
MViTv2: Improved Multiscale Vision Transformers
for Classification and Detection

Yanghao Li *, 1 Chao-Yuan Wu *, 1 Haoqi Fan 1

Karttikeya Mangalam 1, 2 Bo Xiong 1 Jitendra Malik 1, 2 Christoph Feichtenhofer *, 1

∗equal technical contribution

1Facebook AI Research 2UC Berkeley

Abstract

In this paper, we study Multiscale Vision Transformers
(MViTv2) as a unified architecture for image and video
classification, as well as object detection. We present an
improved version of MViT that incorporates decomposed
relative positional embeddings and residual pooling con-
nections. We instantiate this architecture in five sizes and
evaluate it for ImageNet classification, COCO detection
and Kinetics video recognition where it outperforms prior
work. We further compare MViTv2s’ pooling attention to
window attention mechanisms where it outperforms the latter
in accuracy/compute. Without bells-and-whistles, MViTv2
has state-of-the-art performance in 3 domains: 88.8% ac-
curacy on ImageNet classification, 58.7 APbox on COCO
object detection as well as 86.1% on Kinetics-400 video
classification. Code and models are available at https:
//github.com/facebookresearch/mvit.

1. Introduction
Designing architectures for different visual recognition

tasks has been historically difficult and the most widely
adopted ones have been the ones that combine simplicity
and efficacy, e.g. VGGNet [67] and ResNet [37]. More
recently Vision Transformers (ViT) [17] have shown promis-
ing performance and are rivaling convolutional neural net-
works (CNN) and a wide range of modifications have re-
cently been proposed to apply them to different vision
tasks [1, 2, 21, 55, 68, 73, 78, 90].

While ViT [17] is popular in image classification, its
usage for high-resolution object detection and space-time
video understanding tasks remains challenging. The den-
sity of visual signals poses severe challenges in compute
and memory requirements as these scale quadratically in
complexity within the self-attention blocks of Transformer-
based [76] models. The community has approached this
burden with different strategies: Two popular ones are (1)
local attention computation within a window [55] for object
detection and (2) pooling attention that locally aggregates
features before computing self-attention in video tasks [21].

(a) Image classification (b) Object detection (c) Video recognition

Figure 1. Our MViTv2 is a multiscale transformer with state-of-
the-art performance across three visual recognition tasks.

The latter fuels Multiscale Vision Transformers
(MViT) [21], an architecture that extends ViT in a simple
way: instead of having a fixed resolution throughout the net-
work, it has a feature hierarchy with multiple stages starting
from high-resolution to low-resolution. MViT is designed
for video tasks where it has state-of-the-art performance.

In this paper, we develop two simple technical improve-
ments to further increase its performance and study MViT as
a single model family for visual recognition across 3 tasks:
image classification, object detection and video classifica-
tion, in order to understand if it can serve as a general vision
backbone for spatial as well as spatiotemporal recognition
tasks (see Fig. 1). Our empirical study leads to an improved
architecture (MViTv2) and encompasses the following:

(i) We create strong baselines that improve pooling at-
tention along two axes: (a) shift-invariant positional embed-
dings using decomposed location distances to inject position
information in Transformer blocks; (b) a residual pooling
connection to compensate the effect of pooling strides in
attention computation. Our simple-yet-effective upgrades
lead to significantly better results.

(ii) Using the improved structure of MViT, we employ
a standard dense prediction framework: Mask R-CNN [36]
with Feature Pyramid Networks (FPN) [53] and apply it to
object detection and instance segmentation.

4804



We study if MViT can process high-resolution visual
input by using pooling attention to overcome the compu-
tation and memory cost involved. Our experiments sug-
gest that pooling attention is more effective than local win-
dow attention mechanisms (e.g. Swin [55]). We further
develop a simple-yet-effective Hybrid window attention
scheme that can complement pooling attention for better
accuracy/compute tradeoff.

(iii) We instantiate our architecture in five sizes of in-
creasing complexity (width, depth, resolution) and report a
practical training recipe for large multiscale transformers.
The MViT variants are applied to image classification, object
detection and video classification, with minimal modifica-
tion, to study its purpose as a generic vision architecture.

Experiments reveal that our MViTv2 achieves 88.8%
accuracy for ImageNet-1K classification, with pretrain-
ing on ImageNet-21K (and 86.3% without), as well as
58.7 APbox on COCO object detection using only Cas-
cade Mask R-CNN [6]. For video classification tasks,
MViT achieves unprecedented accuracies of 86.1% on
Kinetics-400, 87.9% on Kinetics-600, 79.4% on Kinetics-
700, and 73.3% on Something-Something-v2. Our video
code will be open-sourced in PyTorchVideo 1,2 [19, 20].

2. Related Work

CNNs serve as the primary backbones for computer vision
tasks, including image recognition [10, 15, 34, 39, 46, 48, 62,
67, 69, 71], object detection [6, 29, 38, 53, 63, 93] and video
recognition [8, 22, 23, 25, 28, 42, 51, 61, 66, 75, 79, 84, 92].

Vision transformers have generated a lot of recent enthusi-
asm since the work of ViT [17], which applies a Transformer
architecture on image patches and shows very competitive
results on image classification. Since then, different works
have been developed to further improve ViT, including ef-
ficient training recipes [73], multi-scale transformer struc-
tures [21, 55, 78] and advanced self-attention mechanism
design [11, 21, 55]. In this work, we build upon the Multi-
scale Vision Transformers (MViT) and study it as a general
backbone for different vision tasks.

Vision transformers for object detection tasks [11, 55, 78,
89] address the challenge of detection typically requiring
high-resolution inputs and feature maps for accurate object
localization. This significantly increases computation com-
plexity due to the quadratic complexity of self-attention oper-
ators in transformers [76]. Recent works develop technology
to alleviate this cost, including shifted window attention [55]
and Longformer attention [89]. Meanwhile, pooling atten-
tion in MViT is designed to compute self-attention efficiently
using a different perspective [21]. In this work, we study

1https://github.com/facebookresearch/pytorchvideo
2https://github.com/facebookresearch/SlowFast

MViT for detection and more generally compare pooling
attention to local attention mechanisms.

Vision transformers for video recognition have also re-
cently shown strong results, but mostly [1, 3, 56, 59] rely on
pre-training with large-scale external data (e.g. ImageNet-
21K [14]). MViTv1 [21] reports a good training-from-
scratch recipe for Transformer-based architectures on Ki-
netics data [44]. In this paper, we use this recipe and im-
prove the MViT architecture with improved pooling attention
which is simple yet effective on accuracy; further, we study
the (large) effect of ImageNet pre-training for video tasks.

3. Revisiting Multiscale Vision Transformers
The key idea of MViTv1 [21] is to construct different

stages for both low- and high-level visual modeling instead
of single-scale blocks in ViT [17]. MViT slowly expands
the channel width D, while reducing the resolution L (i.e.
sequence length), from input to output stages of the network.

To perform downsampling within a transformer block,
MViT introduces Pooling Attention. Concretely, for an input
sequence, X ∈ RL×D, it applies linear projections WQ,
WK , WV ∈ RD×D followed by pooling operators (P) to
query, key and value tensors, respectively:

Q = PQ (XWQ) , K = PK (XWK) , V = PV (XWV ) ,
(1)

where the length L̃ of Q ∈ RL̃×D can be reduced by PQ

and K and V length can be reduced by PK and PV .
Subsequently, pooled self-attention,

Z := Attn(Q,K, V ) = Softmax
(
QK⊤/

√
D
)
V, (2)

computes the output sequence Z ∈ RL̃×D with flexible
length L̃. Note that the downsampling factors PK and PV

for key and value tensors can be different from the ones
applied to the query sequence, PQ.

Pooling attention enables resolution reduction between
different stages of MViT by pooling the query tensor Q, and
to significantly reduce compute and memory complexity by
pooling the key, K, and value, V , tensors.

4. Improved Multiscale Vision Transformers
In this section, we first introduce an empirically powerful

upgrade to pooling attention (§4.1). Then we describe how
to employ our generic MViT architecture for object detection
(§4.2) and video recognition (§4.3). Finally, §4.4 shows five
concrete instantiations for MViTv2 in increasing complexity.

4.1. Improved Pooling Attention

We start with re-examining two important implications of
MViTv2 for potential improvement and introduce techniques
to understand and address them.

4805



Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) ∈ Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
(
(QK⊤ + E(rel))/

√
d
)
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = Rh
h(i),h(j) +Rw

w(i),w(j) +Rt
t(i),t(j), (4)

where Rh, Rw, Rt are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.

Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection

In this section, we describe how to apply the MViT back-
bone for object detection and instance segmentation tasks.

FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).

Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,

4806



Figure 3. MViT backbone used with FPN for object detection.
The multiscale transformer features naturally integrate with stan-
dard feature pyramid networks (FPN).

key and value tensors when computing self-attention. Their
intrinsic nature however is different: Pooling attention pools
features by downsampling them via local aggregation, but
keeps a global self-attention computation, while window
attention keeps the resolution of tensors but performs self-
attention locally by dividing the input (patchified tokens)
into non-overlapping windows and then only compute local
self-attention within each window. The intrinsic difference
of the two approaches motivates us to study if they could
perform complementary in object detection tasks.

Default window attention only performs local self-
attention within windows, thus lacking connections across
windows. Different from Swin [55], which uses shifted win-
dows to mitigate this issue, we propose a simple Hybrid
window attention (Hwin) design to add cross-window con-
nections. Hwin computes local attention within a window
in all but the last blocks of the last three stages that feed
into FPN. In this way, the input feature maps to FPN contain
global information. The ablation in §5.3 shows that this
simple Hwin performs consistently better than Swin [55]
on image classification and object detection tasks. Further,
we will show that combining pooling attention and Hwin
achieves the best performance for object detection.

Positional embeddings in detection. Different from Ima-
geNet classification where the input is a crop of fixed resolu-
tion (e.g. 224×224), object detection typically encompasses
inputs of varying size in training. For the positional embed-
dings in MViT (either absolute or relative), we first initialize
the parameters from the ImageNet pre-training weights cor-
responding to positional embeddings with 224×224 input
size and then interpolate them to the respective sizes for
object detection training.

4.3. MViT for Video Recognition

MViT can be easily adopted for video recognition tasks
(e.g. the Kinetics dataset) similar to MViTv1 [21] as the
upgraded modules in §4.1 generalize to the spatiotemporal
domain. While MViTv1 only focuses on the training-from-
scratch setting on Kinetics, in this work, we also study the
(large) effect of pre-training from ImageNet datasets.

Initialization from pre-trained MViT. Compared to the

Model #Channels #Blocks #Heads FLOPs Param
MViT-T [96-192-384-768] [1-2-5-2] [1-2-4-8] 4.7 24
MViT-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 7.0 35
MViT-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 10.2 52
MViT-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 39.6 218
MViT-H [192-384-768-1536] [4-8-60-8] [3-6-12-24] 120.6 667

Table 1. Configuration for MViT variants. #Channels, #Blocks
and #Heads specify the channel width, number of MViT blocks
and heads in each block for the four stages, respectively. FLOPs
are measured for image classification with 224 × 224 input. The
stage resolutions are [562, 282, 142, 72].

image-based MViT, there are only three differences for video-
based MViT: 1) the projection layer in the patchification stem
needs to project the input into space-time cubes instead of 2D
patches; 2) the pooling operators now pool spatiotemporal
feature maps; 3) relative positional embeddings reference
space-time locations.

As the projection layer and pooling operators in 1) and 2)
are instantiated by convolutional layers by default 4, we use
an inflation initialization as for CNNs [8, 24]. Specifically,
we initialize the conv filters for the center frame with the
weights from the 2D conv layers in pre-trained models and
initialize other weights as zero. For 3), we capitalize on our
decomposed relative positional embeddings in Eq. 4, and
simply initialize the spatial embeddings from pre-trained
weights and the temporal embedding as zero.

4.4. MViT Architecture Variants

We build several MViT variants with different number of
parameters and FLOPs as shown in Table 1, in order to have
a fair comparison with other vision transformer works [9,55,
72, 81]. Specifically, we design five variants (Tiny, Small,
Base, Large and Huge) for MViT by changing the base
channel dimension, the number of blocks in each stage and
the number of heads in the blocks. Note that we use a smaller
number of heads to improve runtime, as more heads lead to
slower runtime but have no effect on FLOPs and Parameters.

Following the pooling attention design in MViT [21], we
employ Key and Value pooling in all pooling attention blocks
by default and the pooling stride is set to 4 in the first stage
and adaptively decays stride w.r.t resolution across stages.

5. Experiments: Image Recognition
We conduct experiments on ImageNet classification [14]

and COCO object detection [54]. We first show state-of-the-
art comparisons and then perform comprehensive ablations.
More results and discussions are in §A.

5.1. Image Classification on ImageNet-1K

Settings. The ImageNet-1K [14] (IN-1K) dataset has
∼1.28M images in 1000 classes. Our training recipe for
MViTv2 on IN-1K is following MViTv1 [21, 72]. We train

4Note that no initialization is needed if using max-pooling variants.

4807



Acc
model center resize FLOPs (G) Param (M)

RegNetZ-4GF [15] 83.1 4.0 28
EfficientNet-B4 ↑ 3802 [71] 82.9 4.2 19
DeiT-S [72] 79.8 4.6 22
TNT-S [33] 81.5 5.2 24
PVTv2-V2 [77] 82.0 4.0 25
CoAtNet-0 [13] 81.6 4.2 25
XCiT-S12 [18] 82.0 4.8 26
Swin-T [55] 81.3 4.5 29
CSWin-T [16] 82.7 4.3 23
MViTv2-T 82.3 4.7 24
RegNetY-8GF [62] 81.7 8.0 39
EfficientNet-B5 ↑ 4562 [71] 83.6 9.9 30
Twins-B [11] 83.2 8.6 56
PVTv2-V2-B3 [77] 83.2 6.9 45
Swin-S [55] 83.0 8.7 50
CSWin-S [16] 83.6 6.9 35
MViT-v1-B-16 [21] 83.0 7.8 37
MViTv2-S 83.6 7.0 35
RegNetZ-16GF [15] 84.1 15.9 95
EfficientNet-B6 ↑ 5282 [71] 84.2 19 43
DeiT-B [72] 81.8 17.6 87
PVTv2-V2-B5 [77] 83.8 11.8 82
CaiT-S36 [74] 83.3 13.9 68
CoAtNet-2 [13] 84.1 15.7 75
XCiT-M24 [18] 82.7 16.2 84
Swin-B [55] 83.3 15.4 88
CSWin-B [16] 84.2 15.0 78
MViTv1-B-24 [21] 83.4 10.9 54
MViTv2-B 84.4 10.2 52
EfficientNet-B7 ↑ 6002 [71] 84.3 37.0 66
NFNet-F1 ↑ 3202 [5] 84.7 35.5 133
DeiT-B ↑ 3842 [72] 83.1 55.5 87
CvT-32 ↑ 3842 [81] 83.3 24.9 32
CaiT-S36↑ 3842 [74] 85.0 48 68
Swin-B ↑ 3842 [55] 84.2 47.0 88
MViT-v1-B-24 ↑ 3202 [21] 84.8 32.7 73
MViTv2-B ↑ 3842 85.2 85.6 36.7 52
NFNet-F2 ↑ 3522 [5] 85.1 62.6 194
CoAtNet-3 [13] 84.5 34.7 168
XCiT-M24 [18] 82.9 36.1 189
MViTv2-L 85.3 42.1 218
NFNet-F4 ↑ 5122 [5] 85.9 215.3 316
CoAtNet-3 [13] ↑ 3842 85.8 107.4 168
MViTv2-L ↑ 3842 86.0 86.3 140.2 218

Table 2. Comparison to published work on ImageNet-1K. Input
images are 224×224 by default and ↑ denotes using different sizes.
MViT is trained for 300 epochs without any external data or models.
We report ↑ 3842 MViT tested with center crop or a resized view
of the original image, to compare to prior work. Full Table in A.3

all MViTv2 variants for 300 epochs without using EMA. We
also explore pre-training on ImageNet-21K (IN-21K) with
∼14.2M images and ∼21K classes. See §B for details.

Results using ImageNet-1K. Table 2 shows our MViTv2
and state-of-the-art CNNs and Transformers (without exter-
nal data or distillation models [43, 74, 86]). The models are
split into groups based on computation and compared next.

Compared to MViTv1 [21], our improved MViTv2 has
better accuracy with fewer flops and parameters. For ex-
ample, MViTv2-S (83.6%) improves +0.6% over MViTv1-
B-16 (83.0%) with 10% fewer flops. On the base model
size, MViTv2-B (84.4%) improves +1.0% over MViTv1-
B-24 (83.4%) while even being lighter. This shows clear

Acc
model center resize FLOPs (G) Param (M)

Swin-L [55] 86.3 34.5 197
MViTv2-L 87.5 42.1 218
MViTv2-H 88.0 120.6 667
ViT-L/16 ↑ 3842 [17] 85.2 190.7 307
ViL-B-RPB ↑ 3842 [89] 86.2 43.7 56
Swin-L ↑ 3842 [55] 87.3 103.9 197
CSwin-L ↑ 3842 [16] 87.5 96.8 173
CvT-W24 ↑ 3842 [81] 87.6 193.2 277
CoAtNet-4 [13] ↑ 5122 88.4 360.9 275
MViTv2-L ↑ 3842 88.2 88.4 140.7 218
MViTv2-H ↑ 3842 88.3 88.6 388.5 667
MViTv2-H ↑ 5122 88.3 88.8 763.5 667

Table 3. ImageNet-1K fine-tunning results using IN-21K data.
Fine-tuning is with 2242 input size (default) or with ↑ 3842 size.
Center denotes testing with a center crop, while resize is scaling
the full image to the inference resolution (including more context).

effectiveness of the MViTv2 improvements in §4.1.
Our MViTv2 outperforms other Transformers, including

DeiT [72] and Swin [55], especially when scaling up models.
For example, MViTv2-B achieves 84.4% top-1 accuracy, sur-
passing DeiT-B and Swin-B by 2.6% and 1.1% respectively.
Note that MViTv2-B has over 33% fewer flops and parame-
ters comparing DeiT-B and Swin-B. The trend is similar with
384×384 input and MViTv2-B has further +0.8% gain from
the high-resolution fine-tuning under center crop testing.

In addition to center crop testing (with a 224/256=0.875
crop ratio), we report a testing protocol that has been adopted
recently in the community [55, 74, 81]: This protocol takes
a full-sized crop of the (resized) original validation images.
We observe that full crop testing can increase our MViTv2-L
↑ 3842 from 86.0 to 86.3%, which is the highest accuracy on
IN-1K to date (without external data or distillation models).

Results using ImageNet-21K. Results for using the large-
scale IN-21K pre-training are shown in Table 3. The IN-21K
data adds +2.2% accuracy to MViTv2-L.

Compared to other Transformers, MViTv2-L achieves bet-
ter results than Swin-L (+1.2%). We lastly finetune MViTv2-
L with 3842 input to directly compare to prior models of size
L: MViTv2-L achieves 88.4%, outperforming other large
models. We further train a huge MViTv2-H with accuracy
88.0%, 88.6% and 88.8% at 2242, 3842 and 5122 resolution.

5.2. Object Detection on COCO

Settings. We conduct object detection experiments on the
MS-COCO dataset [54]. All the models are trained on 118K
training images and evaluated on the 5K validation images.
We use standard Mask R-CNN [36] and Cascade Mask
R-CNN [6] detection frameworks implemented in Detec-
tron2 [82]. For a fair comparison, we follow the same recipe
as in Swin [55]. Specifically, we pre-train the backbones on
IN and fine-tune on COCO using a 3×schedule (36 epochs)
by default. Detailed training recipes are in §B.3.

For MViTv2, we take the backbone pre-trained from IN
and add our Hybrid window attention (Hwin) by default. The
window sizes are set as [56, 28, 14, 7] for the four stages,
which is consistent with the self-attention size used in IN

4808



(a) Mask R-CNN
model APbox APbox

50 APbox
75 APmask APmask

50 APmask
75 FLOPs Param

Res50 [38] 41.0 61.7 44.9 37.1 58.4 40.1 260 44
PVT-S [78] 43.0 65.3 46.9 39.9 62.5 42.8 245 44
Swin-T [55] 46.0 68.2 50.2 41.6 65.1 44.8 264 48
ViL-S-RPB [89] 47.1 68.7 51.5 42.7 65.9 46.2 277 45
MViTv1-T [21] 45.9 68.7 50.5 42.1 66.0 45.4 326 46
MViTv2-T 48.2 70.9 53.3 43.8 67.9 47.2 279 44
Res101 [38] 42.8 63.2 47.1 38.5 60.1 41.3 336 63
PVT-M [78] 44.2 66.0 48.2 40.5 63.1 43.5 302 64
Swin-S [55] 48.5 70.2 53.5 43.3 67.3 46.6 354 69
ViL-M-RPB [89] 48.9 70.3 54.0 44.2 67.9 47.7 352 60
MViTv1-S [21] 47.6 70.0 52.2 43.4 67.3 46.9 373 57
MViTv2-S 49.9 72.0 55.0 45.1 69.5 48.5 326 54
X101-64 [83] 44.4 64.9 48.8 39.7 61.9 42.6 493 101
PVT-L [78] 44.5 66.0 48.3 40.7 63.4 43.7 364 81
Swin-B [55] 48.5 69.8 53.2 43.4 66.8 46.9 496 107
ViL-B-RPB [89] 49.6 70.7 54.6 44.5 68.3 48.0 384 76
MViTv1-B [21] 48.8 71.2 53.5 44.2 68.4 47.6 438 73
MViTv2-B 51.0 72.7 56.3 45.7 69.9 49.6 392 71
MViTv2-L 51.8 72.8 56.8 46.2 70.4 50.0 1097 238
MViTv2-L† 52.7 73.7 57.6 46.8 71.4 50.8 1097 238

(b) Cascade Mask R-CNN
model APbox APbox

50 APbox
75 APmask APmask

50 APmask
75 FLOPs Param

R50 [38] 46.3 64.3 50.5 40.1 61.7 43.4 739 82
Swin-T [55] 50.5 69.3 54.9 43.7 66.6 47.1 745 86
MViTv2-T 52.2 71.1 56.6 45.0 68.3 48.9 701 76
X101-32 [83] 48.1 66.5 52.4 41.6 63.9 45.2 819 101
Swin-S [55] 51.8 70.4 56.3 44.7 67.9 48.5 838 107
MViTv2-S 53.2 72.4 58.0 46.0 69.6 50.1 748 87
X101-64 [83] 48.3 66.4 52.3 41.7 64.0 45.1 972 140
Swin-B [55] 51.9 70.9 56.5 45.0 68.4 48.7 982 145
MViTv2-B 54.1 72.9 58.5 46.8 70.6 50.8 814 103
MViTv2-B† 54.9 73.8 59.8 47.4 71.5 51.6 814 103
MViTv2-L 54.3 73.1 59.1 47.1 70.8 51.7 1519 270
MViTv2-L†† 55.8 74.3 60.9 48.3 71.9 53.2 1519 270
MViTv2-H†† 56.1 74.6 61.0 48.5 72.4 53.2 3084 718
MViTv2-L††∗ 58.7 76.7 64.3 50.5 74.2 55.9 - 270
Table 5. Results on COCO object detection with (a) Mask R-
CNN [36] and (b) Cascade Mask R-CNN [6]. † indicates that the
model is initialized from IN-21K pre-training. †† denotes using a
stronger large-scale jittering training [26] and longer schedule (50
epochs) with IN-21K pre-training ∗ indicates using SoftNMS and
multiscale testing. FLOPs / Params are in Giga (109) / Mega (106).

pre-training which takes 224×224 as input.

Main results. Table 5a shows the results on COCO
using Mask R-CNN. Our MViTv2 surpasses CNN (i.e.
ResNet [38] and ResNeXt [83]) and Transformer back-
bones (e.g. Swin [55], ViL [89] and MViTv1 [21]5).
E.g., MViTv2-B outperforms Swin-B by +2.5/+2.3 in
APbox/APmask, with lower compute and smaller model size.
When scaling up, our deeper MViTv2-L improves over
MViTv2-B by +0.8 APbox and using IN-21K pre-training
further adds +0.9 to achieve 52.7 APbox with Mask R-CNN
and a standard 3×schedule.

In Table 5b we observe a similar trend among backbones
for Cascade Mask R-CNN [6] which lifts Mask R-CNN
accuracy (5a). We also ablate the use of a longer training
schedule with large-scale jitter that boosts our APbox to 55.8.
MViTv2-H increases this to 56.1 APbox and 48.5 APmask.

We further adopt two inference strategies (SoftNMS [4]
and multi-scale testing) on MViTv2-L with Cascade Mask
R-CNN for system-level comparison (See Table §A.1). They
boosts our APbox to 58.7, which is already better than the
best results from Swin (58.0 APbox), even MViTv2 does not
use the improved HTC++ detector [55] yet.

5.3. Ablations on ImageNet and COCO
Different self-attention mechanism. We first study our
pooling attention and Hwin self-attention mechanism in
MViTv2 by comparing with different self-attention mecha-
nisms on ImageNet and COCO. For a fair comparison, we
conduct the analysis on both ViT-B and MViTv2-S networks.

In Table 4a we compare different attention schemes on IN-
1K. We compare 5 attention mechanisms: global (full), win-
dowed, Shifted window (Swin), our Hybrid window (Hwin)
and pooling. We observe the following:

(i) For ViT-B based models, default win reduces both
FLOPs and Memory usage while the top-1 accuracy also
drops by 2.0% due to the missing cross-window connection.

5We adapt MViTv1 [21] as a detection baseline combined with Hwin.

(a) ImageNet-1K classification
variant attention Acc FLOPs (G) Mem (G)

ViT-B

full 82.0 17.5 12.4
fixed win 80.0 17.0 9.7
Swin [55] 80.4 17.0 9.7
Hwin 82.1 17.1 10.4
pooling 81.9 10.9 8.3

MViTv2-S

pooling 83.6 7.0 6.8
pooling (stride=8) 83.2 6.3 5.5
pooling + Swin [55] 82.8 6.4 6.0
pooling + Hwin 83.0 6.5 6.2

(b) Mask R-CNN on COCO detection
variant attention APbox Train(iter/s) Test(im/s) Mem(G)

ViT-B

full 46.6 2.3 4.6 24.7
fixed win 43.4 3.3 7.8 5.6
Swin [55] 45.1 3.1 7.5 5.7
Hwin 46.1 3.1 6.8 11.0
pooling 47.2 2.9 7.9 8.8
pooling + Hwin 46.9 3.1 8.8 5.5

MViTv2-S

pooling 50.8 1.5 4.2 19.5
pooling (stride=8) 50.0 2.5 8.3 7.8
pooling + Swin [55] 48.9 2.6 9.2 4.9
pooling + Hwin 49.9 2.7 9.4 5.2

Table 4. Comparison of attention mechanisms on ImageNet and COCO using ViT-B and MViTv2-S backbones. fixed win: non-
overlapping window-attention in all Transformer blocks. Swin: shifted window attention [55]. Hwin: our Hybrid window attention. Pooling:
our pooling attention, the K, V pooling stride is 2 (ViT-B) and 4 on the first stage of MViTv2, or pooling (stride=8). Accuracy, FLOPs and
peak training memory are measured on IN-1K. For COCO, we report APbox, average training iterations per-second, average testing frames
per-second and peak training memory, which are measured in Detectron2 [82] with 8 V100 GPUs under the same settings. Default is in gray.

4809



Swin [55] attention can recover 0.4% over default win. While
our Hybrid window (Hwin) attention fully recovers the per-
formance and outperforms Swin attention by +1.7%. Finally,
pooling attention achieves the best accuracy/computation
trade-off by getting similar accuracy for ViT-B with signifi-
cant compute reduction (∼38% fewer FLOPs).

(ii) For MViTv2-S, pooling attention is used by default.
We study if adding local window attention can improve
MViT. We observe that adding Swin or Hwin both can re-
duce the model complexity with slight performance decay.
However, directly increasing the pooling stride (from 4 to 8)
achieves the best accuracy/compute tradeoff.

Table 4b shows the comparison of attention mechanisms
on COCO: (i) For ViT-B based models, pooling and pool-
ing + Hwin achieves even better results (+0.6/0.3 APbox)
than standard full attention with ∼2× test speedup. (ii) For
MViTv2-S, directly increasing the pooling stride (from 4 to
8) achieves better accuracy/computation tradeoff than adding
Swin. This result suggests that simple pooling attention can
be a strong baseline for object detection. Finally, combining
our pooling and Hwin achieves the best tradeoff.

positional embeddings IN-1K COCO
Acc APbox Train(iter/s) Test(im/s) Mem(G)

(1) no pos. 83.3 49.2 3.1 10.3 5.0
(2) abs. pos. 83.5 49.3 3.1 10.1 5.0
(3) joint rel. pos. 83.6 49.9 0.7 ↓4.4× 3.4 ↓3× 15.3
(4) decomposed rel. pos. 83.6 49.9 2.7 9.4 5.2
(5) abs. + dec. rel. pos. 83.7 49.8 2.7 9.5 5.2
Table 6. Ablation of positional embeddings on MViTv2-S.

Positional embeddings. Table 6 compares different posi-
tional embeddings. We observe that: (i) Comparing (2) to
(1), absolute position only slightly improves over no pos..
This is because the pooling operators (instantiated by conv
layers) already model positional information. (ii) Comparing
(3, 4) and (1, 2), relative positions can bring performance
gain by introducing shift-invariance priors to pooling atten-
tion. Finally, our decomposed relative position embedding
train 3.9× faster than joint relative position on COCO.

residual pooling IN-1K COCO
Acc APbox Train(iter/s) Test(im/s) Mem(G)

(1) w/o 83.3 48.5 3.0 10.0 4.7
(2) residual 83.6 49.3 2.9 9.8 4.7
(3) full Q pooling + residual 83.6 49.9 2.7 9.4 5.2
(4) full Q pooling 83.1 48.5 2.8 9.5 5.1
Table 7. Ablation of residual pooling connections on MViTv2-S.

Residual pooling connection. Table 7 studies the impor-
tance of our residual pooling connection. We see that simply
adding the residual path (2) can improves results on both
IN-1K (+0.3%) and COCO (+0.8 for APbox) with negligible
cost. (3) Using residual pooling and also adding Q pooling
to all other layers (with stride=1) leads to a significant boost,
especially on COCO (+1.4 APbox). This suggests both Q
pooling blocks and residual paths are necessary in MViTv2.
(4) just adding (without residual) more Q pooling layers with
stride=1 does not help and even decays (4) vs. (1).

model
IN-1K COCO

Acc Test (im/s) APbox Train(iter/s) Test(im/s) Mem(G)
Swin-B [55] 83.3 276 48.5 2.5 9.4 6.3
MViTv2-S 83.6 341 49.9 2.7 9.4 5.2
MViTv2-B 84.4 253 51.0 2.1 7.2 6.9

Table 8. Runtime comparison on IN-1K and COCO. We report
accuracy and throughput on IN-1K, measured with a V100 GPU as
in [55]. COCO models are measured similarly and also for training
throughput and memory. Batch size for all measures is identical.

Runtime comparison. We conduct a runtime compari-
son for MViTv2 and Swin [55] in Table 8. We see that
MViTv2-S surpasses Swin-B on both IN-1K (+0.3%) and
COCO (+1.4%) while having a higher throughput (341 im/s
vs. 276 im/s) on IN-1K and also trains faster (2.7iter/s vs.
2.5iter/s) on COCO with less memory cost (5.2G vs. 6.3G).
MViTv2-B is slightly slower but significantly more accurate
(+1.1% on IN-1K and +2.5APbox on COCO).

Single-scale vs. multi-scale for detection. Table 9 compares
the default multi-scale (FPN) detector with the single-scale
detector for ViT-B and MViTv2-S. As ViT produces feature
maps at a single scale in the backbone, we adopt a simple
scheme [50] to up-/downsample features to integrate with
FPN. For single-scale, we directly apply the detection heads
to the last Transformers block.

variant FPN APbox APmask FLOPs (G)
ViT-B no 45.1 40.6 725
ViT-B yes 46.6 42.3 879
MViTv2-S no 47.0 41.4 276
MViTv2-S yes 49.9 45.1 326

Table 9. Single-scale vs. Multi-scale (FPN) on COCO. ViT-B
and MViTv2-S models are equipped with or w/o a feature pyramid
network (FPN). Both FPN models outperforms their single-scale
variant while while MViTv2 achieves even larger gains.

As shown in Table 9, FPN significantly improves perfor-
mance for both backbones while MViTv2-S is consistently
better than ViT-B. Note that the FPN gain for MViTv2-S
(+2.9 APbox) is much larger than those for ViT-B (+1.5
APbox), which shows the effectiveness of a native hierar-
chical multi-scale design for dense object detection tasks.

6. Experiments: Video Recognition
We apply our MViTv2 on Kinetics-400 [44] (K400),

Kinetics-600 (K600) [8], and Kinetics-700 (K700) [7] and
Something-Something-v2 [31] (SSv2) datasets.

Settings. By default, our MViTv2 models are trained from
scratch on Kinetics and fine-tuned from Kinetics models for
SSv2. The training recipe and augmentations follow [19,21].
When using IN-1K or IN-21K as pre-training, we adopt the
initialization scheme introduced in §4.3 and shorter training.

For the temporal domain, we sample a T×τ clip from the
full-length video which contains T frames with a temporal
stride of τ . For inference, we follow testing strategies in [21,
23] and get final score by averaged from sampled temporal
clips and spatial crops. Implementation and training details
are in §B.

4810



model pre-train top-1 top-5 FLOPs×views Param
SlowFast 16×8 +NL [23] - 79.8 93.9 234×3×10 59.9
X3D-XL [22] - 79.1 93.9 48.4×3×10 11.0
MoViNet-A6 [45] - 81.5 95.3 386×1×1 31.4
MViTv1, 16×4 [21] - 78.4 93.5 70.3×1×5 36.6
MViTv1, 32×3 [21] - 80.2 94.4 170×1×5 36.6
MViTv2-S, 16×4 - 81.0 94.6 64×1×5 34.5
MViTv2-B, 32×3 - 82.9 95.7 225×1×5 51.2
ViT-B-VTN [59]

IN-21K

78.6 93.7 4218×1×1 114.0
ViT-B-TimeSformer [3] 80.7 94.7 2380×3×1 121.4
ViT-L-ViViT [1] 81.3 94.7 3992×3×4 310.8
Swin-L↑ 3842 [56] 84.9 96.7 2107×5×10 200.0
MViTv2-L↑ 3122, 40×3 86.1 97.0 2828×3×5 217.6
Table 10. Comparison with previous work on Kinetics-400. We
report the inference cost with a single “view” (temporal clip with
spatial crop) × the number of views (FLOPs×viewspace×viewtime).
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.

model pretrain top-1 top-5 FLOPs×views Param
SlowFast 16×8 +NL [23] - 81.8 95.1 234×3×10 59.9
X3D-XL [22] - 81.9 95.5 48.4×3×10 11.0
MoViNet-A6 [45] - 84.8 96.5 386×1×1 31.4
MViTv1-B-24, 32×3 [21] - 84.1 96.5 236×1×5 52.9
MViTv2-B, 32×3 - 85.5 97.2 206×1×5 51.4
ViT-L-ViViT [1]

IN-21K

83.0 95.7 3992×3×4 310.8
Swin-B [56] 84.0 96.5 282×3×4 88.1
Swin-L↑ 3842 [56] 86.1 97.3 2107×5×10 200.0
MViTv2-L↑ 3122, 32×3 87.2 97.6 2063×3×4 217.6
MViTv2-L↑ 3122, 40×3 87.5 97.8 2828×3×4 217.6
MViTv2-L↑ 3522, 40×3 87.9 97.9 3790×3×4 217.6

Table 11. Comparison with previous work on Kinetics-600.

model pretrain top-1 top-5 FLOPs×views Param
SlowFast 16×8 +NL [23] K600 71.0 89.6 234×3×10 59.9
MoViNet-A6 [45] N/A 72.3 N/A 386×1×1 31.4
MViTv2-B, 32×3 - 76.6 93.2 206×3×3 51.4
MViTv2-L↑ 3122, 40×3 IN-21K 79.4 94.9 2828×3×3 217.6

Table 12. Comparison with previous work on Kinetics-700.

6.1. Main Results

Kinetics-400. Table 10 compares MViTv2 to prior work,
including state-of-the-art CNNs and ViTs.

When training from scratch, our MViTv2-S & B models
produce 81.0% & 82.9% top-1 accuracy which is +2.6% &
+2.7% higher than their MViTv1 [21] counterparts. These
gains stem solely from the improvements in §4.1, as the
training recipe is identical.

Prior ViT-based models require large-scale pre-training
on IN-21K to produce best accuracy on K400. We fine-tune
our MViTv2-L with large spatiotemporal input size 40×3122

(time ×space2) to reach 86.1% top-1 accuracy, showing the
performance of our architecture in a large-scale setting.

Kinetics-600/-700. Table 11 shows the results on K600. We
train MViTv2-B, 32×3 from scratch and achieves 85.5%
top-1 accuracy, which is better than the MViTv1 counter-
part (+1.4%), and even better than other ViTs with IN-21K
pre-training(e.g. +1.5% over Swin-B [56]) while having
∼2.2×and ∼40% fewer FLOPs and parameters. The larger
MViTv2-L 40×3 sets a new state-of-the-art at 87.9%.

model pretrain top-1 top-5 FLOPs×views Param
TEA [49] IN-1K 65.1 89.9 70×3×10 -
MoViNet-A3 [45] N/A 64.1 88.8 24×1×1 5.3
ViT-B-TimeSformer [3] IN-21K 62.5 - 1703×3×1 121.4
MViTv1-B-24, 32×3 K600 68.7 91.5 236.0×3×1 53.2
SlowFast R101, 8×8 [23]

K400

63.1 87.6 106×3×1 53.3
MViTv1-B, 16×4 64.7 89.2 70.5×3×1 36.6
MViTv1-B, 64×3 67.7 90.9 454×3×1 36.6
MViTv2-S, 16×4 68.2 91.4 64.5×3×1 34.4
MViTv2-B, 32×3 70.5 92.7 225×3×1 51.1
Swin-B [56] IN21K + K400 69.6 92.7 321×3×1 88.8
MViTv2-B, 32×3 IN21K + K400 72.1 93.4 225×3×1 51.1
MViTv2-L↑ 3122, 40×3 IN21K + K400 73.3 94.1 2828×3×1 213.1

Table 13. Comparison with previous work on SSv2.

In Table 12, our MViTv2-L achieves 79.4% on K700
which greatly surpasses the previous best result by +7.1%.

Something-something-v2. Table 13 compares methods on
a more ‘temporal modeling’ dataset SSv2. Our MViTv2-
S with 16 frames first improves over MViTv1 counterpart
by a large gain (+3.5%), which verifies the effectiveness of
our proposed pooling attention for temporal modeling. The
deeper MViTv2-B achieves 70.5% top-1 accuracy, surpass-
ing the previous best result Swin-B with IN-21K and K400
pre-training by +0.9% while using ∼30% and 40% fewer
FLOPs and parameters and only K400. With IN-21K pre-
training, MViTv2-B boosts accuracy by 1.6% and achieves
72.1%. MViTv2-L achieves 73.3% top-1 accuracy.

6.2. Ablations on Kinetics

In this section, we carry out MViTv2 ablations on K400.
The video ablation our technical improvements share trends
with Table 6 & 7 and are in §A.5.

model T×τ scratch IN1k IN21k FLOPs Param
MViTv2-S 16×4 81.2 82.2 82.6 64 34.5
MViTv2-B 32×3 82.9 83.3 84.3 225 51.2
MViTv2-L 40×3 81.4 83.4 84.5 1127 217.6
MViTv2-L↑ 3122 40×3 81.8 84.4 85.7 2828 217.6

Table 14. Effect of pre-training on K400. We use
viewspace×viewtime = 1×10 crops for inference.

Effect of pre-training datasets. Table 14 compares the
effect different pre-training schemes on K400. We observe
that: (i) For MViTv2-S and MViTv2-B models, using either
IN1K or IN21k pre-training boosts accuracy compared to
training from scratch, e.g.MViTv2-S gets +1.0% and 1.4%
gains with IN1K and IN21K pre-training. (ii) For large mod-
els, ImageNet pre-training is necessary as they are heavily
overfitting when trained from scratch (cf . Table 10).

7. Conclusion
We present an improved Multiscale Vision Transformer

as a general hierarchical architecture for visual recognition.
In empirical evaluation, MViT shows strong performance
compared to other vision transformers and achieves state-of-
the-art accuracy on widely-used benchmarks across image
classification, object detection, instance segmentation and
video recognition. We hope that our architecture will be
useful for further research in visual recognition.

4811



References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun,

Mario Lučić, and Cordelia Schmid. Vivit: A video vision
transformer. arXiv preprint arXiv:2103.15691, 2021. 1, 2, 8

[2] Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew
Zhai, and Dmitry Kislyuk. Toward transformer-based object
detection. arXiv preprint arXiv:2012.09958, 2020. 1

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
arXiv preprint arXiv:2102.05095, 2021. 2, 8

[4] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S
Davis. Soft-nms–improving object detection with one line of
code. In Proc. ICCV, 2017. 6, 12

[5] Andrew Brock, Soham De, Samuel L Smith, and Karen Si-
monyan. High-performance large-scale image recognition
without normalization. arXiv preprint arXiv:2102.06171,
2021. 5, 13

[6] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In Proc. CVPR, 2018. 2, 5,
6, 12, 15

[7] João Carreira, Eric Noland, Chloe Hillier, and Andrew Zisser-
man. A short note on the kinetics-700 human action dataset.
arXiv preprint arXiv:1907.06987, 2019. 7

[8] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Proc.
CVPR, 2017. 2, 4, 7

[9] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit:
Cross-attention multi-scale vision transformer for image clas-
sification. In Proc. ICCV, 2021. 4, 13

[10] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan, Yan-
nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi
Feng. Drop an octave: Reducing spatial redundancy in con-
volutional neural networks with octave convolution. arXiv
preprint arXiv:1904.05049, 2019. 2

[11] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing
Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Re-
visiting the design of spatial attention in vision transformers.
In NIPS, 2021. 2, 5, 13

[12] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In Proc. CVPR, 2020. 14, 15

[13] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data sizes.
arXiv preprint arXiv:2106.04803, 2021. 5, 13

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proc. CVPR, pages 248–255. Ieee, 2009. 2, 4

[15] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and
accurate model scaling. In Proc. CVPR, 2021. 2, 5, 13

[16] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang,
Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo. Cswin
transformer: A general vision transformer backbone with
cross-shaped windows. arXiv preprint arXiv:2107.00652,
2021. 5, 13

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 5

[18] Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr
Bojanowski, Matthijs Douze, Armand Joulin, Ivan Laptev,
Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al.
Xcit: Cross-covariance image transformers. arXiv preprint
arXiv:2106.09681, 2021. 5, 13

[19] Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and
Christoph Feichtenhofer. PySlowFast. https://github.
com/facebookresearch/slowfast, 2020. 2, 7, 15

[20] Haoqi Fan, Tullie Murrell, Heng Wang, Kalyan Vasudev Al-
wala, Yanghao Li, Yilei Li, Bo Xiong, Nikhila Ravi, Meng Li,
Haichuan Yang, Jitendra Malik, Ross Girshick, Matt Feiszli,
Aaron Adcock, Wan-Yen Lo, and Christoph Feichtenhofer.
PyTorchVideo: A deep learning library for video understand-
ing. In Proceedings of the 29th ACM International Conference
on Multimedia, 2021. https://pytorchvideo.org/.
2

[21] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In Proc. ICCV, 2021. 1, 2, 3,
4, 5, 6, 7, 8, 12, 13, 14, 15, 16

[22] Christoph Feichtenhofer. X3D: Expanding architectures for
efficient video recognition. In Proc. CVPR, pages 203–213,
2020. 2, 8, 12

[23] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
Proc. ICCV, 2019. 2, 7, 8, 12, 15

[24] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spa-
tiotemporal residual networks for video action recognition.
In NIPS, 2016. 4

[25] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proc. CVPR, 2016. 2

[26] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In Proc. CVPR, 2021. 6, 12, 15

[27] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In Proc. CVPR, 2019. 12

[28] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew
Zisserman. Video action transformer network. In Proc. CVPR,
2019. 2

[29] Ross Girshick. Fast R-CNN. In Proc. ICCV, 2015. 2, 15
[30] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. arXiv:1706.02677, 2017.
15

[31] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-
Freitag, et al. The “Something Something” video database
for learning and evaluating visual common sense. In ICCV,
2017. 7, 15

4812



[32] Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia
Schmid, and Jitendra Malik. AVA: A video dataset of spatio-
temporally localized atomic visual actions. In Proc. CVPR,
2018. 12, 15

[33] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. In NIPS, 2021.
5, 13

[34] Zhang Hang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi
Zhang, Haibin Lin, and Yue Sun. Resnest: Split-attention
networks. 2020. 2

[35] Boris Hanin and David Rolnick. How to start training:
The effect of initialization and architecture. arXiv preprint
arXiv:1803.01719, 2018. 14

[36] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proc. ICCV, 2017. 1, 3, 5, 6, 14,
15

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proc. CVPR, 2015. 1

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. CVPR,
2016. 2, 6

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Proc. ECCV,
2016. 2

[40] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proc. CVPR,
pages 8129–8138, 2020. 15

[41] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Proc.
ECCV, 2016. 14

[42] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and
Junjie Yan. Stm: Spatiotemporal and motion encoding for
action recognition. In Proc. CVPR, pages 2000–2009, 2019.
2

[43] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie
Jin, Anran Wang, and Jiashi Feng. Token labeling: Training
a 85.5% top-1 accuracy vision transformer with 56m param-
eters on imagenet. arXiv preprint arXiv:2104.10858, 2021.
5

[44] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. arXiv:1705.06950, 2017. 2, 7

[45] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang,
Mingxing Tan, Matthew Brown, and Boqing Gong.
MoViNets: Mobile video networks for efficient video recog-
nition. In Proc. CVPR, 2021. 8

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
geNet classification with deep convolutional neural networks.
In NIPS, 2012. 2

[47] Yann LeCun, Bernhard Boser, John Denker, Donnie Hender-
son, Richard Howard, Wayne Hubbard, and Lawrence Jackel.
Handwritten digit recognition with a back-propagation net-
work. In NIPS, 1989. 3

[48] Yann LeCun, Bernhard Boser, John S Denker, Donnie Hen-
derson, Richard E Howard, Wayne Hubbard, and Lawrence D
Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989. 2

[49] Yan Li, Bin Ji, Xintian Shi, Jianguo Zhang, Bin Kang, and
Limin Wang. Tea: Temporal excitation and aggregation for
action recognition. In Proc. CVPR, pages 909–918, 2020. 8

[50] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaim-
ing He, and Ross Girshick. Benchmarking detection
transfer learning with vision transformers. arXiv preprint
arXiv:2111.11429, 2021. 7

[51] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,
and Cees GM Snoek. VideoLSTM convolves, attends and
flows for action recognition. Computer Vision and Image
Understanding, 166:41–50, 2018. 2

[52] Ji Lin, Chuang Gan, and Song Han. Temporal shift module
for efficient video understanding. In Proc. ICCV, 2019. 15

[53] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proc. CVPR, 2017. 1, 2, 3

[54] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proc. ECCV, 2014. 4, 5

[55] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. arXiv
preprint arXiv:2103.14030, 2021. 1, 2, 3, 4, 5, 6, 7, 12, 13,
15, 16

[56] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. arXiv
preprint arXiv:2106.13230, 2021. 2, 8

[57] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. arXiv:1608.03983, 2016. 15

[58] Ilya Loshchilov and Frank Hutter. Fixing weight decay regu-
larization in adam. 2018. 14, 15

[59] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan As-
selmann. Video transformer network. arXiv preprint
arXiv:2102.00719, 2021. 2, 8

[60] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing Shao,
and Hongsheng Li. Actor-context-actor relation network for
spatio-temporal action localization. In Proc. CVPR, 2021. 12

[61] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-
temporal representation with pseudo-3d residual networks. In
Proc. ICCV, 2017. 2

[62] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollár. Designing network design spaces.
In Proc. CVPR, June 2020. 2, 5, 13

[63] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detec-
tion. In Proc. CVPR, 2016. 2

[64] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 15

[65] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-
attention with relative position representations. arXiv preprint
arXiv:1803.02155, 2018. 3

4813



[66] Karen Simonyan and Andrew Zisserman. Two-stream convo-
lutional networks for action recognition in videos. In NIPS,
2014. 2

[67] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Proc.
ICLR, 2015. 1, 2

[68] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmentation.
arXiv preprint arXiv:2105.05633, 2021. 1

[69] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015. 2, 15

[70] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. arXiv:1512.00567,
2015. 14

[71] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019. 2, 5, 13

[72] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020. 4, 5, 13,
14

[73] Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
DeiT: Data-efficient image transformers. arXiv preprint
arXiv:2012.12877, 2020. 1, 2, 14, 16

[74] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with
image transformers. arXiv preprint arXiv:2103.17239, 2021.
5, 13

[75] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli.
Video classification with channel-separated convolutional net-
works. In Proc. ICCV, 2019. 2

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 1, 2

[77] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvtv2:
Improved baselines with pyramid vision transformer. arXiv
preprint arXiv:2106.13797, 2021. 5, 13

[78] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE ICCV, 2021. 1, 2, 6,
13

[79] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krähenbühl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In Proc.
CVPR, 2019. 2

[80] Chao-Yuan Wu and Philipp Krahenbuhl. Towards long-form
video understanding. In Proc. CVPR, 2021. 12

[81] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang
Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions

to vision transformers. arXiv preprint arXiv:2103.15808,
2021. 4, 5, 13

[82] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5, 6,
15

[83] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proc. CVPR, 2017. 6

[84] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding. arXiv:1712.04851, 2017. 2

[85] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis E.H. Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proc. ICCV, 2021. 13

[86] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and
Shuicheng Yan. Volo: Vision outlooker for visual recognition,
2021. 5

[87] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proc. ICCV, 2019. 14, 15

[88] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. Mixup: Beyond empirical risk minimization. In
Proc. ICLR, 2018. 14, 15

[89] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu
Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-
former: A new vision transformer for high-resolution image
encoding. In Proc. ICCV, 2021. 2, 5, 6, 13

[90] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xi-
ang, Philip HS Torr, et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers.
In Proc. CVPR, 2021. 1

[91] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
pages 13001–13008, 2020. 14, 15

[92] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In ECCV,
2018. 2

[93] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects
as points. arXiv preprint arXiv:1904.07850, 2019. 2

4814


