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Figure 1. We propose a novel method for representing and rendering high quality 3D video. Our method trains a novel and compact
dynamic neural radiance field (DyNeRF) in an efficient way. Our method demonstrates near photorealistic dynamic novel view synthesis
for complex scenes including challenging scene motions and strong view-dependent effects. We demonstrate three synthesized 3D video,
and show the associated high quality geometry in the heatmap visualization in each top right corner. Please see the supplemental materials
for the high-quality video and additional information.

Abstract

We propose a novel approach for 3D video synthesis that
is able to represent multi-view video recordings of a dy-
namic real-world scene in a compact, yet expressive repre-
sentation that enables high-quality view synthesis and mo-
tion interpolation. Our approach takes the high quality and
compactness of static neural radiance fields in a new direc-
tion: to a model-free, dynamic setting. At the core of our
approach is a novel time-conditioned neural radiance field
that represents scene dynamics using a set of compact la-
tent codes. We are able to significantly boost the training
speed and perceptual quality of the generated imagery by a
novel hierarchical training scheme in combination with ray
importance sampling. Our learned representation is highly
compact and able to represent a 10 second 30 FPS multi-
view video recording by 18 cameras with a model size of
only 28MB. We demonstrate that our method can render
high-fidelity wide-angle novel views at over 1K resolution,
even for complex and dynamic scenes. We perform an exten-
sive qualitative and quantitative evaluation that shows that
our approach outperforms the state of the art. Project web-
site: https://neural-3d-video.github.io/.

∗ Equal contribution. TL’s work was done during an internship at
Reality Labs Research.

1. Introduction

Photorealistic representation and rendering of dynamic
real-world scenes are highly challenging research topics,
yet with many important applications that range from movie
production to virtual and augmented reality. Dynamic real-
world scenes are notoriously hard to model using classical
mesh-based representations, since they often contain thin
structures, semi-transparent objects, specular surfaces, and
topology that constantly evolves over time due to the often
complex scene motion of multiple objects and people.

In theory, the 6D plenoptic function P (x,d, t) is a suit-
able representation for this rendering problem, as it com-
pletely explains our visual reality and enables rendering
every possible view at every moment in time [1]. Here,
x ∈ R3 is the camera position in 3D space, d = (θ, ϕ) is
the viewing direction, and t is time. Thus, fully measuring
the plenoptic function requires placing an omnidirectional
camera at every position in space at every possible time.

Neural radiance fields (NeRF) [38] offer a way to cir-
cumvent this problem: instead of directly encoding the
plenoptic function, they encode the radiance field of the
scene in an implicit, coordinate-based function, which can
be sampled through ray casting to approximate the plenop-
tic function. However, the ray casting, which is required
to train and to render a neural radiance field, involves hun-
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dreds of MLP evaluations for each ray. While this might
be acceptable for a static snapshot of a scene, directly re-
constructing a dynamic scene as a sequence of per-frame
neural radiance fields would be prohibitive as both stor-
age and training time increase linearly with time. For
example, to represent a 10 second, 30FPS multi-view
video recording by 18 cameras, which we later demonstrate
with our method, a per-frame NeRF would require about
15 000GPU hours in training and about 1GB in storage.
More importantly, such obtained representations would
only reproduce the world as a discrete set of snapshots, lack-
ing any means to reproduce the world in-between. On the
other hand, Neural Volumes [32] is able to handle dynamic
objects and even renders at interactive frame rates. Its limi-
tation is the dense uniform voxel grid that limits resolution
and/or size of the reconstructed scene due to the inherent
O(n3) memory complexity.

In this paper, we propose a novel approach for 3D video
synthesis of complex, dynamic real-world scenes that en-
ables high-quality view synthesis and motion interpolation
while being compact. Videos typically consist of a time-
invariant component under stable lighting and a contin-
uously changing time-variant component. This dynamic
component typically exhibits locally correlated geometric
deformations and appearance changes between frames. By
exploiting this fact, we propose to reconstruct a dynamic
neural radiance field based on two novel contributions.

First, we extend neural radiance fields to the space-time
domain. Instead of directly using time as input, we pa-
rameterize scene motion and appearance changes by a set
of compact latent codes. Compared to the more obvious
choice of an additional ‘time coordinate’, the learned latent
codes show more expressive power, allowing for recording
the vivid details of moving geometry and texture. They also
allow for smooth interpolation in time, which enables vi-
sual effects such as slow motion or ‘bullet time’. Second,
we propose novel importance sampling strategies for dy-
namic radiance fields. Ray-based training of neural scene
representations treats each pixel as an independent training
sample and requires thousands of iterations to go through
all pixels observed from all views. However, captured dy-
namic video often exhibits a small amount of pixel change
between frames. This opens up an opportunity to signif-
icantly boost the training progress by selecting the pixels
that are most important for training. Specifically, in the time
dimension, we schedule training with coarse-to-fine hierar-
chical sampling in the frames. In the ray/pixel dimension,
our design tends to sample those pixels that are more time-
variant than others. These strategies allow us to shorten the
training time of long sequences significantly, while retain-
ing high quality reconstruction results. We demonstrate our
approach using a multi-view rig based on 18 GoPro cam-
eras. We show results on multiple challenging dynamic en-

vironments with highly complex view-dependent and time-
dependent effects. Compared to the naı̈ve per-frame NeRF
baseline, we show that with our combined temporal and
spatial importance sampling we achieve one order of mag-
nitude acceleration in training speed, with a model that is 40
times smaller in size for 10 seconds of a 30 FPS 3D video.
In summary we make the following contributions:
• We propose a novel dynamic neural radiance field based

on temporal latent codes that achieves high quality 3D
video synthesis of complex, dynamic real-world scenes.

• We present novel training strategies based on hierarchical
training and importance sampling in the spatiotemporal
domain, which boost training speed significantly and lead
to higher quality results for longer sequences.

• We provide our datasets of time-synchronized and cal-
ibrated multi-view videos that covers challenging 4D
scenes for research purposes*.

2. Related Work
Our work is related to several research domains, such

as novel view synthesis for static scenes, 3D video synthe-
sis for dynamic scenes, image-based rendering, and neural
rendering approaches. For a detailed discussion of neural
rendering applications and neural scene representations, we
refer to the surveys [54] and [55].
Novel View Synthesis for Static Scenes. Novel view syn-
thesis has been tackled by explicitly reconstructing tex-
tured 3D models of the scene and rendering from arbi-
trary viewpoints. Multi-view stereo [15, 49] and visual
hull reconstructions [13, 27] have been successfully em-
ployed. Complex view-dependent effects can be captured
by light transport acquisition methods [11, 59]. Learning-
based methods have been proposed to relax the high number
of required views and to accelerate the inference speed for
geometry reconstruction [19, 24, 61] and appearance cap-
ture [5,35], or combined reconstruction techniques [39,62].
Novel view synthesis can also be achieved by reusing in-
put image pixels. Early works using this approach in-
terpolate the viewpoints [8]. The Light Field/Lumigraph
method [10,18,28,41] resamples input image rays to gener-
ate novel views. One drawback of these approaches is that
it require dense sampling for high quality rendering of com-
plex scenes. More recently, [14, 22, 37, 51, 66] learn to fuse
and resample pixels from reference views using neural net-
works. Neural Radiance Fields (NeRFs) [38] train an MLP-
based radiance and opacity field and achieve state-of-the-art
quality for novel view synthesis. Other approaches [36, 58]
employ an explicit point-based scene representation com-
bined with a screen space neural network for hole filling.
[26] push this further and encode the scene appearance in
a differentiable sphere-based representation. [50] employs

*https://github.com/facebookresearch/Neural_3D_Video
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a dense voxel grid of features in combination with a screen
space network for view synthesis. All these methods are
excellent at interpolating views for static scenes, but it is
unclear how to extend them to the dynamic setting.

3D Video Synthesis for Dynamic Scenes. Techniques in
this category enable view synthesis for dynamic scenes and
might also enable interpolation across time. For video syn-
thesis, [23] pioneers in showing the possibility of explic-
itly capture geometry and textures. [67] proposes a tempo-
ral layered representation that can be compressed and re-
played at an interactive rate. Reconstruction and animation
is particularly well studied for humans [7,20,52], but is usu-
ally performed model-based and/or only works with high-
end capture setups. [29] captures temporally consistent sur-
faces by tracking and completion. [9] proposes a system
for capturing and compressing streamable 3D video with
high-end hardware. More recently, learning-based meth-
ods such as [21] achieve volumetric video capture for hu-
man performances from sparse camera views. [3] focus on
more general scenes. They decompose them into a static
and dynamic component, re-project information based on
estimated coarse depth, and employ a U-Net in screen space
to convert the intermediate result to realistic imagery. [4]
uses a neural network for space-time and illumination in-
terpolation. [63] uses a model-based step for merging the
estimated depth maps to a unified representation that can be
rendered from novel views. Neural Scene Flow Fields [30]
incorporates a static background model. Space-time Neu-
ral Irradiance Fields [60] employs video depth estimation
to supervise a space-time radiance field. [17] recently pro-
poses a time-conditioned radiance field, supervised by its
own predicted flow vectors. These works have limited view
angle due to their single-view setting and require additional
supervision, such as depth or flow. [12, 42, 45, 56] explic-
itly model dynamic scenes by a warp field or velocity field
to deform a canonical radiance field. STaR [64] models
scenes of rigidly moving objects using several canonical ra-
diance fields that are rigidly transformed. These methods
cannot model challenging dynamic events such as topology
changes. Several radiance field approaches have been pro-
posed for modeling digital humans [16, 31, 40, 44, 46], but
they can not directly be applied to general non-rigid scenes.
Furthermore, there have been efforts in improving neural
radiance fields for in-the-wild scenes [34], generalization
across scenes. HyperNeRF [43] is a concurrent work on
dynamic novel view synthesis, but they focus on monocular
video in a short sequence. Neural Volumes [32] employs
volume rendering in combination with a view-conditioned
decoder network to parameterize dynamic sequences of sin-
gle objects. Their results are limited in resolution and scene
complexity due to the inherent O(n3) memory complex-
ity. [6] enable 6DoF video for VR applications based on
independent alpha-textured meshes that can be streamed at
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Figure 2. We learn the 6D plenoptic function by our novel dynamic
neural radiance field (DyNeRF) that conditions on position, view
direction and a compact, yet expressive time-variant latent code.

the rate of hundreds of Mb/s. This approach employs a
capture setup with 46 cameras and requires a large train-
ing dataset to construct a strong scene-prior. In contrast, we
seek a unified space-time representation that enables con-
tinuous viewpoint and time interpolation, while being able
to represent an entire multi-view video sequence of 10 sec-
onds in as little as 28MB.

3. DyNeRF: Dynamic Neural Radiance Fields

We address the problem of reconstructing dynamic 3D
scenes from time-synchronized multi-view videos with
known intrinsic and extrinsic parameters. The representa-
tion we aim to reconstruct from such multi-camera record-
ings should allow us to render photorealistic images from a
wide range of viewpoints at arbitrary points in time.

Building on NeRF [38], we propose dynamic neural ra-
diance fields (DyNeRF) that are directly optimized from in-
put videos captured with multiple video cameras. DyNeRF
is a novel continuous space-time neural radiance field rep-
resentation, controllable by a series of temporal latent em-
beddings that are jointly optimized during training. Our rep-
resentation compresses a huge volume of input videos from
multiple cameras to a compact 6D representation that can be
queried continuously in both space and time. The learned
embedding faithfully captures detailed temporal variations
of the scene, such as complex photometric and topological
changes, without explicit geometric tracking.

3.1. Representation

The problem of representing 3D video comprises learn-
ing the 6D plenoptic function that maps a 3D position
x ∈ R3, direction d ∈ R2, and time t ∈ R, to RGB ra-
diance c ∈ R3 and opacity σ ∈ R. Based on NeRF [38],
which approximates the 5D plenoptic function of a static
scene with a learnable function, a potential solution would
be to add a time dependency to the function:

FΘ : (x,d, t) −→ (c, σ) , (1)
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which is realized by a Multi-Layer Perceptron (MLP) with
trainable weights Θ. The 1-dimensional time variable t can
be mapped via positional encoding [53] to a higher dimen-
sional space, in a manner similar to how NeRF handles
the inputs x and d. However, we empirically found that
it is challenging for this design to capture complex dynamic
3D scenes with challenging topological changes and time-
dependent volumetric effects, such as flames.
Dynamic Neural Radiance Fields. We model the dynamic
scene by time-variant latent codes zt ∈ RD, as shown in
Fig. 2. We learn a set of time-dependent latent codes, in-
dexed by a discrete time variable t:

FΘ : (x,d, zt) −→ (c, σ) . (2)

The latent codes provide a compact representation of the
state of a dynamic scene at a certain time, which can han-
dle various complex scene dynamics, including deforma-
tion, topological and radiance changes. We apply positional
encoding [53] to the input position coordinates to map them
to a higher-dimensional vector. However, no positional en-
coding is applied to the time-dependent latent codes. Before
training, the latent codes {zt} are randomly initialized in-
dependently across all frames.
Rendering. We use volume rendering techniques to ren-
der the radiance field given a query view in space and time.
Given a ray r(s) = o + sd with the origin o and direction
d defined by the specified camera pose and intrinsics, the
rendered color of the pixel corresponding to this ray C(r)
is an integral over the radiance weighted by accumulated
opacity [38]:

C(t)(r) =

∫ sf

sn

T (s)σ(r(s), zt)c(r(s),d, zt)) ds . (3)

where sn and sf denote the bounds of the volume
depth range and the accumulated opacity T (s) =
exp(−

∫ s

sn
σ(r(p), zt)) dp). We apply a hierarchical sam-

pling strategy as [38] with stratified sampling on the coarse
level followed by importance sampling on the fine level.
Loss Function. The network parameters Θ and the latent
codes {zt} are simultaneously trained by minimizing the
ℓ2-loss between the rendered colors Ĉ(r) and the ground
truth colors C(r), and summed over all rays r that corre-
spond to the image pixels from all training camera views R
and throughout all time frames t ∈ T of the recording:

L =
∑

t∈T ,r∈R

∑
j∈{c,f}

∥∥∥Ĉ(t)
j (r)−C(t)(r)

∥∥∥2
2

. (4)

We evaluate the loss at both the coarse and the fine level,
denoted by Ĉ

(t)
c and Ĉ

(t)
f respectively, similar to NeRF. We

train with a stochastic version of this loss function, by ran-
domly sampling ray data and optimizing the loss of each ray
batch. Please note that our dynamic radiance field is trained
with this plain ℓ2-loss without any special regularization.

(b) Importance weights
for the keyframes

(c) Importance weights
for the full sequence

TimeTime

(a) Temporal appearance changes
0.1

���

Figure 3. Overview of our efficient training strategies. We per-
form hierarchical training first using keyframes (b) and then on
the full sequence (c). At both stages, we apply the ray importance
sampling technique to focus on the rays with high time-variant
information based on weight maps that measure the temporal ap-
pearance changes (a). We show a visualized example of the sam-
pling probability based on global median map using a heatmap
(red and opaque means high probability).

3.2. Efficient Training

An additional challenge of ray casting–based neural ren-
dering on video data is the large amount of training time re-
quired. The number of training iterations per epoch scales
linearly with the total number of pixels in the input multi-
view videos. For a 10 second, 30 FPS, 1 MP multi-view
video sequence from 18 cameras, there are about 7.4 bil-
lion ray samples in one epoch, which would take about
half a week to process using 8 NVIDIA Volta class GPUs.
Given that each ray needs to be re-visited several times to
obtain high quality results, this sampling process is one of
the biggest bottlenecks for ray-based neural reconstruction
methods to train 3D videos at scale.

However, for a natural video a large proportion of the
dynamic scene is either time-invariant or only contains a
small time-variant radiance change at a particular times-
tamp across the entire observed video. Hence, uniformly
sampling rays causes an imbalance between time-invariant
observations and time-variant ones. This means it is
highly inefficient and impacts reconstruction quality: time-
invariant regions reach high reconstruction quality sooner
and are uselessly oversampled, while time-variant regions
require additional sampling, increasing the training time.

To explore temporal redundancy in the context of 3D
video, we propose two strategies to accelerate the training
process (see Fig. 3): (1) hierarchical training that optimizes
data over a coarse-to-fine frame selection and (2) impor-
tance sampling that prefers rays around regions of higher
temporal variance. In particular, these strategies form a dif-
ferent loss function by paying more attention to the “impor-
tant” rays in time frame set S and pixel set I for training:

Lefficient =
∑

t∈S,r∈I

∑
j∈{c,f}

∥∥∥Ĉ(t)
j (r)−C(t)(r)

∥∥∥2
2

. (5)

These two strategies combined can be regarded as an adap-
tive sampling approach, contributing to significantly faster
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training and improved rendering quality.
Hierarchical Training. Instead of training DyNeRF on all
video frames, we first train it on keyframes, which we sam-
ple all images equidistantly at fixed time intervals K, i.e.
S = {t | t = nK, n ∈ Z+, t ∈ T }. Once the model
converges with keyframe supervision, we use it to initial-
ize the final model, which has the same temporal resolution
as the full video. Since the per-frame motion of the scene
within each segment (divided by neighboring keyframes)
is smooth, we initialize the fine-level latent embeddings by
linearly interpolating between the coarse embeddings. Fi-
nally, we train using data from all the frames jointly, S = T ,
further optimizing the network weights and the latent em-
beddings. The coarse keyframe model has already captured
an approximation of the time-invariant information across
the video. Therefore, the fine full-frame training only needs
to learn the time-variant information per-frame.
Ray Importance Sampling. We propose to sample rays I
across time with different importance based on the temporal
variation in the input videos. For each observed ray r at time
t, we compute a weight ω(t)(r). In each training iteration
we pick a time frame t at random. We first normalize the
weights of the rays across all input views for frame t, and
then apply inverse transform sampling to select rays based
on these weights.

To calculate the weight of each ray, we propose three
implementations based on different insights.
• Global-Median (DyNeRF-ISG): We compute the

weight of each ray based on the residual difference of
its color to its the global median value across time.

• Temporal-Difference (DyNeRF-IST): We compute the
weight of each ray based on the color difference in two
consecutive frames.

• Combined Method (DyNeRF-IS⋆): Combine both
strategies above.
We empirically observed that training DyNeRF-ISG

with a high learning rate leads to very quick recovery of dy-
namic detail, but results in some jitter across time. On the
other hand, training DyNeRF-IST with a low learning rate
produces a smooth temporal sequence which is still some-
what blurry. Thus, we combine the benefits of both meth-
ods in our final strategy, DyNeRF-IS⋆ (referred as DyN-
eRF in later sections), which first obtains sharp details via
DyNeRF-ISG and then smoothens the temporal motion via
DyNeRF-IST. We explain the details of the three strategies
in the Supp. Mat. All importance sampling methods assume
a static camera rig.

4. Experiments
We demonstrate our approach on a large variety of cap-

tured daily events with challenging scene motions, varying
illuminations and self-cast shadows, view-dependent ap-
pearances and highly volumetric effects. We performed de-

tailed ablation studies and comparisons to various baselines
on our multi-view data and immersive video data [6].
Supplementary materials. We strongly recommend the
reader to watch our supplemental video to better judge the
photorealism of our approach at high resolution, which can-
not be represented well by the metrics. We demonstrate
interactive playback of our 3D videos in commodity VR
headset Quest 2 in the supplemental video. We further pro-
vide comprehensive details of our capture setup, dataset de-
scriptions, comparison settings, more ablations studies on
parameter choices and failure case discussions.

4.1. Evaluation Settings

Plenoptic Video Datasets. We build a mobile multi-view
capture system using 21 GoPro Black Hero 7 cameras. We
capture videos at a resolution of 2028 × 2704 (2.7K) and
frame rate of 30FPS. The multi-view inputs are time-
synchronized. We obtain the camera intrinsic and extrinsic
parameters using COLMAP [48]. We employ 18 views for
training, and 1 view for qualitative and quantitative evalua-
tions for all datasets except one sequence observing multi-
ple people moving, which uses 14 training views. For more
details on the capture setup, please refer to the Supp. Mat.

Our captured data demonstrates a variety of challenges
for video synthesis, including (1) objects of high specular-
ity, translucency and transparency, (2) scene changes and
motions with changing topology (poured liquid), (3) self-
cast moving shadows, (4) volumetric effects (fire flame), (5)
an entangled moving object with strong view-dependent ef-
fects (the torch gun and the pan), (6) various lighting condi-
tions (daytime, night, spotlight from the side), and (7) mul-
tiple people moving around in open living room space with
outdoor scenes seen through transparent windows with rela-
tively dark indoor illumination. Our collected data can pro-
vide sufficient synchronized camera views for high qual-
ity 4D reconstruction of challenging dynamic objects and
view-dependent effects in a natural daily indoor environ-
ment, which, to our knowledge, did not exist in public 4D
datasets. We will release the datasets for research purposes.
Immersive Video Datasets. We also demonstrate the gen-
erality of our method using the multi-view videos from [6]
directly trained on their fisheye video input.
Baselines. We compare to the following baselines:
• Multi-View Stereo (MVS): frame-by-frame rendering of

the reconstructed and textured 3D meshes using commer-
cial software RealityCapture†.

• Local Light Field Fusion (LLFF) [37]: frame-by-frame
rendering of the LLFF-produced multiplane images with
the pretrained model‡.

• NeuralVolumes (NV) [32]: One prior-art volumetric
video rendering method using a warped canonical model.

†https://www.capturingreality.com/
‡https://github.com/Fyusion/LLFF
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Figure 4. High-quality novel view videos synthesized by our ap-
proach for dynamic real-world scenes. We visualize normalized
depth in color space on the last column in the each row. Our rep-
resentation is compact, yet expressive and even handles complex
specular reflections and translucency.

We follow the same setting as the original paper.
• NeRF-T: a temporal NeRF baseline as described in Eq. 1.
• DyNeRF†: An ablation setting of DyNeRF without our

proposed hierarchical training and importance sampling.
Due to page limit, we provide more ablation analysis of our
importance sampling strategies and latent code dimension
in Supp. Mat.
Metrics. We evaluate the rendering quality on test view
and the following quantitative metrics: (1) Peak signal-
to-noise ratio (PSNR); (2) Mean square error (MSE); (3)
Structural dissimilarity index measure (DSSIM) [47,57] (4)
Perceptual quality measure LPIPS [65]; (5) Perceived er-
ror difference FLIP [2]; (6) Just-Objectionable-Difference
(JOD) [33]. Higher PSNR and scores indicate better re-
construction quality and higher JOD represents less visual
difference compared to the reference video. For all other
metrics, lower numbers indicate better quality.

For any video of length shorter than 60 frames, we evalu-
ate the model frame-by-frame on the complete video. Con-
sidering the significant amount required for high resolution
rendering, we evaluate the model every 10 frames to calcu-
late the frame-by-frame metrics reported for any video of
length equal or longer than 300 frames in Tab. 1. For video

Table 1. Quantitative comparison of our proposed method to
baselines of existing methods and radiance field baselines trained
at 200K iterations on a 10-second sequence.

Method PSNR ↑ MSE ↓ DSSIM ↓ LPIPS ↓ FLIP ↓

MVS 19.1213 0.01226 0.1116 0.2599 0.2542
NeuralVolumes 22.7975 0.00525 0.0618 0.2951 0.2049
LLFF 23.2388 0.00475 0.0762 0.2346 0.1867
NeRF-T 28.4487 0.00144 0.0228 0.1000 0.1415
DyNeRF† 28.4994 0.00143 0.0231 0.0985 0.1455
DyNeRF 29.5808 0.00110 0.0197 0.0832 0.1347

metric JOD which requires a stack of continuous video
frames, we evaluate the model on the whole sequence re-
ported in Tab. 2. We verified on 2 video sequences with
a frame length of 300 that the PSNR differs by at most
0.02 comparing evaluating them every 10th frame vs. on
all frames. We evaluate all the models at 1K resolution, and
report the average of the result from every evaluated frame.
Implementation Details. We implement our approach in
PyTorch. We use the same MLP architecture as in NeRF
[38] except that we use 512 activations for the first 8 MLP
layers instead of 256. We employ 1024-dimensional la-
tent codes. In the hierarchical training we first only train
on keyframes that are K = 30 frames apart. We employ
the Adam optimizer [25] with parameters β1 = 0.9 and
β2 = 0.999. In the keyframe training stage, we set a learn-
ing rate of 5e−4 and train for 300K iterations. We include
the details on the important sampling scheme in the Supp.
Mat. We set the latent code learning rate to be 10× higher
than for the other network parameters. The per-frame latent
codes are initialized from N (0, 0.01√

D
), where D = 1024.

The total training takes about a week with 8 NVIDIA V100
GPUs and a total batch size of 24576 rays.

4.2. Results

We demonstrate our novel view rendering results on dif-
ferent sequences in Fig. 1 and Fig. 4. Our method can rep-
resent a 30FPS multi-view video of up to 10 seconds in
length with at high quality. Our reconstructed model can
enable near photorealistic continuous novel-view rendering
at 1K resolution. In the Supp. Video, we render special
visual effects such as slow motion by interpolating sub-
frame latent codes between two discrete time-dependent la-
tent codes and the “bullet time” effect with view-dependent
effect by querying any latent code at any continuous time
within the video. Rendering with interpolated latent codes
resulted in a smooth and plausible representation of dynam-
ics between the two neighboring input frames. Please refer
to our supplementary video for the 3D video visualizations.
Quantitative Comparison to the Baselines. Tab. 1 shows
the quantitative comparison of our methods to the baselines
using an average of single frame metrics and Tab. 2 shows
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Ours MVS LLFF NV

FLIP: 0.130 FLIP: 0.206 FLIP: 0.186 FLIP: 0.207

Figure 5. Comparison of our final model to existing methods, including Multi-view Stereo (MVS), local light field fusion (LLFF) [37]
and NeuralVolume (NV) [32]. The first row shows novel view rendering on a test view. The second row visualizes the FLIP compared to
the ground truth image. Compared to alternative methods, our method can achieve best visual quality.

Table 2. Quantitative comparison of our proposed method
to baselines using perceptual video quality metric Just-
Objectionable-Difference (JOD) [33]. Higher number (maximum
10) indicates less noticeable visual difference to the ground truth.

Method NeuralVolumes LLFF NeRF-T DyNeRF

JOD ↑ 6.50 6.48 7.73 8.07

RGB rendering Dynamic region zoom-in DSSIM FLIP

N
eR

F-
T

D
yN

eR
F†

D
yN

eR
F

0.0531 0.1487

0.0392 0.1294

0.0235 0.1144

Figure 6. Qualitative comparisons of DyNeRF variants on one
image of the sequence whose averages are reported in Tab. 1. From
left to right we show the rendering by each method, then zoom
onto the moving flame gun, then visualize DSSIM and FLIP for
this region using the viridis colormap (dark blue is 0, yellow is 1,
lower is better).

the comparison to baselines using a perceptual video met-
ric. We train all the neural radiance field based baselines
and our method the same number of iterations for fair com-

parison. Compared to the existing methods, MVS, Neu-
ralVolumes and LLFF, our method is able capture and ren-
der significant more photo-realistic images, in all the quan-
titative measures. Compared to the time-variant NeRF base-
line NeRF-T and our basic DyNeRF model without our
proposed training strategy (DyNeRF†), our DyNeRF model
variants trained with our proposed training strategy perform
significantly better in all metrics.

Qualitative Comparison to the Baselines. We highlight
visual comparisons of our methods to the baselines in Fig. 5
and Fig. 6. The visual results of the rendered images and
FLIP error maps highlight the advantages of our approach
in terms of photorealism that are not well quantified using
the metrics. In Fig. 5 we compare to the existing meth-
ods. MVS with texturing suffers from incomplete recon-
struction, especially for occlusion boundaries, such as im-
age boundaries and the window regions. The baked-in tex-
tures also cannot capture specular and transparent effects
properly, e.g., the window glasses. LLFF [37] produces
blurred images with ghosting artifacts and less consistent
novel view across time, especially for objects at occlusion
boundaries and greater distances to the foreground, e.g.,
trees through the windows behind the actor. The results
from Neural Volumes [32] contain cloudy artifacts and suf-
fer from inconsistent colors and brightness (which can be
better observed in the supplemental video). In contrast, our
method achieves clear images, unobstructed by “cloud arti-
facts” and produces the best results compared to the exist-
ing methods. In particular, the details of the actor (e.g., hat,
hands) and important details (e.g., flame torch, which con-
sists of a highly reflective surface as well as the volumetric
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Figure 7. Snapshots of novel view rendered videos on immersive
video datasets [6].

flame appearance) are faithfully captured by our method.
Furthermore, MVS and LLFF and NeuralVolume cannot
model scenes as compact and continuous spatio-temporal
representation as our DyNeRF representation. In Fig. 6,
we compare various settings of the dynamic neural radiance
fields. NeRF-T can only capture a blurry motion represen-
tation, which loses all appearance details in the moving re-
gions and cannot capture view-dependent effects. Though
DyNeRF† has a similar quantitative performance as NeRF-
T, it has significantly improved visual quality in the moving
regions compared to NeRF-T, but still struggles to recover
the sharp appearance details. DyNeRF with our proposed
training strategy can recover sharp details in the moving re-
gions, including the torch gun and the flames.
Comparisons on Training Time. Our proposed method is
computationally more efficient compared to alternative so-
lutions. Training a NeRF model frame-by-frame is the only
baseline that can achieve the same photorealism as DyN-
eRF. However, we find that training a single frame NeRF
model to achieve the same photorealism requires about 50
GPU hours, which in total requires 15K GPU hours for a
30FPS video of 10 seconds length. Our method only re-
quires 1.3K GPU hours for the same video, which reduces
the required compute by one order of magnitude.
Results on Immersive Video Datasets [6]. We further
demonstrates our DyNeRF model can create reasonably
well 3D immersive video using non-forward-facing and
spherically distorted multi-view videos with the same pa-
rameter setting and same training time. Fig. 7 shows a few
novel views rendered from our trained models. We include
the video results in the supplementary video. DyNeRF is
able to generate an immersive coverage of the whole dy-
namic space with a compact model. Compared to the frame-
by-frame multi-spherical images (MSI) representation used
in [6], DyNeRF represents the video as one spatial tempo-
ral model which is more compact in size (28MB for a 5s 30
FPS video) and can better represent the view-dependent ef-
fects in the scene. Given the same amount of training time,
we also observe there are some challenges, particularly the
blurriness in the fast moving regions given the same com-
pute budget and as above. We estimate one epoch of train-
ing time will take 4 weeks while we only trained all models

Figure 8. A few examples of failed outdoor reconstruction using
DyNeRF.

using 1/4 of all pixels for a week. It requires longer training
time to gain sharpness, which remains as a challenge to our
current method in computation.
Limitations. There are a few challenging scenarios that our
method is currently facing. (1) Highly dynamic scenes with
large and fast motions are challenging to model and learn,
which might lead to blur in the moving regions. As shown
in Fig. 8, we observe it is particularly difficult to tackle fast
motion in a complex environment, e.g. outdoors with forest
structure behind. An adaptive sampling strategy during the
hierarchical training that places more keyframes during the
challenging parts of the sequence or more explicit motion
modeling could help to further improve results. (2) While
we already achieve a significant improvement in terms of
training speed compared to the baseline approaches, train-
ing still takes a lot of time and compute resources. Finding
ways to further decrease training time and to speed up ren-
dering at test time are required. (3) Viewpoint extrapolation
beyond the bounds of the training views is challenging and
might lead to artifacts in the rendered imagery. We hope
that, in the future, we can learn strong scene priors that will
be able to fill in the missing information. (4) We discussed
the importance sampling strategy and its effectiveness based
on the assumption of videos observed from static cameras.
We leave the study of this strategy on videos from moving
cameras as future work. We believe these current limita-
tions are good directions to explore in follow-up work and
that our approach is a stepping stone in this direction.

5. Conclusion
We have proposed a novel neural 3D video synthesis ap-

proach that is able to represent real-world multi-view video
recordings of dynamic scenes in a compact, yet expressive
representation. As we have demonstrated, our approach is
able to represent a 10 second long multi-view recording by
18 cameras in under 28MB. Our model-free representation
enables both high-quality view synthesis as well as motion
interpolation. At the core of our approach is an efficient
algorithm to learn dynamic latent-conditioned neural radi-
ance fields that significantly boosts training speed, leads to
fast convergence, and enables high quality results. We see
our approach as a first step forward in efficiently training
dynamic neural radiance fields and hope that it will inspire
follow-up work in the exciting and emerging field of neural
scene representations.
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