
RAGO: Recurrent Graph Optimizer For Multiple Rotation Averaging

Heng Li1 Zhaopeng Cui2 Shuaicheng Liu4 Ping Tan1,3
1Simon Fraser University 2State Key Lab of CAD&CG, Zhejiang University 3Alibaba XR Lab

4University of Electronic Science and Technology of China
{lihengl,pingtan}@sfu.ca, zhpcui@zju.edu.cn, liushuaicheng@uestc.edu.cn

Abstract

This paper proposes a deep recurrent Rotation Averag-
ing Graph Optimizer (RAGO) for Multiple Rotation Averag-
ing (MRA). Conventional optimization-based methods usu-
ally fail to produce accurate results due to corrupted and
noisy relative measurements. Recent learning-based ap-
proaches regard MRA as a regression problem, while these
methods are sensitive to initialization due to the gauge free-
dom problem. To handle these problems, we propose a
learnable iterative graph optimizer minimizing a gauge-
invariant cost function with an edge rectification strategy to
mitigate the effect of inaccurate measurements. Our graph
optimizer iteratively refines the global camera rotations by
minimizing each node’s single rotation objective function.
Besides, our approach iteratively rectifies relative rotations
to make them more consistent with the current camera ori-
entations and observed relative rotations. Furthermore, we
employ a gated recurrent unit to improve the result by trac-
ing the temporal information of the cost graph. Our frame-
work is a real-time learning-to-optimize rotation averaging
graph optimizer with a tiny size deployed for real-world
applications. RAGO outperforms previous traditional and
deep methods on real-world and synthetic datasets. The
code is available at github.com/sfu-gruvi-3dv/RAGO.

1. Introduction
Multiple Rotation Averaging (MRA) [4, 21, 28, 38] is a

fundamental problem in 3D computer vision that aims to de-
termine the global absolute orientations {R𝑢, 1 ≤ 𝑢 ≤ 𝑁}
of 𝑁 cameras given their relative orientations R𝑢𝑣 . It has
been widely studied in 3D vision applications, e.g., global
Structure from Motion (SfM) [12, 24], pose graph opti-
mization in Visual Simultaneous Localization and Map-
ping (SLAM) [14, 27, 35], and other sensor network prob-
lems [36, 37].

MRA is usually solved by minimizing the discrepancy
between the observed relative orientations R𝑢𝑣 and the
one calculated from the estimated global orientations, i.e.

0 5 10 15 20 25 30
Iteration times

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

M
ea

n
Er

ro
r i

n
De

gr
ee

Weiszfeld
Arrigoni
Wang
Chatterjee
NeuRoRA
RAGO*

Figure 1. The average mean error of RAGO on the synthetic
dataset compared with various MRA methods [5,6,20,30,39]. The
optimized results of the previous approaches are visualized as the
dash lines. The vertical axis represents the average mean angular
error, while the horizontal axis shows the number of iterations.

R𝑢R⊤𝑣 . It is a difficult classical problem with several chal-
lenges [21]. Firstly, it is a highly nonlinear problem since
the distance between two rotation matrices is a nonlinear
function. Secondly, rotation matrices lie on the 𝑆𝑂 (3)
group, which requires careful parameterization and normal-
ization during optimization. Thirdly, there are many out-
liers and various noises in input relative orientations R𝑢𝑣 ,
which are often computed from noisy visual correspon-
dences across images. These problems make the minimiza-
tion objective function full of saddle points and local mini-
mums in separate basins of attraction. Most of the time, the
global optimum cannot be guaranteed. The MRA problem
is typically solved by iterative optimization with careful ini-
tialization [6, 20, 40]. Robust cost functions with additional
outlier filtering and iterative reweighting of the measure-
ments are usually adopted, while these still do not tolerate
severe corruptions and various noises.

Recently, some learning-based methods [30, 42] formu-
late MRA as a regression problem in order to benefit from
data-driven prior knowledge. These methods rely on a good
initialization, since they do not enforce any geometric con-
straint during inference, which may lead to an inferior re-

15787

sult. Furthermore, there is a gauge freedom in MRA that
prevents learning-based methods from direct end-to-end
training, where {R𝑢} and {R𝑢R0} are essentially the same
solution for an arbitrary rotation matrix R0. These learning-
based methods [30,42] have to choose a root node as a refer-
ence to avoid a one-to-many mapping, which makes it hard
to learn to solve the MRA problem.

This paper presents a novel learning-based method that
has the advantages of both geometrical and learning-based
methods. Specifically speaking, we decouple an MRA
problem to multiple Single Rotation Averaging (SRA) prob-
lems as inspired by the traditional method in [20]. An SRA
problem solves the rotation matrix R𝑢 from all pairwise rel-
ative rotation {R𝑢𝑣 , 𝑣 ∈ N𝑢}, where N𝑢 is the neighbor-
hood of 𝑢. We construct a cost graph by computing an SRA
cost function for each node independently.We then apply a
Massage Passing Neural Network (MPNN) to iteratively ad-
just the global camera rotations of all nodes by minimizing
the SRA cost graph, resulting in an iterative optimization of
the original MRA problem. Unlike traditional methods that
only can consider one-hop neighbors, MPNN has large re-
spective fields and achieves better results. Compared to pre-
vious learning-based methods, our framework focuses on
solving SRA, a much simpler and smaller problem without
the gauge ambiguity, making learning easier.

In addition, in order to handle noises and outliers, we
also learn to rectify the relative measurements R𝑢𝑣 . Our
approach avoids time-consuming online refinement or edge
reweighting, which makes training unstable. In order to
make it more robust and efficient, we employ a Gated Re-
current Unit (GRU) module to utilize the historical infor-
mation of the previous cost graph. This module helps our
optimizer to converge to a better solution.

Experiments on real and synthetic datasets show that our
method could converge to good result, even starting from
random initialization, while previous methods usually re-
quired more careful initialization. As shown in Figure 1,
we compare RAGO with various MRA methods on the
synthetic datasets in terms of average mean angular error.
RAGO outperforms these approaches after 2 iterations.

Our contributions can be summarized as follows:

• We present a novel end-to-end learning-to-optimize re-
current graph neural network for MRA.

• We decouple an MRA problem to multiple SRA prob-
lems, leading to better results and learning without
gauge ambiguity.

• We propose to rectify the relative orientations during
optimization to handle outliers and noises.

• Our method outperforms state-of-the-art methods on
multiple real and synthetic datasets.

2. Related Work
Conventional MRA: Govindu first introduced MRA with
his linear motion model [18] and lie-group-based aver-
aging [19]. More recent iterative optimization-based ap-
proaches [6,11,20,33,40,40] introduce robust optimization
strategies to reduce the influence of outliers. The vast ma-
jority of these algorithms were iterative and aimed to opti-
mize a robust cost function. Hartley et al. [20] optimized
each camera’s absolute orientation using the median ori-
entation calculated from its neighbors in each iteration us-
ing the Weiszfeld averaging algorithm. Chatterjee et al. [6]
fine-tuned the initialization provided by a spanning tree us-
ing iterative reweighted least-squares (IRLS) minimization
with an L1 loss function. Fredriksson and Olsson [15]
turn the original problem into a dual problem utilizing La-
grangian Duality and then solve it using SDP to arrive at
an optimized solution. Numerous approaches [5, 13, 26, 29]
are based on this pipeline for improved performance, as this
approach benefits in achieving the global minimum. Del-
laert et al. [13] solves the MRA locally on 𝑆𝑂 (3) and then
increases the manifold dimension to start the optimization
again. Moreira et al. [26] present a primal-dual method to
solve MRA, inspired by in optimization algorithms with or-
thogonality constraints. These approaches primarily aim to
decrease the complexity of non-convex optimization. Deal-
ing with outliers remains an open issue, as they either as-
sume no noise or assume a specific kind of noise model.
Learning-based MRA: Recently, several neural network
based methods [17,23,30,42,43] have been proposed. Neu-
RoRA [30] employs a two-stage neural network architec-
ture based on MPNN [16]. The first network filters out-
liers and rectifies relative orientations to improve the SPT-
based initialization. The second stage fine-tunes the cam-
era’s orientation for a better result. MSP [42], based on
NeuRoRA [30], takes appearance information as input and
introduces a differentiable SPT method to achieve a robust
initialization result. The initialization is further improved
through non-learnable iterative edge reweighting. However,
these approaches have to choose a node as root to enforce
a unique solution, making their results sensitive to initial-
ization. In contrast, we regard the MRA as an optimization
problem and iteratively update the variables with a message
passing neural network combined with gated recurrent units
to exploit temporal information.
Learning to Optimize: Numerous recent publications at-
tempt to combine the strength of neural networks with clas-
sic optimization-based methods. There are primarily two
dominant directions in optimization learning. The first
one [2, 3, 9, 34] substitutes a neural network for the non-
differentiable component of a traditional optimizer during
end-to-end training. Other approaches [1, 7, 10, 31] use ma-
chine learning to update optimization variables based on
the input data directly. However, all approaches need ex-

15788

Rotation Average Graph Optimizer (RAGO)

𝑹𝑎
∗

𝑹𝑏
∗

𝑹𝑓
∗

𝑹𝑑
∗

𝑹𝑐
∗ 𝑹𝑒

∗

𝑹𝑏𝑑
∗

𝑹𝑎𝑒
∗

𝑹𝑒𝑑
∗

𝑹𝑒𝑓
∗

𝑹𝑎𝑐
∗

𝑹𝑐𝑓
∗

𝑹𝑎𝑏
∗

Θfeat & Θstate

𝑹𝑥
1

𝑹𝑤
1

𝑹𝑧
1

𝑹𝑢
1

𝑹𝑦
0 𝑹𝑣

1

𝑹𝑤𝑢
1

𝑹𝑣𝑥
1

𝑹𝑢𝑣
1

𝑹𝑣𝑧
1

𝑹𝑣𝑦
1

𝑹𝑦𝑧
1

𝑹𝑥𝑤
1

Node & Edge feat.

Hidden state

{𝐟𝑢} {𝐟𝑢𝑣}

{𝐡𝑢
0}{𝐡𝑢𝑣

0 }

t = 1 t = T

⨂

⋯

(c) Iterative Optimization

C
o

st G
ra

p
h

 C
o

n
stru

ct.

t = 2

⨂ ⋯

Graph

Updater

Cost Graph Construct.

Θcost

𝑑𝑢
𝑡

𝑑𝑢𝑣
𝑡

𝐂𝑢
𝑡

𝐂𝑢𝑣
𝑡

⨂

⨂ : Orientation Update

Node: 𝑹𝑢
𝑡+1 = 𝑹𝑢

𝑡 Δ𝑹𝑢
𝑡

Edge: 𝑹𝑢𝑣
𝑡+1 = 𝑹𝑢𝑣

𝑡 Δ𝑹𝑢𝑣
𝑡

⨁ : Concatenate

Θ : MPNN Network

t : Iteration times

∙ : Node/Edge set

(b) Feat. Extract. &

Hid. State Init.
𝑥

𝑤

𝑧

𝑢𝑦 𝑣

𝑹𝑥𝑤

𝑹𝑢𝑤𝑹𝑣𝑥

𝑹𝑢𝑣

𝑹𝑣𝑧𝑹𝑦𝑧

𝑹𝑣𝑦

𝑹𝑥

𝑹𝑤

𝑹𝑧

𝑹𝑢𝑹𝑦
𝑹𝑣

𝑹𝑥𝑤

𝑹𝑢𝑤𝑹𝑣𝑥

𝑹𝑢𝑣

𝑹𝑣𝑧𝑹𝑦𝑧

𝑹𝑣𝑦

Initialization

(a) Cam. Orien. Init.
GRU

⨁ {𝐈𝑢
𝑡 }{𝐈𝑢𝑣

𝑡 }

MLPΦ

{Δ𝑹𝑢𝑣
𝑡 }{Δ𝑹𝑢

𝑡 }
⋯

Graph

Updater

C
o

st G
ra

p
h

 C
o

n
stru

ct.

(d) Final Est. Orien.

Figure 2. The pipeline of our Rotation Averaging Graph Optimizer (RAGO). (a) We assign a random rotation to each camera. In (b), Two
Message Passing Neural Network, Θfeat and Θstate, extract the feature and initialize the hidden state. (c) During iterative optimization, we
first build a cost graph based on the SRA objective function. Then, we employ a GRU to update the camera orientations to minimize the
cost graph. (d) The camera orientations eventually converge to an optimized solution. Please refer to the main text for more details.

plicit formulation of the solver and are restricted to prob-
lems with easily defined objective functions. Additionally,
the approaches [10,34] must evaluate the gradient of the ob-
jective functions, which is complicated with many issues,
particularly optimization on a manifold. Unlike these pre-
vious works, our method decouples MRA to multiple SRA
problems, which is easier to learn, avoiding gradient com-
putations.

3. Deep Graph Optimizer for MRA
Consider a view-graph G = {V, E} where each vertex

𝑣 ∈ V corresponds to an unknown absolute camera orienta-
tion and each edge 𝑒 ∈ E is an observed relative orientation.
The MRA problem aims to estimate a set of camera orienta-
tions {R∗𝑢} = {R∗1, . . . ,R

∗
𝑁
} that minimizes the discrepancy

between the estimated and observed relative orientations,
which can be formulated as:

{R∗𝑢} = arg min
{R𝑢 }

∑︁
(𝑢,𝑣) ∈E

𝜌(𝑑 (R𝑢𝑣 ,R𝑢R⊤𝑣)), (1)

where {R∗𝑢} is the set of optimized global camera orienta-
tions, 𝜌(·) is a robust cost function and 𝑑 (·, ·) is the distance
between two rotation matrices.

In Single Rotation Averaging (SRA) [21], a single ro-
tation is averaged over several observed relative rotations,
which can be formulated as:

R∗𝑢 = arg min
R𝑢

∑︁
𝑣∈N𝑢

𝜌(𝑑 (R𝑢,R𝑢𝑣R𝑣)), (2)

where N𝑢 is the set of neighboring nodes of 𝑢. The MRA
problem can be solved by iteratively solving multiple SRA

problems to adjust each camera’s rotation based on the ori-
entations of its direct neighbors [20]. The overall cost de-
creases at each step of this procedure and therefore con-
verges to a local minimum.

3.1. Overview

The overall pipeline of our framework is depicted in the
Figure 2. For camera orientation initialization in Figure 2
(a), we assign a random rotation to each camera, because
our method is designed to work with random initialization.
We can also use more sophisticated initialization [30, 42]
to enhance the robustness of our method further. In par-
ticular, we choose CleanNet-SPT [30] initialization for all
real-world datasets.

In Figure 2 (b), two neural networks based on Message
Passing Neural Network (MPNN) [16], Θfeat and Θstate, ex-
tract local features {f𝑢, f𝑢𝑣} and initialize the hidden state
{h0

𝑢, h0
𝑢𝑣} of each node and edge in the view-graph, which

is introduced in Section 3.2.1 and Section 3.2.2.
Figure 2 (c) is the iterative optimization explained in

Section 3.2.3, where we compute an SRA cost {𝑑𝑡𝑢} at each
node and {𝑑𝑡𝑢𝑣} at each edge from the current result at the
𝑡-th iteration. Then, an MPNN Θcost extracts the cost fea-
ture {C𝑡

𝑢,C𝑡
𝑢𝑣} from the cost graph {𝑑𝑡𝑢, 𝑑𝑡𝑢𝑣}. The graph

updater receives the cost features {C𝑡
𝑢,C𝑡

𝑢𝑣}, the graph fea-
tures {f𝑢, f𝑢𝑣}, and the previous hidden states {h𝑡−1

𝑢 , h𝑡−1
𝑢𝑣 }

to generate an incremental update {ΔR𝑡 } to minimize the
cost graph.

After several iterations, the global camera orientation
converges to an optimized solution as Figure 2 (d). The
Algorithm 1 demonstrate the pipeline of RAGO without al-
ternative optimization mentioned in Section 3.

15789

3.2. Rotation Averaging Graph Optimizer(RAGO)

3.2.1 Graph Feature Extraction

We use a Message Passing Neural Network [16] (MPNN)
Θfeat with one Edge Convolution layer as the backbone to
extract the node feature {f𝑢} and edge feature {f𝑢𝑣} of the
input view-graph. We replace camera orientations on nodes
with zero vectors and only extract features from observed
relative orientations on edges. Consider an edge 𝑒𝑢𝑣 with a
feature f𝑢𝑣 connecting nodes 𝑢 and 𝑣, where the node fea-
ture is denoted by f𝑢 and f𝑣 . At each Edge Convolution
layer, the node and edge features are updated by aggregat-
ing their neighbors’ information and then passed to the next
layer. To update the edge feature, Edge Convolution con-
catenates the node feature and edge feature as [f𝑢, f𝑣 , f𝑢𝑣].
Then the concatenated feature is passed through a 3-layer
Multi-layered Linear Perception (MLP) Φedge to generate
the updated edge feature f ′𝑢𝑣 . A node MLP Φnode then up-
dates the node feature f ′𝑢 by aggregating the adjacent up-
dated edge features. The structure inside an Edge Convolu-
tion is as follows:

f
′
𝑢𝑣 = Φedge ([f𝑢, f𝑣 , f𝑢𝑣]),
f
′
𝑢 = Φnode (mean({f′𝑢𝑣 , 𝑣 ∈ N𝑢})),

(3)

where N𝑢 is the neighbor node set of the node 𝑢. Finally,
we apply a 3-layer MLP to nodes and edges from the final
Edge Convolution layer to get a feature of specified dimen-
sion on both nodes as {f𝑢} and edges as {f𝑢𝑣}. Please refer
to the supplementary material for more details.

3.2.2 Hidden state Initialization

The Gated Recurrent Unit (GRU) module in our graph up-
dater introduced in Section 3.2.3 requires a hidden state
for each node and edge in the view-graph to utilize tem-
poral information during iteration. We generate the initial
hidden states {h0

𝑢} on nodes and {h0
𝑢𝑣} on edges by pass-

ing the view-graph to another MPNN Θstate, which has the
same structure and input as Θfeat. Finally, The hidden states
{h0

𝑢, h0
𝑢𝑣} is mapped to (−1, 1) by the tanh function. Simi-

lar to the graph feature extraction, the orientations on nodes
are replaced with zeros vectors.

3.2.3 Iterative optimization

SRA Cost Graph Construction: At the heart of our pro-
posed framework is the construction of the cost graph. Here
we define a cost on each node and each edge.

Conventional optimization-based methods for MRA usu-
ally use Equation 1 as the objective function. However,
it is difficult to enforce the minimization of this objective
function in learning-based methods. Compared with solv-
ing MRA directly, SRA is a simpler problem and easier to

learn for a neural network. Thus, we decouple the MRA
problem into multiple SRA problems, and compute an SRA
cost for each node as,

𝑑𝑡𝑢 =
1
|N𝑢 |

∑︁
𝑣∈N𝑢

| |R𝑡
𝑢 − R𝑢𝑣R𝑡

𝑣 | |1, (4)

where | |.| |1 is the L1 norm, N𝑢 is the neighbor node set of
node 𝑢.

Outlier rejection during optimization is non-trivial too.
Previously, many methods reweight the edge during opti-
mization. We find that reweighting the edge makes train-
ing unstable. In contrast, we introduce a relaxing param-
eter R𝑡

𝑢𝑣 on each edge to mitigate the influence of outliers
and noisy orientations during optimization. In particular,
for each input relative orientation R𝑢𝑣 , we compute the es-
timated relative orientation from global camera orientations
as R𝑡

𝑢R𝑡⊤
𝑣 . We then estimate a rectified relative orientation

R𝑡
𝑢𝑣 that is close to both R𝑢𝑣 and R𝑡

𝑢R𝑡⊤
𝑣 . If a measurement

R𝑢𝑣 is an outlier, the rectified rotation R𝑡
𝑢𝑣 will be far from

the input rotation R𝑢𝑣 . The SRA cost function on the edge
is then defined as:

𝑑𝑡𝑢𝑣 = | |R𝑡
𝑢𝑣 − R𝑡

𝑢R𝑡⊤
𝑣 | |1 + ||R𝑡

𝑢𝑣 − R𝑢𝑣 | |1. (5)

Finally, an MPNN Θcost with three Edge Convolution
layers extracts cost features {C𝑡 } from the cost graph {𝑑𝑡 }.
The cost feature at a node or edge has information on all of
its 3-order neighbors, because it is updated three times by
the Edge Convolutions, which leads to better convergence
in our iterative optimization. Notice that the choice of dis-
tance 𝑑 (·, ·) and robust functions 𝜌(·) is trivial in RAGO
since the cost eventually maps to a feature space.
Recurrent Graph Updater: Our graph updater includes
two GRUs [8] to update the global camera orientations on
the nodes and the rectified relative orientations on edges,
respectively. The GRUs can efficiently utilize the informa-
tion in the previous iteration steps for better optimization.
We concatenate the current cost feature on the node (edge)
C𝑡 , current orientations R𝑡 , and the graph local feature f to
create an input I𝑡 = [C𝑡 ,R𝑡 , f] for each iteration. GRUs
receive previous hidden states {h𝑡−1} and the current input
{I𝑡 }, then outputs the current hidden states {h𝑡 }. Then, the
incremental update rotation ΔR𝑡 is predicted from the hid-
den state {h𝑡 } by an MLP:

h𝑡 = GRU(h𝑡−1, I𝑡),
ΔR𝑡 = Φ(h𝑡).

(6)

The estimated and rectified orientations on nodes and
edges are then updated as:

R𝑡+1
𝑢 = R𝑡

𝑢ΔR𝑡
𝑢, R𝑡+1

𝑢𝑣 = R𝑡
𝑢𝑣ΔR𝑡

𝑢𝑣 . (7)

With this rotation averaging graph optimizer, starting
from an initial guess, the orientations on the view-graph are

15790

𝑡𝑒 times

Graph

Updater

Δ𝑹𝑖𝑗
𝑡

ℎ𝑖𝑗
𝑡+1ℎ𝑖𝑗

𝑡

𝐼𝑖𝑗
𝑡

𝑡𝑛 times

Graph

Updater

Δ𝑹𝑖
𝑡

ℎ𝑖
𝑡+1ℎ𝑖

𝑡

𝐼𝑖
𝑡

𝑡𝑔 times

Figure 3. Alternative Optimization. RAGO first refines the relative
orientations for 𝑡𝑒 times, and then optimizes the estimated camera
orientations for 𝑡𝑛 times. The orientations on edges and nodes will
iterative 𝑡𝑒 × 𝑡𝑔 and 𝑡𝑛 × 𝑡𝑔 times in total, respectively.

refined by the optimization iterations and eventually con-
verge to optimized camera orientations and relative orienta-
tions, R∗𝑢 ← R𝑡

𝑢, R∗𝑢𝑣 ← R𝑡
𝑢𝑣 .

3.2.4 Alternative Optimization

Although we can optimize the variables on nodes and
edges simultaneously, we find that the rectified relative rota-
tion converges faster than the estimated camera orientation.
Thus, as shown in the Figure 3, we iteratively optimize edge
and node in turns. For all of our experiments, we fix the
number of iterations for graph optimization 𝑡𝑔, edge opti-
mization 𝑡𝑒, and node optimization 𝑡𝑛 during training.

3.3. Training Loss

We train our graph optimizer in a supervised manner
with ground-truth camera orientations. Different from the
previous learning-based methods [30, 42], we do not define
a loss on the absolute camera rotation to enforce a unique
result. We only use ground-truth relative orientations to su-
pervise our graph optimizer:

Lopt =
1
|E |

𝑇𝑛∑︁
𝑖=1

∑︁
(𝑢,𝑣) ∈E

𝛾𝑇𝑛−𝑖 | |R𝑖
𝑢R𝑖⊤

𝑣 − R̄𝑢𝑣 | |1+

1
|E |

𝑇𝑒∑︁
𝑖=1

∑︁
(𝑢,𝑣) ∈E

𝛾𝑇𝑒−𝑖 | |R𝑖
𝑢𝑣 − R̄𝑢𝑣 | |1,

(8)

where R̄𝑢𝑣 is the ground truth relative orientation, 𝛾 is a
discounting factor and 𝑇𝑛 and 𝑇𝑒 are the total number of
optimization iterations for nodes and edges, where 𝑇𝑒 = 𝑡𝑔×
𝑡𝑒, and 𝑇𝑛 = 𝑡𝑔 × 𝑡𝑛.

4. Experiments
Synthetic dataset: We evaluate on the public synthetic
dataset [30]. This dataset is generated randomly with care-
fully designed noise and outlier distributions resembling
real-world data. Generally speaking, a synthetic view-graph

Algorithm 1: RAGO Inference
Input : G = {V , E}, {R𝑢𝑣 } | (𝑢, 𝑣) ∈ E
Output: Global absolute rotations R𝑢 for 𝑢 ∈ V
Initialization:

1 𝑅1
𝑢 ← rand(𝑆𝑂 (3)) , ∀𝑢 ∈ V ⊲ Set initial to a random rotation

2 𝑅1
𝑢𝑣 ← R1, ∀𝑢𝑣 ∈ E ⊲ Set initial to identity matrix

3 {f } ← Θfeat (R𝑢𝑣) ⊲ Extract feature from relative rotations
4 {h0 } ← Θstate (R𝑢𝑣) ⊲ Initialize hidden state for GRU

Iterative Optimization:
5 𝑡 ← 1

while (𝑡 ≤ 𝑇) do
Building Cost Graph:

6 {d𝑡
𝑢 } ← Equation 4 ⊲ Computing SRA cost

7 {d𝑡
𝑢𝑣 } ← Equation 5 ⊲ Computing edge cost

8 {C𝑡 } ← Θcost ({d𝑡 }) ⊲ Extracting cost feature

Updating Rotation:
9 I𝑡 = [C𝑡 , R𝑡 , f] ⊲ Creating input feature

10 {ΔR𝑡 }, {h𝑡 } ← Equation 6 ⊲ Computing updating rotation
11 R𝑡+1

𝑢 = R𝑡
𝑢ΔR𝑡

𝑢 ⊲ Updating camera rotation
12 R𝑡+1

𝑢𝑣 = R𝑡
𝑢𝑣ΔR𝑡

𝑢𝑣 ⊲ Updating rectification matrices
13 𝑡 ← 𝑡 + 1

end

is generated by the following steps: 1) The number of nodes
is sampled uniformly between 250 and 1000, and the orien-
tation on each node is generated randomly on a horizontal
plane. 2) Edges indicating relative rotations are randomly
generated by the Erdős–Rényi model. The number of edges
is set to [10% − 30%] of all possible pairs. 3) The relative
orientations are corrupted by a Gaussian noise with a stan-
dard deviation 𝜎 uniformly sampled in the range [5◦−30◦].
4) Finally, [0% − 30%] of edges in the view-graph are re-
placed by random orientations as outliers. Similar to Neu-
RoRA [30], we generate 1, 000 view-graphs for training,
100 for validation, and 100 for testing. The parameters that
yield the minimum validation loss are kept for testing.

Real-world datasets: We also evaluate on the real-world
datasets 1DSfM [41] and YFCC100 [22]. The 1DSfM con-
tains 14 outdoor scenes with ground-truth camera poses and
relative orientations computed by Bundler [32]. Only the
cameras with ground-truth orientations are used for train-
ing and testing. The YFCC100 dataset consists of internet
images at 72 city-scale scenes. We use the author’s recon-
structed camera poses as ground-truth and use relative ori-
entations by COLMAP [32] provided in MSP [42] for train-
ing and testing. We train and test our method on the 1DSfM
dataset in a leave-one-out manner. The YFCC100 dataset
is split into two sets, one for training (58 scenes) while
the other for testing (14 scenes). To avoid overfitting, we
randomly drop 20% edges of the view-graph during train-
ing. Due to the limitation of the training sample, we use
CleanNet-SPT [30] for global camera orientation initializa-
tion during training and testing on 1DSfM and YFCC100.

15791

Method 𝑡 = 1 𝑡 = 5 opt. Converge
mn md mn md mn md Y/N

Ours 4.03 2.41 0.66 0.20 0.24 0.04 Y
NeuRoRA [30] - - - - 1.35 0.65 Y
Chatterjee [6] - - - - 2.20 1.30 Y
Shonan [13] - - - - 2.43 1.58 Y
MAKS [26] - - - - 2.64 1.40 Y
Wang [39] - - - - 2.77 1.40 Y
Arrigoni [5] - - - - 2.92 1.42 Y
Weiszfeld [20] - - - - 3.35 1.02 Y
with GRU 4.03 2.41 0.66 0.20 0.24 0.04 Y
w/o GRU 3.31 2.18 0.75 0.26 0.46 0.17 N
SRA Cost 4.03 2.41 0.66 0.20 0.24 0.04 Y
Deg. Met. 4.38 2.99 0.48 0.13 0.28 0.06 Y
Null Vec. 4.40 3.71 1.09 0.46 0.65 0.32 Y
MRA Cost 6.65 4.23 3.95 2.31 3.80 2.22 N
3 Edge Conv 4.03 2.41 0.66 0.20 0.24 0.04 Y
2 Edge Conv 4.37 2.62 0.68 0.21 0.41 0.11 Y
1 Edge Conv 7.15 4.05 1.39 0.58 0.71 0.25 Y
Random Init. 4.03 2.41 0.66 0.20 0.24 0.04 Y
Rand. SPT 3.24 1.84 0.44 0.14 0.27 0.06 Y
Clean. SPT 2.74 1.44 0.34 0.12 0.23 0.04 Y

Table 1. The results of comparison and ablation study on the syn-
thetic dataset. We mark the final results of various MRA meth-
ods [5, 6, 13, 20, 26, 30, 39] as opt. The average mean(mn) and
median(md) angular errors on the view-graphs in the test set are
reported. The entries with the best performance are bolded. The
settings used in the proposed model are underlined.

Comparison: We compare our method with conventional
optimized-based methods, including Chatterjee et al. [6],
MPLS [33], Arrigoni et al. [5], Wang et al. [39], Weiszfeld
[20], Shonan [13], MAKS [26] and state-of-art deep learn-
ing based methods, including NeuRoRA [30], MSP [42].
We use a publicly available evaluation script [6] to com-
pare predicted absolute camera orientations and ground-
truth camera orientations in terms of mean(mn) and me-
dian(md) angular errors. Notice that RAGO does not re-
solve the gauge ambiguity. The output camera rotations
need to align with the ground truth to evaluate the accuracy.
implementation details: Our approach is implemented in
Pytorch with an Nvidia V100 GPU. The model is trained
with a adamW [25] optimizer (𝛽1 = 0.9, 𝛽1 = 0.999). The
training runs for 20, 000 epochs started with a learning rate
1×10−3. After 100 epochs, the learning rate decay exponen-
tially by 0.999 for each epoch. The 𝛾 defined in Section 3.3
is set as 0.8 for all experiments. During Training, we set 𝑡𝑔
to 3, 𝑡𝑒 to 1, and 𝑡𝑛 to 4. We empirically terminate it when
𝑡𝑔 = 5 during testing. The channel number of feature and
hidden state is 48. We use the Orth6D rotation representa-
tion proposed in [44]. Orth6D is a continuous 6D space for
3D rotation matrices, while the quaternion, rotation matrix,
and Euler angles are not contiguous in Euclidean space. In
comparison, Orth6D enables RAGO to use the rotation ma-
trix as the neural network’s direct input and output. Please
refer to supplementary material for more details.

4.1. Synthetic dataset

Table 1 shows the results of our method on the synthetic
dataset. We show the average mean and median angular
errors for all view-graphs in the test set. We report the re-
sults of our method at iteration 1 and 5. The result of it-
eration 20 is marked as opt. We compare our method with
the learning-based approach NeuRoRA [30] and the con-
ventional method Chatterjee [6], Arrigoni [5], Wang [39]
and Weiszfeld [20], Shonan [13] and MAKS [26]. The final
results of these approaches are marked bolded. Although
our results have relatively large error at the 1st iteration,
they outperform the other methods after the 5-th iteration
and finally converge to 0.24 and 0.04 in mean and median
angular error. Figure 1 shows the mean error during iter-
ative optimization, indicating fast convergence and signifi-
cantly improved accuracy compared with conventional and
learning-based methods.

4.2. Ablation study

To understand the different components of our method,
we conduct an ablation study on the synthetic dataset, with
results summarized in Table 1.
GRU Module: To see the effectiveness of utilizing the his-
tory information during optimization, we replace the GRU
module with a 6-layers MLP. The errors also reduce rapidly
in the first several iterations, but the results eventually di-
verge, yielding a poorer accuracy.
Different Metrics on Cost Graph: To evaluate the effec-
tiveness of different cost functions in the cost graph, we
experiment the cost defined in Section 3.2.3 with angular
degree distance, MRA cost, and null vector. For angular
degree distance cost, we substitute angular degree error for
L1 norm. For MRA cost, we maintain the cost constant on
edge but substitute the cost on node with the cost function of
MRA defined as Equation 1. Finally, to assess the efficacy
of the cost graph, we substitute a zero vector as a null vector
for all costs on the graph. As shown on Table 1, the model
with the angular degree metrics has results as the proposed
model. Although the cost graph with the null vector has in-
ferior results than the proposed model, it still outperforms
the baselines due to iterative optimization and temporal in-
formation. The result drops dramatically, if we use MRA
cost because it is evaluated on the whole view-graph, mak-
ing it hard for the neural network to learn. This comparison
demonstrates the advantages of solving MRA through solv-
ing multiple SRA problems.
Number of Edge Conv: As introduced in Section 3.2.1, At
each Edge Convolution layer, the node and edge features are
updated by aggregating the neighbors’ information and then
passed to the next layer. Thus, the number of layers of Edge
Convolution layer will affect the receptive field of each en-
tity on the view graph. To demonstrate the effectiveness of
the size of the receptive field, We train 3 models with dif-

15792

Datasets Chatterjee [6] Weiszfeld [20] NeuRoRA [30] MPLS [33] MSP [42] Ours
#image #edge Names mn md mn md mn md mn md mn md mn md

577 59.5% Alamo 4.2 1.1 4.9 1.4 4.94 1.16 3.44 1.16 2.89 1.07 2.82 0.88
227 66.8% Ellis Island 2.8 0.5 4.4 1.0 2.59 0.64 2.61 0.88 1.88 0.83 1.74 0.46
677 17.5% Gendarmenmarkt 37.6 7.7 29.4 9.6 4.51 2.94 44.9 8.0 6.29 3.69 5.24 2.68
341 30.7% Madrid Metropolis 6.9 1.2 7.5 2.7 2.55 1.13 4.65 1.26 2.96 1.09 3.05 1.03
450 46.8% Montreal Notre Dame 1.5 0.5 2.1 0.7 1.2 0.6 1.04 0.51 0.91 0.5 0.86 0.46
338 39.5% Piazza del Popolo 4 0.8 4.8 1.3 3.05 0.79 3.73 1.93 2.68 0.76 1.91 0.63

1084 10.9% Roman Forum 3.1 1.5 4.8 1.8 2.39 1.31 2.62 1.37 2.04 1.19 2.55 1.10
472 18.5% Tower of London 3.9 2.4 4.7 2.9 2.63 1.46 3.16 2.2 2.55 1.25 2.51 1.20

5058 4.6% Trafalgar 3.5 2 15.6 11.3 5.33 2.25 - Out of Memory 2.23 1.53
789 5.9% Union Square 9.3 3.9 40.9 10.3 5.98 2.01 6.54 3.48 4.37 1.85 4.68 1.92
836 24.6% Vienna Cathedral 8.2 1.2 11.7 1.9 3.9 1.5 7.21 2.83 3.91 1.1 6.05 0.89
437 26.5% Yorkminster 3.5 1.6 5.7 2.0 2.52 0.99 2.47 1.45 2.27 0.91 2.18 0.92

2152 10.2% Piccadilly 6.9 2.9 26.4 7.5 4.75 1.91 3.93 1.81 3.63 1.8 2.44 0.58
332 29.3% NYC Library 3 1.3 3.8 2.1 1.9 1.18 2.63 1.24 1.75 1.12 2.02 0.71

Table 2. Comparison of results on the 1DSfM dataset. We compare our method with various SOTA MRA methods. Mean(mn) and
median(md) angular errors on the estimated absolute rotations are compared. The entries with the best performance is bolded, the second
is underlined. Notice that the result of MSP is computed by using additional input, such as image and correspondence.

ferent numbers of Edge Convolution layers in MPNN Θcost.
The models trained with 2 and 3 Edge Convolution layers
have comparable results, while the performance will drop
significantly on the setting with only 1 Edge Convolution
layer. This experiment shows the information from farther
neighbors would be helpful to achieve a better convergence.
Camera Orientation Initialization: To study the effec-
tiveness of different initialization, we train 3 models re-
spectively with: random initialization (Random Init.), ran-
dom spanning tree initialization (Rand. SPT), CleanNet-
SPT initialization (Clean. SPT). For the random spanning
tree initialization, we randomly generate a spanning tree of
the view-graph, then uniformly select a root node to com-
pute propagate an initialization through the spanning tree.
CleanNet-SPT uses an MPNN with 3 Edge Convolution
layers to predict each edge is an outlier or not. Then the
node with the most neighbors would be chosen as the root
node to propagate an initialization through the minimum
spanning tree. The ablation result shows that all three ini-
tialization methods can converge to an optimized solution,
while the models with random SPT and CleanNet-SPT ini-
tialization could converge faster. Notice that RAGO has not
been associated with gauge ambiguity. The strategy of how
to select a root node becomes trivial. Although our method
has similar optimized results with the different approaches
on the synthetic dataset, an appropriate initialization is still
needed for more complicated real-world datasets due to the
limitation of the training samples.

4.3. Results on Real World Dataset

1DSfM: The comparison on the 1DSfM dataset are listed
in Table 2. Notice that MSP [42] uses additional in-
formation as input, e.g. correspondences, while others
only use observed relative orientations as input. Our

method outperforms other methods in median angular er-
ror in most scenes. In terms of mean of angular er-
ror, our approach has the best performance on half of
the scenes and yields comparable results on the remain-
ing ones. Our graph optimizer only performs slightly infe-
rior on Gendarmenmarkt, Vienna Cathedral and
Madrid Metropolis compared with NeuRoRA [30]
with the same input.
YFCC100: The results on YFCC100 dataset are listed
on Table 3. We cite the result from MSP [42] di-
rectly. We compare our graph optimizer with several
MRA methods. Our method outperforms previous meth-
ods in most scenes in terms of mean of angular error ex-
cept Florence cathedral side because YFCC100
contains more view-graphs for training compared with
1DSfM. NeuRoRA produces large mean and median error
on colosseum exterior, while ours could still opti-
mize to a strong result. MSP [42] has a slightly better result
on statue of liberty 1 compared with ours due to
additional input and robust global camera initialization.

4.4. Robust Check

This experiment shows the generalization capacity of the
RAGO. To generate the synthetic datasets, we use the con-
figuration of (|V|, |E |, 𝜎, 𝑜) = (600, 30%, 15◦, 15%) as the
default setting. To check the individual effects of different
sensor settings, we generate some synthetic datasets vary-
ing: 1) the number of the cameras |V|, 2) the percentage
of the edges |E |, 3) std of the edge error 𝜎 and 4) the per-
centage of outlier edge 𝑜. RAGO is then trained on one of
such datasets and evaluated on the others. Each dataset con-
sists of 1, 000 view-graphs for training, 100 for testing.The
results of the robustness check as shown in Table 4. We
report the average mean and median angular error on the

15793

Datasets Chatterjee [6] NeuRoRA [30]
NeuRoRA [30]

+ MSP Refine. [42] MSP [42] Ours

#image #edges Names mn md mn md mn md mn md mn md
1881 4.2% colosseum exterior 7.21 4.16 25.09 2.48 22.81 3.06 2.7 1.66 1.97 1.35
228 28.2% piazza san marco 2.31 1.2 8.08 4.01 3.53 2.28 2.02 1.55 2.24 1.12
163 66.6% big ben 2 14.56 2.96 7.56 2.36 5.58 1.38 5.77 1.43 3.42 1.21
182 41.7% palazzo pubblico 5.69 1.91 3.58 1.58 3.49 1.21 3.22 1.4 2.16 0.91
624 12.4% louvre 7.69 2.69 8.55 4.82 6.48 1.47 5.04 0.9 3.47 0.90
188 59.5% big ben 1 12.57 2.59 5.22 2.60 9.01 2.60 3.42 1 2.97 0.94
104 63.2% petra jordan 8.68 1.76 5.15 3.19 4.19 0.75 2.85 0.5 2.76 0.81
100 53.7% statue of liberty 2 10.06 4.17 5.80 2.23 4.90 1.99 2.93 1.2 2.54 1.02
269 23.1% st peters basilica interior 2 7.43 2.72 6.24 2.44 4.91 1.08 4.63 1.43 3.33 0.92
90 66.0% statue of liberty 1 6.79 2.45 5.71 2.34 4.43 1.99 3.22 1.35 3.44 1.55

103 55.9% florence cathedral side 8.56 3.46 2.87 1.19 2.91 0.78 1.55 0.62 1.75 1.57
136 43.6% palace of versailles chapel 13 2.76 2.98 0.96 5.01 1.13 3.12 0.64 2.74 0.61
496 14.6% notre dame rosary window 7.41 1.94 7.06 3.83 4.41 1.67 2.79 0.96 2.08 0.80
745 10.8% lincoln memorial statue 8.08 1.54 2.87 1.48 3.74 1.19 1.95 0.96 1.87 1.21

Table 3. Comparison of results on the YFCC100 dataset. We compare our method with various SOTA MRA methods, mean(mn) and
median(md) angular errors on the estimated absolute rotations are compared. The entries with the best performance are bolded. The
second is underlined. Notice that the result of MSP is computed by using additional input, such as image and correspondence.

Robust. Eval. Train. mn md Train. mn md Time

|V|
300

600
0.27 0.04 300 0.24 0.04 0.005

600 0.15 0.03 600 - - 0.007
1500 0.38 0.16 1500 0.24 0.09 0.011

|E |
3%

30%
2.98 0.47 3% 1.75 0.32 0.006

30% 0.15 0.03 30% - - 0.007
60% 0.35 0.18 60% 0.14 0.04 0.015

𝜎

5◦
15◦

0.13 0.03 5◦ 0.17 0.05 0.008
15◦ 0.15 0.03 15◦ - - 0.007
55◦ 0.57 0.33 55◦ 0.35 0.17 0.008

𝑜

3%
15%

0.06 0.04 3% 0.07 0.04 0.011
15% 0.15 0.03 15% - - 0.007
60% 0.82 0.13 60% 0.53 0.12 0.011

Table 4. The results of robustness check on the different synthetic
datasets. We compare the results of our models trained on the
synthetic datasets with the different settings. We report the result
in terms of average mean and median angular error. We show the
runtime of our graph optimizer with different kinds of view-graph
in terms of second per iteration.

testing set. For the column from 3 to 5, We train RAGO
on the default synthetic dataset and evaluate it under dif-
ferent configurations. The RAGO training and testing re-
sults under the synthetic dataset of the same settings are
shown from column 6 to 8. The experiments demonstrate
that RAGO generalizes well across dataset changes except
when the model is trained on the sparse view-graph.

4.5. Time-Space Complexity and Model Size

RAGO only contains appropriately 0.396M parameters
and can be easily deployed for real-world applications. We
deploy our method on a Nvidia V100 GPU and evaluate it
using view-graphs with different of nodes and edges. The

average running time for each iteration during the optimiza-
tion is shown on Table 4. For the view-graph with 600
nodes and 30% edges, RAGO only takes 0.007 seconds for
each iteration. It uses 0.015 seconds per iteration on the
view-graph with 600 nodes and 60% edges. The time and
space complexity of our graph optimizer is 𝑂 (|E | + |V|).
The running time and memory consumption of our method
increases linearly as the size of the input view-graph in-
creases.

5. Conclusion
We propose a learning-to-optimize graph-based opti-

mizer (RAGO) for the Multiple Rotation Averaging (MRA)
problem. RAGO solves the original MRA by building a
cost graph based on the Single Rotation Averaging (SRA)
objective function to update camera orientations iteratively.
During optimization, the relative orientations are rectified
to handle the outliers and the noises. The Gated Recurrent
Unit (GRU) is employed to exploit temporal information
during iterations. RAGO outperforms previous methods on
synthetic and real-world datasets and is also highly efficient
in running time and memory.
Limitation: RAGO belongs to learning-based methods,
which suffer from cross-domain generalization problems,
e.g., RAGO trained on indoor scenes might work poorly on
outdoor scenes. Furthermore, RAGO is trained in a super-
vised manner, while precise ground truth of real data is hard
to obtain. We leave unsupervised training for future work.
Acknowledgement. This research is supported in part by
the Canada NSERC Discovery project 611664 and the Na-
tional Natural Science Foundation of China (NSFC), under
grants No. 61872067, No. 61720106004 and No. 62102356.

15794

References
[1] Jonas Adler and Ozan Öktem. Solving ill-posed inverse

problems using iterative deep neural networks. Inverse Prob-
lems, 33(12):124007, 2017. 2

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and Zico Kolter. Differentiable con-
vex optimization layers. arXiv preprint arXiv:1910.12430,
2019. 2

[3] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In International
Conference on Machine Learning, pages 136–145. PMLR,
2017. 2

[4] Federica Arrigoni and Andrea Fusiello. Synchronization
problems in computer vision with closed-form solutions. Int.
J. Comput. Vis., 128, 01 2020. 1

[5] F. Arrigoni, B. Rossi, P. Fragneto, and A. Fusiello. Robust
synchronization in so(3) and se(3) via low-rank and sparse
matrix decomposition. Comput. Vis. and Image Underst.,
174:95–113, 2018. 1, 2, 6

[6] Avishek Chatterjee and Venu Madhav Govindu. Efficient and
robust large-scale rotation averaging. Int. Conf. Comput. Vis.,
2013. 1, 2, 6, 7, 8

[7] Yutian Chen, Matthew W Hoffman, Sergio Gómez Col-
menarejo, Misha Denil, Timothy P Lillicrap, Matt Botvinick,
and Nando Freitas. Learning to learn without gradient de-
scent by gradient descent. In International Conference on
Machine Learning, pages 748–756. PMLR, 2017. 2

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 4

[9] Ronald Clark, Michael Bloesch, Jan Czarnowski, Stefan
Leutenegger, and Andrew J Davison. Learning to solve non-
linear least squares for monocular stereo. In Eur. Conf. Com-
put. Vis., pages 284–299, 2018. 2

[10] Ronald Clark, Michael Bloesch, Jan Czarnowski, Stefan
Leutenegger, and Andrew J Davison. Ls-net: Learning to
solve nonlinear least squares for monocular stereo. arXiv
preprint arXiv:1809.02966, 2018. 2, 3

[11] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher.
Discrete-continuous optimization for large-scale structure
from motion. IEEE Conf. Comput. Vis. Pattern Recog., 2011.
2

[12] Zhaopeng Cui and Ping Tan. Global structure-from-motion
by similarity averaging. Int. Conf. Comput. Vis., 2015. 1

[13] Frank Dellaert, David M Rosen, Jing Wu, Robert Mahony,
and Luca Carlone. Shonan rotation averaging: Global op-
timality by surfing 𝑠𝑜(𝑝)̂𝑛. In Eur. Conf. Comput. Vis.
Springer, 2020. 2, 6

[14] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell.,
40(3), 2017. 1

[15] Johan Fredriksson and Carl Olsson. Simultaneous multiple
rotation averaging using lagrangian duality. Asian Conf. on
Comput. Vis., 2012. 2

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In Int. Conf. on Machine Learning,
pages 1263–1272. PMLR, 2017. 2, 3, 4

[17] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas,
and Tolga Birdal. Learning multiview 3d point cloud regis-
tration. IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[18] Venu Madhav Govindu. Combining two-view constraints for
motion estimation. IEEE Conf. Comput. Vis. Pattern Recog.,
2, 2001. 2

[19] Venu Madhav Govindu. Lie-algebraic averaging for glob-
ally consistent motion estimation. IEEE Conf. Comput. Vis.
Pattern Recog., 1, 2004. 2

[20] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1
rotation averaging using the weiszfeld algorithm. IEEE Conf.
Comput. Vis. Pattern Recog., 2011. 1, 2, 3, 6, 7

[21] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong
Li. Rotation averaging. Int. J. Comput. Vis., 103(3):267–305,
2013. 1, 3

[22] Jared Heinly, Johannes Lutz Schönberger, Enrique Dunn,
and Jan-Michael Frahm. Reconstructing the World* in
Six Days *(As Captured by the Yahoo 100 Million Image
Dataset). IEEE Conf. Comput. Vis. Pattern Recog., 2015. 5

[23] Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie,
Leonidas J Guibas, and Qixing Huang. Learning transfor-
mation synchronization. IEEE Conf. Comput. Vis. Pattern
Recog., 2019. 2

[24] Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A global linear
method for camera pose registration. Int. Conf. Comput. Vis.,
2013. 1

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[26] Gabriel Moreira, Manuel Marques, and João Paulo Costeira.
Rotation averaging in a split second: A primal-dual method
and a closed-form for cycle graphs. In Int. Conf. Comput.
Vis., pages 5452–5460, 2021. 2, 6

[27] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE Trans. Robotics, 31(5):1147–1163, 2015. 1

[28] Onur Özyesil, V. Voroninski, R. Basri, and A. Singer. A
survey of structure from motion * . Acta Numerica, 26:305
– 364, 2017. 1

[29] Alvaro Parra, Shin-Fang Chng, Tat-Jun Chin, Anders Eriks-
son, and Ian Reid. Rotation coordinate descent for fast glob-
ally optimal rotation averaging. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 4298–4307, 2021. 2

[30] Pulak Purkait, Tat-Jun Chin, and Ian Reid. Neurora: Neural
robust rotation averaging. Eur. Conf. Comput. Vis., 2020. 1,
2, 3, 5, 6, 7, 8

[31] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. IEEE Conf. Comput. Vis. Pattern Recog.,
2017. 2

[32] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. IEEE Conf. Comput. Vis.
Pattern Recog., 2016. 5

15795

[33] Yunpeng Shi and G. Lerman. Message passing least squares
framework and its application to rotation synchronization.
Int. Conf. on Machine Learning, 2020. 2, 6, 7

[34] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-
justment network. arXiv preprint arXiv:1806.04807, 2018.
2, 3

[35] Chengzhou Tang, Oliver Wang, and Ping Tan. Gslam:
Initialization-robust monocular visual slam via global
structure-from-motion. Int. Conf. on 3D Vision, 2017. 1

[36] Roberto Tron and René Vidal. Distributed image-based 3-d
localization of camera sensor networks. Int. Conf. on Deci-
sion and Control, 2009. 1

[37] Roberto Tron, René Vidal, and Andreas Terzis. Distributed
pose averaging in camera networks via consensus on se (3).
Second ACM/IEEE International Conference on Distributed
Smart Cameras, 2008. 1

[38] Roberto Tron, Xiaowei Zhou, and Kostas Daniilidis. A sur-
vey on rotation optimization in structure from motion. IEEE
Conf. on Comput. Vis. and Pattern Recog. Workshops, 2016.
1

[39] Lanhui Wang and Amit Singer. Exact and stable recovery of
rotations for robust synchronization. Information and Infer-
ence: A Journal of the IMA, 2(2):145–193, 2013. 1, 6

[40] Lanhui Wang and Amit Singer. Exact and stable recovery of
rotations for robust synchronization. Information and Infer-
ence: A Journal of the IMA, 2(2):145–193, 2013. 1, 2

[41] Kyle Wilson and Noah Snavely. Robust global translations
with 1dsfm. Eur. Conf. Comput. Vis., 2014. 5

[42] Luwei Yang, Heng Li, Jamal Ahmed Rahim, Zhaopeng Cui,
and Ping Tan. End-to-end rotation averaging with multi-
source propagation. IEEE Conf. Comput. Vis. Pattern Recog.,
pages 11774–11783, June 2021. 1, 2, 3, 5, 6, 7, 8

[43] Zi Jian Yew and Gim Hee Lee. Learning iterative robust
transformation synchronization. In Int. Conf. on 3D Vision,
pages 1206–1215. IEEE, 2021. 2

[44] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. IEEE Conf. Comput. Vis. Pattern Recog., 2019. 6

15796

