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Abstract

Fusion of multiple sensor modalities such as camera, Li-
dar, and Radar, which are commonly found on autonomous
vehicles, not only allows for accurate detection but also ro-
bustifies perception against adverse weather conditions and
individual sensor failures. Due to inherent sensor charac-
teristics, Radar performs well under extreme weather con-
ditions (snow, rain, fog) that significantly degrade camera
and Lidar. Recently, a few works have developed vehicle de-
tection methods fusing Lidar and Radar signals, i.e., MVD-
Net. However, these models are typically developed under
the assumption that the models always have access to two
error-free sensor streams. If one of the sensors is unavail-
able or missing, the model may fail catastrophically. To
mitigate this problem, we propose the Self-Training Mul-
timodal Vehicle Detection Network (ST-MVDNet) which
leverages a Teacher-Student mutual learning framework
and a simulated sensor noise model used in strong data aug-
mentation for Lidar and Radar. We show that by (1) enforc-
ing output consistency between a Teacher network and a
Student network and by (2) introducing missing modalities
(strong augmentations) during training, our learned model
breaks away from the error-free sensor assumption. This
consistency enforcement enables the Student model to han-
dle missing data properly and improve the Teacher model
by updating it with the Student model’s exponential mov-
ing average. Our experiments demonstrate that our pro-
posed learning framework for multi-modal detection is able
to better handle missing sensor data during inference. Fur-
thermore, our method achieves new state-of-the-art perfor-
mance (5% gain) on the Oxford Radar Robotcar dataset
under various evaluation settings.

1. Introduction
In autonomous driving, many vehicles are equipped with

multiple sensors, such as camera, Lidar, and Radar, as
demonstrated in many datasets [2, 4, 9, 31]. Leveraging dif-
ferent types of sensors can be used to tackle any occasional
failures for each sensor and can potentially improve the per-
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Figure 1. Illustration of the problem caused by noisy or missing
sensor stream. Models trained on two modalities may suffer from
errors when inferenced on missing sensors (only one modality is
available).

formance of object detections than using each individual
sensor. Existing works [6,13,23,37] mainly focus on fusing
Lidar and camera, taking advantage of the camera’s higher
resolution and rich texture information. However, these vi-
sual sensors are sensitive to adverse weather conditions and
suffer from degraded performance in harsh weather such as
fog [3], snow, and rain.

In addition to Lidar and camera, Radar has also been
widely adopted in autonomous system of vehicles [2, 4]
and is more robust in certain weather conditions (e.g., fog,
snow, rain). To be particular, Radar uses wavelength in the
scale of millimeter as ADC chirp signals which is much
larger than the size of rain, fog, or even snow [10], mak-
ing them essentially invisible to Radar. Since the collected
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Radar data in existing autonomous driving datasets [4] fea-
ture sparse and low resolution data (compared to camera
and Lidar), the recent Oxford Radar Robotcar [1] (ORR)
dataset, whose Radar sensor has high directionality and
much finer spatial resolution, has emerged as a new bench-
mark for Radar and Lidar fusion. Recently, MVDNet [26]
was proposed to fuse Lidar and Radar sensors and achieves
state-of-the-art results on the ORR dataset. MVDNet is
shown to be successful in adverse conditions such as foggy
weather, largely due to the advantageous features of Radar.
However, existing Lidar-Radar fusion models [2, 26] are all
developed under the assumption that the models will always
have access to two reliable sensor streams. If one of the
sensors is unavailable or corrupted, performance may suffer
(Figure 1). In other words, current fusion models may not
be applicable to real-world applications where such failures
can occur.

To address this issue, one solution can be to train sep-
arate models for processing a number of different sensor
streams as input. However, this may be prohibitively expen-
sive. To avoid this, another potential solution is to directly
train the fusion model with both clear and missing streams
and optimize the model with ground-truth labels. However,
such strong data augmentations causes the model to rely on
one clear steam and ignore the stream that is missing, which
is reflected in our experiments. In other words, a model
naively trained with randomly missing sensor streams fails
to effectively fuse the two features of the two sensors.

In order to properly leverage data augmentation and
mitigate the effect of sensor noise, we propose a frame-
work named Self-Training Multi-modal Vehicle Detection
Network (ST-MVDNet) which leverages the backbone of
MVDNet [26] and builds upon the self-training pipeline of
Mean Teacher (MT) [32] framework. MT was originally
proposed for semi-supervised learning, learning two mod-
els in parallel, where the Teacher model is used to stabilize
the performance of the Student model. To leverage MT to
regularize training in our fusion model with strong augmen-
tations (missing streams), our proposed ST-MVDNet also
employs two models (Teacher and Student pair), each being
architecturally equivalent to MVDNet. The Teacher gener-
ates the predictions to train the Student using a consistency
constraint while the Student passes the parameters it has
learned back to the Teacher via exponential moving aver-
age (EMA). The Teacher model only takes clear modalities
as input while the Student model additionally takes either
missing Lidar or Radar streams as input. We show that by
enforcing consistency between the Teacher and the Student,
our model is able to prevent a bias towards (over-reliance
on) the clear sensor during the training with missing modal-
ities. This pipeline not only allows the model to be more
robust to missing sensors but also improves multi-modality
feature extraction by forcing the model to better interpret

the similarities and relationship between the two modalities.
The contributions can be summarized as follows:

• We demonstrate the limitations of a multi-modal detec-
tion network when one of its sensors is missing during
inference.

• We propose a framework building on Mean Teacher
and leverage strong augmentations to address the issue
of missing sensor.

• Our developed pipeline is not only able to deal with
noisy/missing sensors, which is supported by our de-
signed experiments, but is also able to outperform ex-
isting state-of-the-art by a large margin (5%) on ORR
dataset in several experimental settings.

2. Related Works
Vehicle Detection using Lidar. Vehicle detection meth-
ods on Lidar point clouds are broadly categorized by how
they represent the point cloud. One stream of work lever-
ages pioneering works PointNet [24] and PointNet++ [25]
for feature extraction directly on unordered point sets.
PointRCNN [28] generates object proposals from fore-
ground predicted points, and STD [42] improves PointR-
CNN with circular proposals and sparse-to-dense refine-
ment. Other works [22, 41] use point-wise voting predic-
tions to move foreground points closer to object centers.
Another line of work instead proposes to discretize the 3D
space into regular 2D or 3D grids and leverage mature CNN
architectures. The pioneering work MV3D [7], processes
both range view and bird’s eye view 2D projections of the
point cloud with 2D CNNs. VoxelNet [44] proposes to
work with 3D voxels, leveraging a small PointNet for initial
intra-voxel processing and uses 3D convolutions for inter-
voxel feature extraction. Observing that most 3D voxels
are empty, some subsequent works [8, 11, 29, 38] propose
to improve efficiency by only performing convolutions on
regions with points. Finally, other works propose to pri-
marily extract features via 2D convolutions in BEV since
objects in outdoor scenes rarely overlap when viewed from
above. PIXOR [40] generates a BEV occupancy map for
different height ranges, and PointPillars [16] uses a Point-
Net for initial per-grid feature extraction. In our work, we
follow MVDNet [26] in adapting PIXOR for multi-sensor
fusion because the voxel feature representation is easy to be
combined with BEV Radar data.

Vehicle Detection using Multiple Sensor. To enhance
3D perception, many works have proposed to fuse dif-
ferent imaging modalities, including cameras, Lidars, and
Radars—the three most common sensors used in au-
tonomous driving. For camera-Lidar fusion, some works
constrain the 3D search space with 2D object detections
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Figure 2. Overview of our proposed Self-Training Multimodal Vehicle Detection Network (ST-MVDNet). Our model consists of two
modules: 1) Teacher model taking clean data streams for both Radar and Lidar (foggy or not) and 2) Student model taking additional
missing streams from both sensors. We train our model using two learning processes: 1) supervised detection learning (Ldetect) in
the Student model, and 2) the mutual learning with strong (Lstrong) and normal (Lconsist) consistency losses. The Teacher generates
predictions to train the Student with while the Student updates the Teacher via exponential moving average (EMA).

[15,23,34], while others fuse 2D and 3D features at the task-
level [20, 21, 33, 36] or feature-level [7, 12, 14, 17, 30, 43].
However, since Lidar’s wavelengths are shorter than those
of Radar, making Lidar more susceptible to weather inter-
ference, recent works [5, 19, 39] also leverage Radar for
autonomous perception. DEF [2] proposes an baseline fu-
sion detector with all of the sensors including Lidar, Radar,
and camera. Yet, their doppler-based Radar has only low
resolution spectral maps which demonstrates inferior per-
formance. Specifically, compared to Oxford Radar Robot-
car [1] (ORR) dataset which uses Navtech, the front-view
Radar in DEF have only limited field of view (FOV) which
depends on the density of receivers and may not be eas-
ily adapted to 360◦ detection with Lidar. Recently, MVD-
Net [26] proposes fusion model with attention mechanism
for vehicle detection in foggy weather conditions on the
ORR dataset. However, existing Lidar-Radar fusion models
are developed under the assumption that the trained model
can only take a fixed number of sensor streams into ac-
count. If one of the sensors is unavailable, the model may
suffer from noise due to missing input data. In this paper,
we leverage the design of MVDNet and demonstrate how
our proposed self-training framework is able to mitigate this
problem.

3. The Proposed Method
3.1. Problem Formulation and Overview

Given Radar intensity maps and Lidar point clouds, we
aim to detect the vehicle in bird-eye-view (BEV) projection
maps. Specifically, we are given N Radar intensity maps
denoted by Xr = {xi

r}Ni=1 where xr ∈ RH×W×1 with

only one channel, and N Lidar occupancy and intensity
maps Xl = {xi

l}Ni=1 where xl ∈ RH×W×(C+1) with C oc-
cupancy channels and 1 intensity channel. The occupancy
channels and intensity channel use PIXOR’s [40] BEV pro-
jection of point clouds. We further denote the annotations
as Y = {yi}Ni=1.

The overview of our framework is presented in Figure 2.
Our Self-Training Multimodal Vehicle Detection Network
(ST-MVDNet) consists of two architecturally identical fu-
sion models: Teacher model and Student model. Each of
the models is composed of one feature encoder for each of
the two sensors, the fusion module, and the detector. Both
the teacher model and the student model take as input two
sensor streams: Radar and Lidar. We train our model using
Teacher-Student mutual learning with strong augmentations
on Radar and Lidar. The Lidar stream will be randomly
foggified using the fog model in DEF [2] with a probabil-
ity of 0.5 following [26]. To begin with, we train the stu-
dent model object detector using the available annotations
Y = {yi}Ni=1 in the first stage with the standard detection
loss as in Equation 1. Then, to start the stage of mutual
learning (Sec. 3.3), we copy the entire network parameters
from Student to Teacher (duplicate the Student model to
Teacher model). In this second stage, the Teacher gener-
ates predictions to train the Student with consistency loss
while the Student updates the knowledge it learned back
to the Teacher via exponential moving average (EMA) of
its weights. We introduce two strong augmentations: strong
Radar augmentation and strong Lidar augmentation to force
the student model to learn to derive features which are in-
variant to missing sensors. Specifically, this is achieved by
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using the consistency loss, which we define as “strong con-
sistency loss”, to ensure the predictions obtained from the
student model with one missing sensor derive the consistent
outputs as the Teacher model. During the inference stage,
we only keep the the Teacher model since the Teacher is the
temporal ensemble of the Student models in different time
steps and is more robust.

3.2. Sensor Fusion of Radar and Lidar

The backbone of each model in Teacher and Student
contains one feature encoder for each of the sensors, a
sensor fusion model, and a detector, which is also shown in
Figure 2. The model architecturally employs MVDNet [26]
with the same design. Similar to classical anchor-based
detectors, it consists of two stages: RPN and ROI head for
sensor fusion. The region proposal network (RPN) derives
feature maps from Lidar and Radar, and then generates can-
didate proposals. The region of interest (ROI) head pools
the region-wise features from both of the two sensors and
fuse them to obtain oriented bounding boxes of detected
objects (vehicles). Since the focus and contribution of the
paper is not the architecture design of the fusion model, we
only briefly review the design as below.

Feature Encoders and RPN. Our ST-MVDNet has one
feature encoder for each of the sensors, ending up with
two encoders. The feature encoder utilizes several coarse-
grained convolutions and merges the multi-scale feature
maps via a residual connection, similar to Unet [27]. Each
of the two sensor specific feature extractor will derive
feature representations for each of the input sensor streams.
The region proposal network (RPN) takes the feature maps
as input and generates proposals for the detector later.

Sensor Fusion and ROI head. Following the fusion
techniques in [26], our sensor fusion model employs self-
attention and cross-attention blocks to merge the feature
maps from synchronized pair of Lidar and Radar frames
and output the locations of each bounding boxes using RIO
head. More details can be obtained in [26].

3.3. Mutual Learning between Teacher and Student

Following the teacher-student framework or Mean
Teacher (MT) [32], initially proposed for semi-supervised
object detection, our model also consists of two models
with identical architecture: a Student model and a Teacher
model. The Student model is trained using standard gra-
dient back-propagation algorithm, and the Teacher model
is updated with the exponential moving average (EMA)
weights of the student model. Since the Teacher model can
be seen as an ensemble of the Student model’s current and
earlier versions, the Teacher model is able to guide the Stu-
dent model with more accurate predictions.

Supervised Learning of the Detectors. We first optimize
the object detector in the student model using the ground-
truth labeled dataD = {(Xr, Xl, Y } to optimize our model
with the loss Ldetect. Since it is important to have a reliable
initialized weights for the Teacher model, we firstly copy
the weights to the teacher model from the student model.
Therefore the loss for training the model with the annota-
tions can be written as:

Ldetect(Xr, Xl, Y ) =Lrpn
cls (Xr, Xl, Y )

+Lrpn
reg (Xr, Xl, Y ) + Lroi

cls (Xr, Xl, Y )+Lroi
reg(Xr, Xl, Y ),

(1)

where RPN loss Lrpn is for the Region Proposal Network
(RPN) module which is used for proposal generation, and
ROI loss Lroi is for the region of interest module (ROI).
Both of the modules perform bounding box regression (reg)
and classification (cls) on the proposals. We use binary
cross-entropy loss for Lrpn

cls and Lroi
cls , and l1 loss for Lrpn

reg

and Lroi
reg

Optimize Student with Predictions from Teacher. To
regularize the Student model using the Teacher model, we
generate predictions from the Teacher for training the Stu-
dent with consistency loss. To prevent the propagated errors
from noisy pseudo-labels, we filter the false positives with a
confidence threshold δ. In addition, we remove duplicated
boxes using non-maximum suppression (NMS). After ob-
taining the predictions from the Teacher model on the input
sensor streams, we can construct a consistency loss on the
Student model as:

Lconsist(Xr, Xl, Ĉt) = Lrpn
cls (Xr, Xl, Ĉt)

+ Lroi
cls (Xr, Xl, Ĉt),

(2)

where Ĉt denotes the predictions generated by the Teacher
model. Note that, we do not apply losses for the bounding
box regression since the confidence score of predicted
bounding boxes on the unlabeled data can only represent
the confidence of the categories for each object instead of
the locations for the produced bounding boxes.

Update Teacher via Exponential Moving Average. To
obtain more stable predictions following MT, we apply Ex-
ponential Moving Average (EMA) in each step to gradually
update the Teacher model. The update can be written as:

θt ← αθt + (1− α)θs, (3)

where θt and θs denote the network parameters of Teacher
and Student, respectively.

3.4. Learning Robustness Against Biased Fusion

We have now briefly introduced the method of the sen-
sor fusion and the algorithm of mutual learning used to reg-
ularize the model to be more stable and robust. However,
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since the fusion model is trained with two modalities, the
model may be disproportionately negatively impacted when
a modality is missing. One potential solution is to simply
train the model with both clear and missing modalities, tar-
geting the ground-truth labels. However, we found that such
a training scheme weakens the fusion of modalities - the
model learns to work with each modality more separately
so that it is able to generate predictions even when one sen-
sor is missing. When both sensors are present, the model
performs worse when compared to when it is trained with-
out this strong augmentation training scheme.

To properly apply strong augmentations to Lidar and
Radar sensors, we utilize the consistency loss Lconsist to
regularize the model instead of naively using ground-truth
detection loss Ldetect. As shown in Figure 2, the Teacher
model always takes as input a complete version of both
modalities while the Student model additionally takes as in-
put a missing Lidar or Radar stream (with the other stream
being clear). By forcing the Student’s predictions, which
are the result of a single clear modality, to be similar to the
Teacher’s predictions, which took advantage of two clear
modalities, the model is trained to recover features from the
missing modality to generate better detections. This is fun-
damentally different from the simple addition of augmen-
tation, which decreases the importance of fusion between
modalities. Instead, our self-training pipeline strengthens
the focus on multi-modal fusion. Our method can be con-
sidered a form of cross-modal distillation - the Teacher
model distills its multi-modal fusion features to the Stu-
dent in the form of detections, forcing the student to re-
cover multi-modality features from a single modality. We
can write the strong augmentation consistency loss, which
includes both scenarios of missing Lidar plus clear Radar
and clear Lidar plus missing Radar, as follows:

Lstrong(Xr, Xl, Xrn, Xln, , Ĉt) =

Lrpn
cls (Xr, Xln, Ĉt) + Lroi

cls (Xr, Xln, Ĉt)

+Lrpn
cls (Xrn, Xl, Ĉt) + Lroi

cls (Xrn, Xl, Ĉt),

(4)

where Ĉt denotes the predictions generated by the Teacher
model. Xrn and Xln denote the augmented missing streams
for Radar and Lidar, respectively.

3.5. Full Objective and Inference

The total loss L for training our proposed ST-MVDNet
is summarized as follows:

L = Ldetect + λconsist · Lconsist + λstrong · Lstrong, (5)

where λconsist and λstrong are the hyper-parameters used to
control the weighting of the corresponding losses. We note
that Ldetect, Lconsist, and Lstrong are developed to learn

the feature encoder and detector in the Student model. The
Teacher model is only updated through EMA discussed in
the Sec 3.3.

With the interaction between the Teacher and the Stu-
dent, both models can evolve jointly and continuously
to improve detection accuracy under strong augmentation.
From another perspective, we can also regard the Teacher
as the temporal ensemble of the Student models in differ-
ent time steps, which aligns with the observation that the
accuracy of the Teacher is consistently higher than the Stu-
dent. As a result, during the inference stage we only keep
the Teacher model for evaluating on the testing dataset.

4. Experiments
4.1. Experimental Settings

Dataset Following MVDNet [26], we use the Oxford
Radar Robotcar [1] (ORR) dataset for our experiments. The
datset has 8, 862 sample pairs of Lidar and Radar frames,
which are split into training and testing sets (7, 071 and
1, 791 for each respectively) without being overlapped in
terms of geography. We use the ground-truth annotations
created in [26] for training the model, which created 3D
bounding boxes of vehicles in one of sequential 20 frames.
The annotations of the rest interval 19 frames are gener-
ated by [26] who interpolate the bounding boxes by us-
ing the visual odometry data provided in ORR. The ORR
Navtech Radar scans the environment with 360◦ field of
view at a step of 0.9◦ every 0.25 seconds while the Lidar
scans at a step of 0.33◦ every 0.05 seconds. The scanning
results of Radar and Lidar are saved into the formats of 2D
BEV image map and 3D point cloud, respectively, where
both share the same world coordinate origin with odom-
etry parameters. As we know, significant scanning delay
in Radar suffers from non-synchronization with the Lidar
cause frame-wise misalignment, we also use the synchro-
nized and processed streams from [26] to address this issue.
Similar to [26], the RoI for the sensors is set to [-32,32]
× [-32,32] meter and BEV projection is conducted with a
0.2 meter quantization. The height range is set to [-2.5,1]
meter while all Lidar 3D points are vertically divided into
35 slices with a bin size of 0.1 meter. Plus one dimension
intensity map, the size of the input Lidar is 320×320×36.
Since Radar intensity image has only one intensity channel,
the input size of Radar is 320×320×1.

Evaluation settings We evaluate the model on two set-
tings: 1) simulated foggy weather and 2) missing sensors.
Following [26], we train the model on the clear Radar
stream and the randomly foggified Lidar stream. To fog-
gify Lidar as needed, we change the Lidar point clouds in
the training samples using the fog model in DEF [2] with
a probability of 0.5. Specifically, for each point in Lidar,
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Table 1. The average precision (AP, in %) on different experimental settings of the simulated foggy weather with different methods. The
number in bold indicates the best score.

Method
Train Clear + Foggy (Lidar) Clear

Test Clear Foggy Lidar Clear Foggy Lidar

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

PIXOR [40] 72.8 68.3 41.2 62.6 58.9 35.7 71.0 67.2 40.6 61.8 58.3 35.7
PointRCNN [28] 78.2 73.8 45.7 69.7 65.6 41.6 78.2 72.8 43.4 68.7 64.0 37.6
PointPillars [16] 85.8 83.0 58.3 72.8 70.3 48.6 85.8 82.9 60.6 71.3 68.3 47.8

DEF [2] 86.6 78.2 46.2 81.4 72.5 41.1 85.9 78.1 44.2 71.8 63.7 32.4
MVDNet [26] 90.9 88.8 74.6 87.4 84.6 68.9 87.2 86.1 72.6 78.0 75.9 61.6

MVDNet [26] + Strong aug. 88.2 85.1 71.7 83.4 81.2 66.1 84.5 85.5 72.1 77.4 71.8 60.0

ST-MVDNet (w/o strong aug.) 94.5 93.7 80.2 90.0 86.7 71.4 91.7 89.4 77.8 80.1 79.7 63.4
ST-MVDNet (Ours) 94.7 93.5 80.7 91.8 88.3 73.6 91.4 89.9 78.4 81.2 80.8 64.9

the fog model will drop it by setting the distance threshold.
Each threshold is corresponding to the fog density and if the
points are beyond this threshold, they will be dropped.

To evaluate on simulated foggy weather, we test the
model on either clear or foggy Lidar stream along with nor-
mal Radar stream, following [26]. To evaluate on the miss-
ing sensor, we test the model on two settings:

• Missing Radar (Clear Lidar)

• Missing Lidar (Clear Radar)

We use entirely blank Radar intensity map to simulate the
corrupted Radar while we use entirely blank occupancy and
intensity maps for the missing Lidar.

Evaluation protocol Following [26], we evaluate the
model using mean average precision (mAP) in COCO eval-
uation [18] with different IOU: 0.5, 0.65, and 0.8 for fair
comparison.

4.2. Implementation Details

Following [26], we implement ST-MVDNet with Detec-
tron2 [35], a codebase for Faster RCNN object detectors
implemented with PyTorch. For the region proposal net-
work (RPN), the anchors are set to 3.68 m × 7.35 m, and
orientations in -90◦, -45◦, 0◦ and 45◦. The matching of
positive and negative samples is conducted with thresholds
of 0.55 and 0.45, respectively, while the IoU threshold of
NMS is set to 0.7. We also kept top 1000 proposals during
training while 500 are kept during inference. For the RoI
head, the size of the RoI head pooling is set to 7 × 7 while
the IoU threshold of NMS is set to 0.2. For the hyperpa-
rameters, we set λconsist = 1.0 and λstrong = 1 in all the
experiments for simplicity. We set the confidence threshold
as δ = 0.8. We note that the used historical frame is set
as 2 in our model due to the limitation of GPU resources
while MVDNet uses 4 ( [26] also shows more frames can

lead to slightly improved performance). During the initial-
ization stage described in Sec. 3.3, we train the model using
the ground-truth labels for 10k iterations with detection loss
Ldetect. We then copy the weights to both Teacher and Stu-
dent models in the beginning of mutual learning and train
the ST-MVDNet for 80k iterations. We set the learning rate
as 0.01 without decaying since we found this can improve
the performance. We optimize the network using Stochastic
Gradient Descent (SGD). The weight smooth coefficient pa-
rameter of the exponential moving average (EMA) for the
teacher model is set to 0.9996. Each experiment is con-
ducted on 1 Nvidia 2080 Ti with a batch size of 1.

4.3. Results and Comparisons

Simulated foggy weather In this setting, we train all de-
tectors with randomly foggified Lidar point clouds while fu-
sion detectors are additionally trained with Radar intensity
maps. We then test these models on foggy or clear Lidar
following [26] while fusion models can take clear Radar as
additional input. We note that there is no missing or missing
sensor stream in this standard setting where we can bench-
mark our ST-MVDNet fairly with current state-of-the-art
approaches. We compare our ST-MVDNet against exist-
ing Lidar-only detectors (PIXOR [40], PointRCNN [28],
and PointPillars [16]), and the Lidar-Radar fusion methods
(DEF [2], MVDNet [26]). The results are summarized in
Table 1. We observe four phenomena. First, all three Lidar-
only detectors perform significantly worse than the fusion
methods. This indicates Radar plays an important role for
improved performance in either clear or foggy weather con-
dition. Second, in both clear or foggy weather condition,
our ST-MVDNet show significant advantages over other de-
tectors, justifying the generalization of our model in the
foggy setting with clear sensor streams. The performance
gain (around 4% in each setting) between our model and
MVDNet can be credited to the proposed mutual learning
of our model, which makes the learning procedure stable
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Table 2. The average precision (AP, in %) on different experimental settings of the missing sensor with different methods. The number in
bold indicates the best score.

Method
Train Clear + Foggy (Lidar) Clear

Test Missing Radar Missing Lidar Missing Radar Missing Lidar

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet [26] 82.3 80.7 67.8 73.4 68.3 43.3 80.5 77.1 64.8 71.0 65.9 40.1
MVDNet [26] + Strong Lidar aug. 77.4 74.6 62.5 75.2 70.1 47.4 77.6 73.5 61.3 72.1 67.7 43.6
MVDNet [26] + Strong Radar aug. 83.2 80.9 68.9 68.7 63.2 40.1 81.0 77.9 65.1 66.5 60.2 39.2

MVDNet [26] + Strong aug. 82.5 81.2 68.4 73.6 68.7 44.5 80.1 77.8 64.5 71.6 66.0 40.8

ST-MVDNet (w/o strong aug.) 85.7 83.5 70.4 75.1 72.5 51.6 83.9 80.2 67.8 74.5 70.1 51.5
ST-MVDNet (w/ strong Lidar aug.) 85.4 83.1 72.5 82.5 78.6 70.4 83.4 80.1 67.7 79.1 78.0 61.5
ST-MVDNet (w/ strong Radar aug.) 88.5 86.2 74.1 75.0 71.6 52.0 89.1 83.2 72.5 74.0 70.7 50.6

ST-MVDNet (Ours) 88.7 86.9 73.2 82.6 78.1 70.6 89.7 84.3 73.1 79.3 77.4 61.7

Table 3. Ablation studies on the proposed ST-MVDNet. The aver-
age precision (AP, in %) on different experimental settings.

Method
Train Clear + Foggy (Lidar)

Test Missing Radar Missing Lidar

IoU 0.5 0.65 0.8 0.5 0.65 0.8

Ours 88.7 86.9 73.2 82.6 78.1 70.6
Ours w/o Lstrong 85.7 83.5 70.4 75.1 72.5 51.6
Ours w/o Lconsist 87.9 86.1 72.8 81.0 76.5 67.8

Ours w/o Lconsist & Lstrong 82.7 81.4 68.7 73.4 70.5 48.8
MVDNet [26] 82.3 80.7 67.8 73.4 68.3 43.3

and regularized. If referred to “ST-MVDNet (w/o strong
aug.)” of Table 1, our model outperforms MVDNet without
strong augmentation. Third, we also observe performance
drop in the model “MVDNet + Strong aug.”, which infers
that the strong augmentation can hurt the model if trained
naively with ground-truth detection loss. Lastly, comparing
to training using both clear and foggy Lidar point clouds,
we can observe performance drop on training using only
clear Lidar. Also noted in [26], the result also indicates that
augmenting foggy Lidar is crucial for improved model per-
formance.

Missing sensor Since the purpose of our model design is
to address the issue of missing sensors during inference, we
evaluate our model in the settings with either missing Lidar
or Radar. We compare our model with the MVDNet [26]
and summarize the results in Table 2. We note that “strong
Lidar aug.” or “strong Radar aug.” indicate only one aug-
mentation is applied during the training, while “strong aug.”
means the missing augmentation for both sensors is applied
during the training (the default setting for our final model
in the last line). We also train all detectors with clear or
foggy Lidar and Radar intensity maps. First, we observe
that for MVDNet, adding strong augmentation on each sen-
sor leads to improved performance when the corresponding
sensor is missing during testing, but leads to performance
drop when testing on the other sensor with noise. For ex-
ample, MVDNet using strong Lidar augmentation leads to

performance gain on missing Lidar but has significant per-
formance drop on missing Radar. We attribute this drop to
the bias towards (over-reliance on) the clear sensor caused
by the strong augmentation when trained directly with the
ground-truth detection loss. Nevertheless, we can still ob-
serve slight performance gains on MVDNet if it is trained
with both augmentations. On the other hand, our proposed
model, when trained with strong augmentation on a single
sensor, improves performance when that sensor is missing
and maintains performance when the other sensor is faulty.
Further, applying augmentations to both sensors leads to
performance gains over MVDNet and partial strong aug-
mentation settings.

4.4. Ablation studies

To further analyze the the losses in our proposed frame-
work, we conduct ablation studies in as shown in Table 3.

Strong consistency loss Lstrong. To analyze how sig-
nificant the strong consistency loss is, we exclude the loss
Lstrong and report the performance on two settings with
missing sensors. It can be observed that the 3% and 7% per-
formance drop appears on each of the settings. This shows
that strong augmentation plays an important role in mitigat-
ing the issue of missing sensors.

Consistency loss Lconsist. To further analyze the con-
sistency loss, we remove the loss Lconsist and observe
around 1-2% performance drop. This implies that the con-
sistency loss helps with the regularization of the mutual
learning between the Teacher and the Student.

Exponential moving average (EMA). As discussed in
the earlier section, the Teacher model can be seen as an en-
semble of the Student model’s current and earlier versions.
That is, its generated predictions are more robust and stable
than the Student employing architecture of MVDNet. To
substantiate this, we exclude both of the losses: Lstrong &
Lconsist, and report performance of the model using only
EMA updating for Teacher: “Ours w/o Lconsist & Lstrong”.
We can observe the performance gain between this model
and MVDNet can be credited to the EMA ensemble.
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Figure 3. Qualitative comparisons and analysis. All of the compared models are trained on clear Lidar and foggy point clouds and Radar
intensity maps. The white map indicates Radar intensity while the green one represents the Lidar BEV projection map. We visualize both
maps in the same figure. Each row indicates the testing environments.

4.5. Qualitative results

To further analyze the effectiveness of our model with
strong augmentation, we compare our model with MVDNet
and present the qualitative results in Figure 3. Here, we train
all of the models with clear Lidar and foggy point clouds
and Radar intensity maps and test on different settings (dif-
ferent rows). Some phenomena can be summarized as fol-
lows. First, in either the clear or the foggy testing settings,
both MVDNet and our model exhibit similar detection re-
sults, which implies that augmentation does not affect the
model testing under clear streams in either clear or foggy
weather. Second, when testing on either missing Radar or
missing Lidar, MVDNet seems to have missing detection
and some false positives whenever the strong augmenta-
tion is applied or not. Our model without the strong aug-
mentation also suffers from missing detection when tested
with missing sensors. Yet, when the strong augmentation
is added, our model produces accurate detections in both of
the settings with missing sensors.

5. Conclusion

In this paper, we proposed a framework named ST-
MVDNet to address the issue of missing sensors in multi-
modal vehicle detection. Our model leveraging Mean
Teacher and an off-the-shelf fusion model demonstrates sig-
nificant robustness in performance even when a modality
is missing. We attribute the success of our model to our
proposed mutual learning pipeline with strong augmenta-
tions, which prevents our model from biasing to single sen-
sor. Extensive experimental results on multiple settings also
demonstrates the effectiveness of our framework both in ad-
verse weather and with missing sensors. Our model outper-
forms existing state-of-the-art by a large margin (5%) on
ORR dataset in several experimental settings.
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