every node communicating with
2%, 4%, 30%, or 50% of other nodes.

Communication cost/budget The communication cost
can be a bottleneck of DL so a sparse topology is usually
necessary in practice. Hence, in Fig. 9, we evaluate the per-
sonalization performance of L2C, meta-L2C, and DPSGD
under different communication budgets. Both of our meth-
ods keep almost the same accuracy across the tested budgets,
while DPSGD’s performance is much poorer and sensitively
improves only when the budget increases.

5. Conclusion
We propose “learning to collaborate (L2C)” and meta-

L2C to automatically optimize the mixing weights in decen-
tralized learning for producing better local models on non-
IID tasks/data. By training a few parameters shared across
tasks, our methods can precisely capture the correlation be-
tween nodes/tasks and mainly aggregate those most related
to each local task. It also learns a sparse topology in earlier
stages that can significantly reduce the communication cost.
We demonstrate several practical advantages of our methods
over a diverse set of recent FL/DL methods by experiments.

6. Acknowledgements
This work was supported by NSFC No.

61872329 and the Fundamental Research Funds
for the Central Universities under contract
WK3490000005.

9773

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew

Mattina, Paul Whatmough, and Venkatesh Saligrama. Fed-
erated learning based on dynamic regularization. In Interna-
tional Conference on Learning Representations, 2021. 2

[2] Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Hi-
mayat, Virginia Smith, and Jeff Bilmes. Diverse client selec-
tion for federated learning via submodular maximization. In
International Conference on Learning Representations, 2022.
2

[3] Michael Blot, David Picard, Matthieu Cord, and Nicolas
Thome. Gossip training for deep learning. arXiv preprint
arXiv:1611.09726, 2016. 3

[4] Hong-You Chen and Wei-Lun Chao. Fed{be}: Making
bayesian model ensemble applicable to federated learning.
In International Conference on Learning Representations,
2021. 2

[5] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay
Shakkottai. Exploiting shared representations for personal-
ized federated learning. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 2089–2099. PMLR, 18–24
Jul 2021. 2, 3

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[7] Yasaman Esfandiari, Sin Yong Tan, Zhanhong Jiang, Aditya
Balu, Ethan Herron, Chinmay Hegde, and Soumik Sarkar.
Cross-gradient aggregation for decentralized learning from
non-iid data. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning
Research, pages 3036–3046. PMLR, 18–24 Jul 2021. 2, 3, 5,
6

[8] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-
sonalized federated learning with theoretical guarantees: A
model-agnostic meta-learning approach. Advances in Neural
Information Processing Systems, 33, 2020. 2, 3

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017. 3, 5

[10] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco
Lorenzi. Clustered sampling: Low-variance and improved
representativity for clients selection in federated learning. In
Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages
3407–3416. PMLR, 18–24 Jul 2021. 2

[11] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ram-
chandran. An efficient framework for clustered federated
learning. arXiv preprint arXiv:2006.04088, 2020. 2

[12] Andrew Gibiansky. Bringing hpc techniques to deep learning.
Baidu Research, Tech. Rep., 2017. 5

[13] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip
Gibbons. The non-iid data quagmire of decentralized machine
learning. In International Conference on Machine Learning,
pages 4387–4398. PMLR, 2020. 2, 3, 5

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Re-
search, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.
5

[15] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik
Sarkar. Collaborative deep learning in fixed topology net-
works. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. 3

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.
Scaffold: Stochastic controlled averaging for federated learn-
ing. In International Conference on Machine Learning, pages
5132–5143. PMLR, 2020. 2

[17] Sahar Khawatmi, Ali H Sayed, and Abdelhak M Zoubir. De-
centralized clustering and linking by networked agents. IEEE
Transactions on Signal Processing, 65(13):3526–3537, 2017.
3

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[20] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith.
Ditto: Fair and robust federated learning through personal-
ization. In International Conference on Machine Learning,
pages 6357–6368. PMLR, 2021. 2, 6

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. arXiv preprint arXiv:1812.06127,
2018. 2

[22] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith.
Fair resource allocation in federated learning. In International
Conference on Learning Representations, 2020. 2

[23] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp,
and Qi Dou. FedBN: Federated learning on non-IID features
via local batch normalization. In International Conference on
Learning Representations, 2021. 3

[24] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei
Zhang, and Ji Liu. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 1, 3, 5, 6

[25] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen,
Randy P Auerbach, David Brent, Ruslan Salakhutdinov, and

9774

Louis-Philippe Morency. Think locally, act globally: Fed-
erated learning with local and global representations. arXiv
preprint arXiv:2001.01523, 2020. 3, 5

[26] Tao Lin, Sai Praneeth Karimireddy, Sebastian Stich, and Mar-
tin Jaggi. Quasi-global momentum: Accelerating decentral-
ized deep learning on heterogeneous data. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 6654–6665.
PMLR, 18–24 Jul 2021. 3

[27] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi.
Ensemble distillation for robust model fusion in federated
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 2351–2363. Curran
Associates, Inc., 2020. 2

[28] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi
Zhang. Learning to propagate for graph meta-learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.
3

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017. 1, 2, 5, 6

[30] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International Conference on Learn-
ing Representations, 2017. 5

[31] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek.
Clustered federated learning: Model-agnostic distributed mul-
titask optimization under privacy constraints. IEEE transac-
tions on neural networks and learning systems, 2020. 2

[32] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik.
Personalized federated learning using hypernetworks. In
Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages
9489–9502. PMLR, 18–24 Jul 2021. 2, 3

[33] Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized
federated learning with moreau envelopes. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33,
pages 21394–21405. Curran Associates, Inc., 2020. 2

[34] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua
Lu, Jing Jiang, and Chengqi Zhang. Fedproto: Federated
prototype learning across heterogeneous clients. In AAAI
Conference on Artificial Intelligence, volume 1, 2022. 3

[35] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Pa-
pailiopoulos, and Yasaman Khazaeni. Federated learning with
matched averaging. In International Conference on Learning
Representations, 2020. 2

[36] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), September 2018. 5

[37] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi
Wang, Jing Jiang, and Chengqi Zhang. Multi-center federated
learning. arXiv preprint arXiv:2108.08647, 2021. 2

[38] Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao.
Vitae: Vision transformer advanced by exploring intrinsic
inductive bias. Advances in Neural Information Processing
Systems, 34, 2021. 1

[39] Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung,
and Jose M. Alvarez. Personalized federated learning with
first order model optimization. In International Conference
on Learning Representations, 2021. 5, 6

[40] Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao.
Vitaev2: Vision transformer advanced by exploring induc-
tive bias for image recognition and beyond. arXiv preprint
arXiv:2202.10108, 2022. 1

[41] Tianyi Zhou and Dacheng Tao. Multi-task copula by sparse
graph regression. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 771–780, 2014. 3

[42] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free
knowledge distillation for heterogeneous federated learning.
In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages
12878–12889. PMLR, 18–24 Jul 2021. 3

9775

