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Abstract

Scene Graph Generation (SGG) has attracted more and
more attention from visual researchers in recent years, since
Scene Graph (SG) is valuable in many downstream tasks
due to its rich structural-semantic details. However, the ap-
plication value of SG on downstream tasks is severely lim-
ited by the predicate classification bias, which is caused by
long-tailed data and presented as semantic bias of predicted
relation predicates. Existing methods mainly reduce the
prediction bias by better aggregating contexts and integrat-
ing external priori knowledge, but rarely take the semantic
similarities between predicates into account. In this paper,
we propose a Predicate Probability Distribution based Loss
(PPDL) to train the biased SGG models and obtain unbi-
ased Scene Graphs ultimately. Firstly, we propose a predi-
cate probability distribution as the semantic representation
of a particular predicate class. Afterwards, we re-balance
the biased training loss according to the similarity between
the predicted probability distribution and the estimated one,
and eventually eliminate the long-tailed bias on predicate
classification. Notably, the PPDL training method is model-
agnostic, and extensive experiments and qualitative anal-
yses on the Visual Genome dataset reveal significant per-
formance improvements of our method on tail classes com-
pared to the state-of-the-art methods.

1. Introduction
Scene graph generation (SGG) [12] is concerned with

producing comprehensive, structured representations about
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Figure 1. An illustration of long-tailed bias and unbiased scene
graph generation (SGG). (a) The long-tailed distribution of dif-
ferent predicate categories in Visual Genome [14]. (b) The input
image with bounding boxes. (c) The ground-truth scene graph. (d)
The biased SG from VCTree [29] model. (e) The unbiasd SG from
the same model with our proposed unbiased training method.

images. A scene graph is a directed graph composed of ob-
jects entity pairs with their relations in an image, in which
the objects and relations are represented as nodes and edges
respectively. Due to the rich structural-semantic informa-
tion, scene graph has been widely used and achieved great
improvements among these downstream tasks such as im-
age generation [10, 11], visual question answering [6, 25],
image captioning [2, 7, 15, 33, 37, 43], semantic image re-
trieval [12,23,24] and thus has been drawing more and more
attention.

Although great progress has been made in capturing the
object-to-object relationship and visual reasoning, the ex-
isting SGG methods still cannot meet the requirements of
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Figure 2. A toy example of Predicate Probability Distribution
(PPD) based loss reweighting method. (a) The input image with
bounding boxes. (b) The biased loss and SG from the biased
model. (c) An illustration of our proposed PPD based debiasing
strategy, which calculates the similarities between predicted PPDs
and estimated ground-truth PPDs for subsequent loss reweighting.
In this part, we use different shades of color to indicate the magni-
tude of the different values, and the highest value of each distribu-
tion is identified by a red dotted box. (d) The unbiased loss and SG
from the same biased model with our unbiased training method.

downstream tasks for actual application scenarios. As il-
lustrated in Fig.1 (a), the number of the head classes (e.g.,
“on”, “has”, “of ”, “in”) far exceeds the tail classes (e.g.,
“in front of ”, “walking on”), which shows the long-tailed
distribution of predicates in Visual Genome dataset. On
the one hand, driven by long-tail data, most existing bi-
ased SGG methods are trained to “prefer” high-frequency
predicates. Therefore, the tail classes tend to be neglected
and misclassified in predicate classification. For instance, in
Fig.1 (d), the relation between “bike”, and “street” are pre-
dicted as high-frequency predicate “on” by the biased SGG
model, VCTree [29]. On the other hand, the head classes
tend to be less semantic while the tail classes contain much
richer semantic information, hence even sometimes both
head and tail classes can be regarded as correct in the same
object pair, the semantic less result of high-frequency pred-
icates can significantly degrade the performance of SGG in
downstream tasks that require richer semantics, e.g., story-
telling [30]. For these reasons, the fact that the long-tailed
data distribution severely degrades the performance of SGG
has attracted more attention.

To address the long-tailed distribution among different
predicate classes, the Counterfactual Causal Inference [28]
has been developed, which distinguishes the good and the
bad bias in training, and then keeps the good one. Chen et
al. [3] proposed to embed the statistical prior knowledge of
predicates and object pairs in datasets into message passing.
Furthermore, instead of relying on prior knowledge or bet-
ter inference methods, Yu et al. [38] and Suhail et al. [26]
improved the existing biased training method with an un-
biased training loss. However, the approaches described

above rarely care about the semantic similarity of different
predicates.

Inspired by the Focal Loss [18] for dense object detec-
tion, we propose a novel loss function, Predicate Prob-
ability Distribution based Loss (PPDL), to weaken the
model’s suppression for the tail classes. We first build
a Predicate Probability Distribution Matrix (PPDM)
to represent the estimated probability distribution of each
predicate class. As shown in Fig.2, the predicate “walking
on” is most likely to be misclassified as “standing on” and
“on”, because these predicates have the higher similarity to
“walking on” in the probability distribution space. Thus, we
can determine whether there is a bias in predicate classifi-
cation of each training example by examining the similar-
ity between the predicted predicate probability distribution
and the corresponding estimated one. Thereafter, we can
reweight the loss of predicted predicate if existing predic-
tion bias. As illustrated in Fig.2 (b), the less semantic triplet
⟨man, on, beach⟩ is generated by biased model (e.g., VC-
Tree model). However, after training with PPDL, we can
down-weight the loss of head classes and focus on train-
ing on hard but meaningful tail classes, eventually obtain-
ing much more meaningful predicates (e.g., “walking on”
as shown in Fig.2 (d)).

In order to better estimate the probability distribution
of each predicate class, we propose a dynamic updating
method for PPDM during training time. Instead of relying
on simple co-occurrence statistics, the PPDM can be adap-
tively updated by summing the probability distributions of
the unbiased predicted relationships in each mini-batch and
gradually approaches the real average probability distribu-
tion of the training data.

In summary, our main contributions are three-fold:

• We analyze the ignorance of semantic relevance
among some predicates in existing SGG models and
integrate the predicate probability distribution into un-
biased training loss, PPDL, which is proposed to miti-
gate the impact of long-tailed data on SGG. We high-
light that PPDL is a model-agnostic training strategy
and thus applicable for a variety of existing SGG mod-
els.

• Furthermore, we propose an adaptively updating
method for PPDM to estimate realistic probability dis-
tribution of each predicate during biased model train-
ing, which will be described in more detail below.

• Extensive experiments and qualitative analyses on
the widely used SGG benchmark dataset of Visual
Genome demonstrate the effectiveness of our proposed
unbiased training loss, PPDL. Impressively, the pro-
posed PPDL significantly improves most of the predi-
cates, and the performance of tail classes is enhanced
apparently.
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2. Related Work

2.1. Scene Graph Generation (SGG)

The goal of SGG is to detect entity pairs with their re-
lations in an image, in form of ⟨Subject, Predicate, Object⟩.
Generally, SGG models consist of three main modules: pro-
posal generation localizing the bounding box of objects,
object classification labeling the detected objects, and rela-
tionship prediction predicting the predicates between pair-
wise objects, thus most novel SGG methods are mainly in-
novative in these three modules. Instead of relying on an
extra powerful object detector [22] to obtain object pro-
posals, Liu et al. [19] localized the objects and refined the
bounding boxes by applying a fully convolutional network
throughout the SGG model. For better utilizing the contexts
for object classification and relationship prediction, RNNs
and graph convolutional network were applied to propagate
image contexts, e.g., IMP+ [32], MOTIFS [41], Graph R-
CNN [36]. VCTree [29] captured local and global visual
contexts by exploiting dynamic tree structures.

Furthermore, since Tang et al. [29] and Chen et al.
[3] proposed the unbiased evaluation metric, Mean Recall,
many researchers have focused on the long-tailed bias of
the mainstream Visual Genome Dataset [14]. Gu et al. [8]
and Chen et al. [3] integrated external knowledge into SGG
models to address the bias of noisy annotations. Tang et
al. [28] proposed to adapt counterfactual causal inference to
eliminate the prediction bias caused by the long-tailed data.
Yan et al. [34] proposed to perform reweighting with class
relatedness-aware weights. CogTree [38] constructed a hi-
erarchical cognitive tree of predicates with the bias of exist-
ing model and focused on a small portion of easily confused
predicates. Suhail et al. [26] proposed an energy-based
training method that allows the model to perform structure
aware learning and to alleviate the long-tailed bias of pred-
icate prediction. And there are some other interesting tricks
for removing prediction bias or breaking the limitations of
datasets in SGG. Yang et al. [35] proposed to model relation
prediction probability as Gaussian distribution for generat-
ing diverse scene graphs. Chen et al. [4] introduced a semi-
supervised method to train SGG models with a limited la-
bel setting. Zhang et al. [42] proposed graphical contrastive
loss that specifically targets the entity instance confusion
and proximal relationship ambiguity. Zareian et al. [40]
proposed a weakly supervised learning framework for SGG
that enables training without bounding box annotations.

The methods mentioned above rarely leverage the class
relatedness between object pairs or achieve unbiased SGG
through unbiased training. However, instead of utilizing the
external knowledge or focusing on removing the bias of
visual feature learning, we proposed to quantify the pred-
icate correlation through the Euclidean Distance between
the predicted predicate probability distribution and the cor-

responding estimated one, and then build an unbiased train-
ing framework based on the predicate relevance.

2.2. Class re-balancing

Real-world datasets often have long-tailed data distri-
butions, as shown in Fig.1 (a), the number of predicates
sampled from different categories varies greatly. Therefore,
the biased models trained on these datasets tend to perform
poorly on less presented classes. In response to this prob-
lem, the researchers proposed various class re-balancing
methods, which can be divided into two main categories:
one is the resampling method [21, 39], the other is the
reweighting method [13, 20]. In general, resampling meth-
ods mainly means under-sampling [9] the frequent classes
and over-sampling [1] the less presented classes. Never-
theless, when it comes to small datasets, under-sampling
methods tend to ignore a large number of data examples,
leading to not only data waste but also severe performance
degradation. While over-sampling of low-frequency exam-
ples can cause overfitting problems on repeatedly sampled
examples. The reweighting methods aim to give different
weights to the predicted loss of different classes of exam-
ples, it is slightly more complex than the resampling method
but possesses more maneuverability. The straightforward
reweighting methods are to use the inverse of the propor-
tions of different classes as weights of the predicted losses,
but they have a significant detrimental effect on the overall
performance, especially for the head classes. Lin et al. [17]
proposed the concept of effective number of examples as
having the greatest impact on the performance of the model
and used the inverse of the proportion of effective number
of examples as the weight value for loss re-balancing. Fo-
cal Loss [18] can also be seen as reweighting method, which
reduces the loss weights of well-classified examples and fo-
cuses training on a small number of hard examples in order
to improve the performance of hard examples and the aver-
age performance across the whole dataset.

Because the resampling method is prone to overfitting
and performance degradation, we propose to re-balance the
weight of different classes with the help of the correlation
between the predicted probability distributions and the esti-
mated ones, focusing on training hard examples and lessen-
ing the long-tailed bias.

3. Methodology

The PPDL unbiased training framework proposed in this
paper consists of two main modules: one is the biased SGG,
and the other is an unbiased training loss function. Thus in
this section, we first illustrate an overview of general ap-
proaches of biased SGG, followed by a description of our
proposed predicate probability distribution based unbiased
training loss for SGG.

19449



Spatial feature

Visual featureInput Image
Detector Features 

and Bounding Boxes

Word Embedding

person
shirt

beach
track

Semantic feature

person
shirt

beach
track

Semantic feature

PPDM  PPDM  Initial PPDM  Initial PPDM  

Entity 
Classification

track

beach
shirt

person

Relation 
Classification

in
walking on

wearing

Loss
LossLoss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss

Dynamically 
Update PPDM

PPDL based Unbiased Training 

Re-balanceing
Feature 
Refining
Feature 
Refining

Context Modeling

Prediction Probability

Prediction Probability Prediction Probability

person

shirt

beach

track wearing
walking on

Scene Graph

in

person

shirt

beach

track wearing
walking on

Scene Graph

in

Figure 3. An illustration of PPDL unbias training framework. We extract features and proposals with an object detector and feed them into
a feature interaction module. Image features are propagated iteratively to capture local and global contexts, and then further decoded into
biased probabilities by the object and relationship classification modules. We initialize PPDM as the identity matrix and then iteratively
update it during the training process. Meanwhile, we re-balance the Cross-Entropy loss based on the similarity between the predicted
probability distribution of each predicate and the corresponding estimated one, finally obtain unbiased scene graphs. Best viewed in color.

3.1. Scene Graph Generation

As shown in Fig.3, SGG methods typically consist of
two main modules: object entity detection and relationship
classification. Generally, given an input image I , Object
entity detection aims to obtain the visual features {xi}n,
bounding boxes B = {bi}n of each object, and preliminary
labels L = {li}n of the detected object entities, where n
represents the number of detected entities in the input im-
age. As the formulation: “Input{xi, li, bi} → Output{fi}”,
a set of object features F = {fi}n can be obtained and
used for object detection and subsequent relationship clas-
sification. Relationship classification is designed to obtain a
set of relationships R = {ri,j |i, j ∈ {1, 2, ..., n}}k among
detected pairwise object entities. When judging the rela-
tionship between object i and object j, the relationship fea-
ture consists of three important parts: the object features fi
and fj , the label embeddings of entity pair li and lj , and
the visual feature xi,j of the overlap area of two entities.
Therefore, the relationship feature fri,j can be obtained as
formulation: “Input{fi, fj , li, lj , xi,j} → Output{fri,j}”.

For better capturing the contexts, most existing SGG
methods use the RNNs and graph convolutions to prop-
agate image context and iteratively update these features.
The updated object feature f t+1

i and relation feature f t+1
ri,j

can be defined as f t+1
i = G

(
f t
ri,j , f

t
rj,i , f

t
i

)
and f t+1

ri,j =

H
(
f t
ri,j , f

t
i , f

t
j

)
, where G(·) and H(·) are layers for fea-

ture interaction of objects and relations respectively. After-
wards, these features are fed into the corresponding classi-
fication head to predict the object and relation labels. The
output module can be divided into two decoders, which
can be represented as Poi = Dobject

(
fT
i

)
and Pri,j =

Dpredicate

(
fT
ri,j

)
, where T means the last iteration.

So far, the relationship triplets of pairwise objects can be
obtained and further organized into scene graphs. However,
the performance of different predicates is still long-tailed
due to the unbalanced data and biased training strategy. In
this work, we propose a predicate similarity based unbiased
loss to eliminate the long-tailed bias during model training.

3.2. Predicate Probability Distribution based Loss

Most existing SGG methods always perform well in the
head predicate classes but poorly in tail ones. However, the
high-frequency head classes, such as “on, near, of ”, are not
rich in semantics and are less helpful for downstream tasks.
As shown in Fig.1, it is easy to find that prediction bias of-
ten occurs between two predicates with similar semantics,
e.g., “parked on” and “on”. For a particular object pair,
the predicates with similar semantics will be closer in clas-
sification probability. For instance, in Fig.2 (b), the predic-
tion probabilities of “standing on” and “walking on” are just
less than that of the biased predicted predicate “on”, but far
exceed that of other predicates in the predicted probability
distribution. This indicates that the biased models are weak
in distinguishing between “walking on”, “standing on” and
“on” in this example. Thus, it’s natural for us to find a way
to measure the semantic similarity between predicates and
then use it to correct the classification bias between similar
predicates, which will be explained in detail below.

3.2.1 Unbiased Training Loss Function

The cross-entropy loss is commonly used in SGG mod-
els, which can be described as LCE = −

∑m
i=1 yilog(pi),

where pi and yi are the predicted predicate probability and
the ground-truth predicate which represented as one-hot
vector, and m is the number of predicate categories. Due to
long-tailed data, the models trained with cross-entropy loss
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“prefer” the head classes. Thus, for adjusting the optimiza-
tion direction and focusing on training tail predicate classes,
some researchers reweighted the loss of different predi-
cates according to their frequencies. However, as aforemen-
tioned, the existing reweighting methods severely weaken
the performance of the high-frequency relations.

In order to find a suitable way to measure the similar-
ity between relational predicates and adjust the reweighting
weight for the loss function, we propose to represent each
predicate class as a prediction probability distribution with a
dimension of predicate categories. We select the predicates
which are correctly predicted by biased models and average
them then, the PPDr can be expressed as follows:

PPDr =
1

N

∑
(x,y=r)∈D

P (x|p = y) (1)

where x and N are the visual feature of an image and the
number of correctly predicted relations in the dataset, p
and y mean the biased predicted predicate and the ground-
truth one, respectively, and P (x|p = y) means the predicted
probability distribution of relation which is correctly pre-
dicted by biased model. Furthermore, we can calculate the
Euclidean Distance (ED) between two PPDs, and use its re-
ciprocal to represent the similarity between two predicates.
This process can be expressed as follows:

s(pi, r) =
1

ED(g(xi), PPDr) + 1
(2)

where s(pi, r) is the similarity between relation i and pred-
icate r, and xi, g(·) are the feature of relation i and the pre-
diction probability generation function. The ED(·) means
Euclidean Distance of two probability distributions.

Combining the similarity between two PPDs and the fre-
quency based reweighting methods, we propose a Binariza-
tion Function θ(pi,Rgt) which is presented as Equ.3 to de-
termine whether to reweight the loss,

θ(pi,Rgt) =

{
1 , if pi ̸= r

′
, r

′
= argmax

r,r∈Rgt

(s(pi, r));

0 , otherwise.
(3)

where Rgt means the estimated PPDs of all predicate
classes in ground-truth data, and argmax

r,r∈Rgt

(s(pi, r)) is a

mathematical function for finding the predicate class r
′

with
the largest similarity with the predicted predicate probabil-
ity distribution. If the predicted predicate pi is different
from the most similar predicate r

′
, there may be prediction

bias when predicting the predicate of relation i.
By simply reweighting the loss according to the fre-

quencies of different predicate categories, the traditional
reweighting methods ignore the correctly predicted high-
frequency examples and focus too much on the low-
frequency ones, leading to the overfitting for tail classes and

Algorithm 1 PPDM update algorithm and PPD based loss
re-balancing strategy during training time.
Require: Training dataset D; initial PPDM0; the weight vector W ∈

RK ; balancing parameter β; momentum α; Cross-Entropy CE(·).
Ensure: Unbiased model G(·); estimated PPDMT .
1: Let t = 0;
2: Initialize PPDM0 as a unit matrix;
3: for t ∈ {1, 2, 3, ..., NEpoch} : do
4: Set the shuffled dataset D as Dt;
5: for each mimi batch B = {(xi, pi)} ∈ Dt : do
6: Set g(xi) as the predicted biased probabilities of relation i;
7: Set similarity matrix S = {s(pi, r)} ∈ R|B|×K ;
8: Set L = {li} as unbiased loss for predicates classified;
9: for each predicate probability g(xi) : do

10: for each predicate class r ∈ Rgt,Rgt ∈ RK : do
11: s(pi, r) =

1
ED(g(xi),PPDMt−1,r)+1

;

12: end for
13: B′ ← {(xi, pi) ∈ B|pi = argmax

r,r∈Rgt

(s(pi, r))};

14: li = CE(g(xi)) + β × θ(pi,Rgt)× (W · CE(g(xi)));
15: end for
16: for each predicate class r ∈ {1, 2, 3, ...,K} : do
17: PPDM ′

r ← 1
|B′|

∑
(x,p=r)∈B′ g(x);

18: end for
19: PPDMt ← α× PPDM ′ + (1− α)× PPDMt−1;
20: end for
21: end for
22: return model G(·) and PPDMT ;

performance damage to head classes. With the θ(pi,Rgt),
we can adaptively give a heavier penalty to the predicted
predicates that do not match the corresponding ground-truth
predicate probability distribution, and set the loss weight
to zero for correctly predicted predicates. Thus, the pred-
icate probability distribution based loss we proposed only
focuses on the biased predicted relations and causes less
damage to the performance of high-frequency predicates,
and it is designed as follows:

LPPDL = θ(pi,Rgt)× (W · LCE) (4)

where the weight vectorW is simply represented by the in-
verse of the fraction of each predicate classes that appear
in the dataset, the LCE means Cross-Entropy loss, and the
· means vector dot product operation. Furthermore, we in-
troduce an equilibrium parameter β to balance traditional
cross-entropy loss and the reweighted one. The final loss
function can be represented as follows:

L = LCE + β × LPPDL (5)

3.2.2 Dynamic Updating Strategy For PPD

The long-tailed data is caused not only by the tendency
of annotators to label simple predicates, but also by the in-
complete relationship annotation. Therefore, the PPD cal-
culated by Equ.1 ignores many relationships that are cor-
rectly predicted but not annotated in the dataset, and does
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not completely eliminate the long-tailed data impact. Hence
we propose to select predicted predicate which is closet
to the corresponding estimated predicate representation in-
stead of which matches the ground-truth. Generally, as
shown in Equ.2, we evaluate the similarity of two predicates
by calculate the inverse of the Euclidean Distance of their
prediction probability distributions. Furthermore, adopting
the dynamic updating idea in [5], we propose a dynamic
updating strategy for PPDM estimating. As shown in Al-
gorithm 1, we select the prediction probability that matches
the corresponding estimated predicate probability distribu-
tion and calculate the average predicate probability distri-
bution of each mini batch as follows:

B′ ← {(xi, pi) ∈ B|pi = argmax
r,r∈Rgt

(s(pi, r))} (6)

where B′ is the collection of results that meet the criteria
mentioned above. Then, as shown in Equ.7, the estimated
PPDM can be dynamically updated by the per-batch av-
erage PPDM ′ and a momentum α, making the latest es-
timate play a more important role in the updating process.

PPDM t ← α× PPDM ′ + (1− α)× PPDM t−1 (7)

4. Experiments
4.1. Experiment Setting

Dataset. We evaluate our approach on commonly used
large-scale Visual Genome (VG) benchmark [14], which
consists of 108077 images across 75k object categories and
40k predicate categories. Since most of relationship cat-
egories contain too few examples to support training, we
train the models with the most frequent 150 object classes
and 50 predicate classes following the setting from previ-
ous works [28, 29, 32, 38, 41]. 5000 images are selected for
validation, and training set and test set account for 70% and
30% of dataset, respectively.
Evaluation Settings. Following Xu et al. [32], we train and
evaluate various SGG models in three setups: (1) Predicate
Classification (PredCls) predicting the predicate of pair-
wise objects given bounding boxes and object labels, (2)
Scene Graph Classification (SGCls) predicting the predi-
cates and the object labels given bounding boxes, (3) Scene
Graph Generation (SGGen) predicting predicate between
each pair of the detected objects with only input image.
Since traditional metrics recall@K (R@K) cannot reflect
the impact from long-tailed data, we utilize the mean Re-
call@K (mR@K) as the main metrics following [3, 28],
which evaluates the R@K of each predicate class separately
and averages them then. Furthermore, Unconstrained and
constrained mR@K are used to indicate the semantic rich-
ness of multi and single output relationships, respectively.
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Figure 4. Performance comparison among several methods on
VG150 dataset. The constrained R@100 for the head 15 and the
tail 15 predicate classes on the PredCls task is presented.

Implementation Details. Following previous works [3,
28, 41], we adopt a frozen Faster-RCNN [22] as the ob-
ject detector, which is equipped with the ResNeXt-101-
FPN backbone [17, 31] and pre-trained by Tang et al. [28].
For SGG training, we adopt the Scene-Graph-Generation
benchmark [27] proposed by Tang et al. [28], which trained
SGG models using SGD as an optimizer. Batch size and
initial learning rate are set to 12 and 0.01 for three evalu-
ation setups. Following Tang et al. [28], the learning rate
would be decayed by 10 two times after the validation per-
formance plateaus. The momentum α and β were set to 0.1
and 0.03 separately. All experiments are implemented with
PyTorch and two NVIDIA 2080 GPUs are used for training.

4.2. Comparisons with State-of-the-Arts

Settings. In order to verify the performance improvement
of our proposed PPDL unbiased training method, we ex-
perimented our proposed method with several existing bi-
ased models (e.g., IMP+ [32], MOTIFS [41], VCTree [29])
and compared them with other unbiased SGG methods that
incorporate debiasing strategies (e.g., TDE [28], CogTree
[38], EBML [26], PCPL [34]) in SGG.
Quantitative Results. Since the long-tailed data distribu-
tion, as shown in Table 1, 2 and Fig.4, the mean recall of
biased models is pulled down seriously due to the poor per-
formance of tail predicate classes, and our model achieves
much higher mR@K metrics than all biased baseline mod-
els. In Table 1, PPDL performs much better than other de-
biasing strategies (e.g., TDE, CogTree, EBML) by achiev-
ing much higher mR@K metrics but paying a smaller R@K
metrics reduction. The mR@100 of VCTree+PPDL is 18%,
60.0%, and 20% higher than that of VCTree+TDE in three
evaluation tasks. Particularly, since our method is model-
agnostic, it is possible to combine the advantages of differ-
ent models and achieve much better performance. As we
can see in Table 1 and Fig.4, combining TDE and PPDL
can achieve much better performance than applying them
separately. Although the PCPL method outperforms our
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Predicate Classification Scene Graph Classification Scene Graph Generation
Method mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100
IMP† [12] 9.8 / 10.5 59.3 / 61.3 5.8 / 6 34.6 / 35.4 3.8 / 4.8 20.7 / 24.5
MOTIFS† [41] 14.0 / 15.3 65.2 / 67.1 7.7 / 8.2 35.8 / 36.5 5.7 / 6.6 27.2 / 30.3
VCTree† [29] 17.9 / 19.4 66.4 / 68.1 10.1 / 10.8 38.1 / 38.8 6.9 / 8.0 27.9 / 31.3
PCPL† [34] 35.2 / 37.8 50.8 / 52.6 18.6 / 19.6 27.6 / 28.4 9.5 / 11.7 14.6 / 18.6
IMP+EBML† [26] 11.8 ↑2.0 / 12.8 ↑2.3 - / - 6.8 ↑1.0 / 7.2 ↑1.2 - / - 4.2 ↑0.4 / 5.4 ↑0.6 - / -
IMP‡+PPDL 24.8 ↑15.0 / 25.3 ↑14.8 39.5 / 39.7 14.2 ↑8.4 / 15.9 ↑9.9 25.8 / 26.7 9.8 ↑6.0 / 10.4 ↑5.6 18.5 / 19.4
MOTIFS+TDE† [28] 25.5 ↑11.5 / 29.1 ↑13.8 46.2 / 51.4 13.1 ↑5.4 / 14.9 ↑6.7 27.7 / 29.9 8.2 ↑2.5 / 9.8 ↑3.2 16.9 / 20.3
MOTIFS+CogTree† [38] 26.4 ↑12.4 / 29.0 ↑13.7 35.6 / 36.8 14.9 ↑7.2 / 16.1 ↑7.9 21.6 / 22.2 10.4 ↑4.7 / 11.8 ↑5.2 20.0 / 22.1
MOTIFS+EBML† [26] 18.0 ↑4.0 / 19.5 ↑4.2 - / - 10.2 ↑2.5 / 11.0 ↑2.8 - / - 7.7 ↑2.0 / 9.1 ↑2.5 - / -
MOTIFS‡+PPDL 32.2 ↑18.2 / 33.3 ↑18.0 47.2 / 47.6 17.5 ↑9.8 / 18.2 ↑10.0 28.4 / 29.3 11.4 ↑5.7 / 13.5 ↑6.9 21.2 / 23.9
VCTree+TDE† [28] 25.4 ↑7.5 / 28.7 ↑9.3 47.2 / 51.6 12.2 ↑2.1 / 14.0 ↑3.2 25.4 / 27.9 9.3 ↑2.4 / 11.1 ↑3.1 19.4 / 23.2
VCTree+CogTree† [38] 27.6 ↑9.7 / 29.7 ↑10.3 44.0 / 45.4 18.8 ↑8.7 / 19.9 ↑9.1 30.9 / 31.7 10.4 ↑3.5 / 12.1 ↑4.1 18.2 / 20.4
VCTree+EBML† [26] 18.2 ↑0.3 / 19.7 ↑0.3 - / - 12.5 ↑2.4 / 13.5 ↑2.7 - / - 7.7 ↑0.8 / 9.1 ↑1.1 - / -
VCTree+TDE&EBML† [26] 26.7 ↑8.8 / 30.0 ↑10.6 - / - 18.2 ↑8.1 / 20.5 ↑9.7 - / - 9.7 ↑2.8 / 11.6 ↑3.6 - / -
VCTree‡+PPDL 33.3 ↑15.4 / 33.8 ↑14.4 47.6 / 48.0 21.8 ↑11.7 / 22.4 ↑11.6 32.1 / 33.0 11.3 ↑4.4 / 13.3 ↑5.3 20.1 / 22.9
VCTree+TDE‡&PPDL 33.0 ↑15.1 / 36.2 ↑16.8 41.6 / 43.6 20.2 ↑10.1 / 22.0 ↑11.2 24.8 / 26.2 12.2 ↑5.3 / 14.4 ↑6.4 13.6 / 16.5

Table 1. Comparison of constrained R@K and constrained mR@K for PredCls, SGCls, and SGGen tasks. † means that the performance
is reported by the respective paper. ‡ indicates that model is re-implemented under our implementation setting. ↑ indicates the performance
improvement compared to the corresponding base models. † and ‡ in Table 2 and 3 have the same meaning.

PredCls SGCls SGGen
Method mR@50/100 mR@50/100 mR@50/100
IMP† [12] 20.3/28.9 12.1/16.9 5.4/8.0
MOTIFS† [41] 27.5/37.9 15.4/20.6 9.3/12.9
VCTree‡ 34.8/47.1 22.5/30.0 12.4/16.8
PCPL† [34] 50.6/62.6 26.8/32.8 10.4/14.4
IMP‡+PPDL 33.9/38.4 19.5/23.8 11.3/12.6
MOTIFS‡+PPDL 41.8/46.6 22.5/25.9 15.5/18.8
VCTree‡+PPDL 43.3/47.0 27.9/31.3 15.1/18.3
VCTree+TDE‡&PPDL 45.8/58.2 29.3/36.8 16.7/20.6

Table 2. Comparison of the unconstrained mR@K on three eval-
uation tasks. The second largest value is underlined.

Predicate Classification
Type Method R@50/100 mR@50/100
1 Baseline‡ 65.8/67.4 17.1/18.4
2 PPDL∗ 48.7/49.3 31.6/32.3
3 PPDL(w/o θ(·)) 47.1/46.5 32.9/33.8
4 PPDL(w/ θ(·)) 47.6/48.0 33.3/33.8

Table 3. Ablation study of our method. The constrained R@K
and constrained mR@K of the VCTree model on the PredCls
tasks are presented. ∗ indicates model training using PPDL with-
out dynamic updating strategy. The baseline model was trained
with Cross-Entropy Loss.

method on the PredCls task, our method achieves higher
mR@K on the SGCls and SGGen tasks. Unlike PCPL
method that measures predicate similarity by the distance
between predicate representations, our method utilizes dy-
namically estimated predicate probability representations to
judge prediction bias. Therefore, we speculate that PPDL
relies less on ground truth labels. And this property en-

Predicate Classification
β mR@20 mR@50 mR@100

0.01 25.6 31.2 31.9
0.02 28.7 31.9 32.9
0.03 29.2 33.0 33.6
0.04 29.6 32.5 33.3
0.05 29.9 32.7 33.2

Table 4. Ablation study for β on VCTree [29] model. The con-
strained mR@20/50/100 on the PredCls task are presented.

hances the advantage of PPDL over PCPL method in SG-
Cls and SGGen tasks. Furthermore, as shown in Table 1,
the R@50/100 of biased methods (e.g., IMP [16], MO-
TIFS [41], VCTree [29]) are higher than that of debias-
ing methods (e.g., CogTree [38], TDE [28], EBML [26],
PCPL [34]) and our proposed PPDL. However, compared
to the state-of-the-arts debiasing strategies, e.g., CogTree
and TDE, PPDL achieves better or comparable performance
on the R@K metric in three sub-tasks. For instance, in the
SGGen sub-task for the MOTIFS model, our R@100 is 18%
and 8% higher than TDE and CogTree, respectively. As
shown in Fig.4, PPDL significantly improves the R@100
of the tail classes and performs better on most of all predi-
cate categories. This proves that our PPDL significantly im-
proves the performance of the tail classes and has less and
acceptable damage to the performance of the head classes.
Qualitative Analysis. To better present the effectiveness
of PPDL on the semantic enhancement of predicates, we
provide qualitative examples in Fig.5. As we can observe
in the results of bottom two rows, the baseline model (VC-
Tree) classfies relations as coarse-grained predicates (e.g.,
“on”, “near”), while our method successfully classifies rela-
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Figure 5. Qualitative results for PredCls sub-task. The top two rows show input images, detected bounding boxes indicated with red boxes,
and ground-truth scene graphs. The bottom two rows show the scene graphs generated from the VCTree baseline model and VCTree+PPDL
method respectively. Due to space limitations, part of the detected objects is removed from the results. Best viewed in color.

tions to more meaningful and fine-grained predicates (e.g.,

bike
parked on−→ street). Therefore, it is obvious to find that

our method improves the baseline methods greatly and has
a significant contribution on the predicate classification of
tail classes. Although some of our unbiased results (e.g.,

tree
in front of−→ tower) seem to be different from the ground-

truth SG, our predicted predicates are much more accurate
and valuable from a semantic point of view.

4.3. Ablation Studies

Analysis of PPDL. As shown in Table 3, we conduct ab-
lation studies on the newly proposed reweighting method
and the PPD based classes re-balancing policy. Type 1 is
a baseline method which was trained with the implementa-
tion settings described above, type 2 is an ablation study of
dynamic updating strategy, type 3 and type 4 respectively
trained the VCTree model with the PPDL loss without/with
the Binarization Function θ(·). Specifically, the θ(·) was set
to 1 throughout the experiment in type 3 for removing the
effect of θ(·). According to the comparison between type
1 and type 4, we can observe that PPDL is indeed help-
ful to the performance of the tail class, and the mR@100
increases by 83%. Furthermore, compared to type 3, the
R@50/100 and mR@50 of type 4 increases by 1% / 3% and
1%, respectively. This means that PPDL, as an effective
debiasing strategy adapted from reweighting methods, can
largely preserve the performance of the head classes when
up-weighting the loss of tail classes. Furthermore, after ab-
lating the dynamic updating strategy, our method can obtain

the R@50/100 metrics of 48.7/49.3 and the mR@50/100
metrics of 31.6/32.3 in the PredCls task, it shows that the
performance improvement is mainly contributed by the un-
biased loss, and the dynamic updating strategy further im-
proves the mR@K metrics.
Analysis of β. We experiment with different β values from
0.01 to 0.05, in order to judge the effect of different loss bal-
ancing hyperparameter on the performance of the model.
As shown in Table 4, we can observe that the mR@K
(20/50/100) of PredCls task increases with the increase of
β. While the β goes up to a certain extent, the performance
of models begins to fall. Therefore, we set β to 0.03 in the
model training, which can achieve better results.

5. Conclusion

In this paper, we explore to use estimated probability dis-
tribution to represent high-level semantic of predicate and
reweight training loss according to the similarity between
predicted predicate and the estimated one. With the help of
the dynamic updating strategy for predicate prediction dis-
tributions, we can estimate a more realistic predicate predic-
tion distribution for each predicate class and better measure
the similarity between two predicates. We lessen the bias
brought by the long-tailed data distribution and maintain the
performance of head predicate classes, and this results in a
more even performance for all predicate classes. Moreover,
the method is model-agnostic and proven to improve the
performance of various biased SGG models, demonstrating
the effectiveness of our PPDL method.
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