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Abstract

In the paradigm of object detection, the decision head is
an important part, which affects detection performance sig-
nificantly. Yet how to design a high-performance decision
head remains to be an open issue. In this paper, we pro-
pose a novel approach to combine decision trees and deep
neural networks in an end-to-end learning manner for ob-
ject detection. First, we disentangle the decision choices
and prediction values by plugging soft decision trees into
neural networks. To facilitate effective learning, we pro-
pose randomized decision routing with node selective and
associative losses, which can boost the feature represen-
tative learning and network decision simultaneously. Sec-
ond, we develop the decision head for object detection with
narrow branches to generate the routing probabilities and
masks, for the purpose of obtaining divergent decisions
from different nodes. We name this approach as the ran-
domized decision routing for object detection, abbreviated
as R(Det)2. Experiments on MS-COCO dataset demon-
strate that R(Det)2 is effective to improve the detection per-
formance. Equipped with existing detectors, it achieves
1.4 ∼ 3.6% AP improvement.

1. Introduction

Object detection, which aims to recognize and localize
the objects of interest in images, is a fundamental yet chal-
lenging task in computer vision. It is important for vari-
ous applications, such as video surveillance, autonomous
driving, and robotics vision. Due to its practical impor-
tance, object detection has attracted significant attention in
the community. In recent decades, deep neural networks
(DNNs) have brought significant progress into object de-
tection. Typically, existing deep learning-based detection
methods include one-stage detectors [22, 25, 31], two-stage
detectors [1, 7, 16, 30, 33], end-to-end detectors [3, 39, 51].

Generally, current deep architectures constructed for ob-
ject detection involve two components. One is the backbone
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Figure 1. Overview of the proposed approach. (a) Inspired by
decision trees, we disentangle the decision choices and predictive
values by introducing tree structure for decision head in object de-
tection. With multi-node prediction, we can explore more diverse
cues. (b) We use the soft probability to denote decision choices for
different routes of nodes. The overall decision is the weighted sum
of prediction values from different nodes. Specially, we propose
randomized decision routing to learn divergent decisions from dif-
ferent nodes for overall performance improvement.

for feature extraction, which can be pre-trained with large-
scale visual recognition datasets such as ImageNet [35].
The other is the decision head, which produces the pre-
dictions for computing losses or inferring detection boxes.
Collaborated with region sampling, object detection can be
converted into a multitask learning issue, where the decision
tasks include classification and bounding box (bbox) regres-
sion. For existing detection networks, the decision head is
simply constructed by sequentially connecting several con-
volution or fully-connected layers. For one-stage detectors,
the decision head is commonly constructed by stacking sev-
eral convolutional layers. The decision head for region pro-
posal in two-stage detectors is similar. For two-stage detec-
tors, the region-wise decision in R-CNN stage is typically
implemented with 2 fully-connected layers. Since the deci-
sion head is quite important for high-performance detectors,
there are recently devoted researches [8, 12, 37, 43]. How-
ever, most of these works focus on task disentanglement and
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task-aware learning, leaving the universal decision mecha-
nism far from exploitation.

Considering that the features from DNNs show great
potential for high-level vision tasks, the simple design of
widely-adopted single-node decision might impede the per-
formance of object detection. A natural question arises: is
single-node prediction good enough for feature exploration
in object detection? To answer this, we focus on novel deci-
sion mechanism and propose an approach to introduce soft
decision trees into object detection. As in Figure 1, we in-
tegrate soft decision trees to disentangle the routing choices
and prediction values. To jointly learn the soft decision trees
and neural networks in an end-to-end manner, we propose
the randomized decision routing with the combination of
so-called selective loss and associate loss. Experiments val-
idate the effectiveness of the proposed approach and address
the necessity of introducing multi-node predictions. Since
our work is mainly on Randomized Decision routing for ob-
ject Detection, we name it as R(Det)2. From the perspective
of machine learning, our R(Det)2 is an attempt to bridge the
neural networks and decision trees – two mainstream algo-
rithms, which would bring insights into future research.

The contributions of this paper are three-fold.
• We propose to disentangle the route choices and pre-

diction values for multi-node decision in object detec-
tion. In particular, we propose randomized decision
routing for the end-to-end joint learning of the tree-
based decision head.

• We construct a novel decision head for object detec-
tion, which introduces routing probabilities and masks
to generate divergent decisions from multiple nodes for
the overall decision boosting.

• Extensive experiments validate the effectiveness of our
proposed R(Det)2. In particular, R(Det)2 achieves over
3.6% of AP improvement when equipped with Faster
R-CNN. It improves the detection accuracy of large
objects by a large margin as well.

2. Related work
One-stage detectors. Overfeat [36] predicts the deci-

sion values for classification and localization directly with
convolutional feature maps. YOLO [31, 32] regresses the
object bounds and category probabilities directly based on
image gridding. SSD [25] improves the one-stage detection
with various scales of multilayer features. Retina Net [22]
proposes the focal loss to tackle the foreground-background
imbalance issue. Besides, keypoints-based one-stage de-
tectors [5, 11, 20, 49] have been extensively studied. Cor-
nerNet [20] generates the heatmaps of top-left and bottom-
right corners for detection. CenterNet [11] uses a triplet of
keypoints for representation with additional center points.
Moreover, FCOS [40] and ATSS [47] introduce centerness
branch for anchor-free detection. Other methods delve into

sample assignment strategies [2, 14, 19, 28, 47, 50].
Two-stage detectors. R-CNN [16], Fast R-CNN [15],

Faster R-CNN [33] predict object scores and bounds with
pooled features of proposed regions. R-FCN [7] intro-
duces position-sensitive score maps to share the per-ROI
feature computation. Denet [41] predicts and searches
sparse corner distribution for object bounding. CCNet [29]
connects chained classifiers from multiple stages to reject
background regions. Cascade R-CNN [1] uses sequential
R-CNN stages to progressively refine the detected boxes.
Libra R-CNN [30] mainly tackles the imbalance train-
ing. Grid R-CNN [27] introduces pixel-level grid points
for predicting the object locations. TSD [37] decouples
the predictions for classification and box bounding with
the task-aware disentangled proposals and task-specific fea-
tures. Dynamic R-CNN [46] adjusts the label-assigning IoU
thresholds and regression hyper-parameters to improve the
detection quality. Sparse R-CNN [38] learns a fixed set of
sparse candidates for region proposal.

End-to-end detectors. DETR [3] models object detec-
tion as a set prediction issue and solve it with transformer
encoder-decoder architecture. It inspires the researches on
transformer-based detection frameworks [9, 10, 24, 39, 51].
Deformable DETR [51] proposes the sparse sampling for
key elements. TSP [39] integrates FCOS and R-CNN head
into set prediction issue for faster convergence.

Decision mechanism. The decision head in object
detection frameworks usually involves multiple computa-
tional layers (i.e., convolution layers, fully-connected lay-
ers and transformer modules). Typically, for one-stage de-
tectors with dense priors [11, 22, 25, 31, 40], stacked con-
volutions are used to obtain features with larger receptive
fields, with separate convolution for classification, local-
ization and other prediction tasks. For the decision in R-
CNN stages [1, 27, 30, 33, 46], stacked fully-connected lay-
ers are common. Double-head R-CNN [43] uses fully-
connected layers for position-insensitive classification and
fully-convolutional layers for position-sensitive localiza-
tion. Dynamic head [8] unifies the scale-, spatial- and task-
aware self-attention modules for multitask decisions.

3. Randomized decision trees
3.1. Soft decision trees

To disentangle the decision choices and prediction val-
ues, we first construct soft decision trees [13] for multiclass
classification and bbox regression in object detection. We
use the soft routing probability ranging from 0 to 1 to repre-
sent the decision choice and facilitate network optimization.

Soft decision tree for classification. For multiclass clas-
sification, the soft decision tree is formulated as:

c =
∑

j∈Nodes

pjcj ,
∑

j∈Nodes

pj = 1 (1)
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where c is the output of the whole classification tree and
cj is the prediction value from each node. pj is the routing
probability for decision choice. It indicates the probabil-
ity of choosing j-th classification node. For all the nodes,∑

j∈Nodes pj = 1. Eqn. 1 shows that c is the weighted sum
of the classification scores from all the nodes. Different
from traditional decision tree, pj is ”soft” ranging from 0
to 1. pj can be obtained in networks by a scalar score with
activations such as Softmax, Sigmoid.

Soft decision tree for regression. For bbox regression,
we formulate the soft decision tree in a similar way as:

b =
∑

j∈Nodes

qjbj ,
∑

j∈Nodes

qj = 1 (2)

where bj is the regression value output from each node j. qj
is the routing probability for the j-th regression node. b is
the output of the tree regressor. Similar to soft classification
tree, the routing probability qj ∈ [0, 1] is “soft”.

Noting that the routing probabilities pj , qj denote deci-
sion choices, which indicates the probability of routing the
j-th node. It can be viewed as decision confidence in test
phase. cj and bj are the prediction values for classifica-
tion and regression tasks attached with the j-th node. Both
the decision choices and prediction values can be easily ob-
tained with neural layers. With soft decision trees, multiple
discriminative and divergent decisions can be obtained with
features from different aspects. To facilitate the discussion,
we restrict the soft decision tree as binary and j ∈ {l, r}.

3.2. Randomized Decision Routing

To learn soft decision trees in neural networks, we pro-
pose randomized decision routing. The motivation is two-
fold. First, in order to obtain a high-performance decision
head with tree structure, we need to avoid the high rele-
vance of multiple predictions from different nodes. It means
that we should differentiate the training to reduce the deci-
sion relevance of different nodes. Second, we also need to
guarantee the decision performance of the whole tree. In
a word, we need to achieve high-performance tree decision
with low-relevant node decisions. To realize this, we pro-
pose the selective loss to supervise the per-node learning
and associative loss to guide the whole-tree optimization.
We then unify the selective and associative loss into a gen-
eral training framework. Since we involve random factors
to model the probability of routing different nodes, we name
this training strategy as randomized decision routing.

To achieve node decisions with low relevance, we first
perform node selection to identify the node with higher op-
timization priority. We then attach the selected node with
a higher routing probability. Oppositely, a lower routing
probability is attached with the remaining node. Divergent
routing probabilities lead to different learning rates for dif-
ferent nodes. Therefore, to diversify the decision of differ-

Figure 2. Illustration on training deep networks with decision
tree head. We propose randomized decision routing which in-
cludes selective and associative losses. The selective loss iden-
tifies the dominant decisive prediction and weights the node loss
accordingly in a randomized way. The associate loss learns the
routing probability by measuring the difference between the fused
output and the ground truth.

ent nodes, we construct the selective loss by setting different
randomized weights for different node losses. As illustrated
in Figure 2-left, the selective losses for classification and
bbox regression are denoted as:

Lcls
s (cl,cr, y) = γc

l L
c
l + γc

rL
c
r

= γc
l L

cls(cl, y) + γc
rL

cls(cr, y)
(3)

Lbbox
s (bl,br, B) = γb

l L
b
l + γb

rL
b
r

= γb
l L

bbox(bl, B) + γb
rL

bbox(br, B)
(4)

where y is the ground truth label and B is the ground truth
for bbox regression. γc

l , γ
c
r are the weights indicating the

probability for selective routing of classification tree. γb
l , γ

b
r

are the weights indicating the probability for selective deci-
sion routing of bbox regression tree.

We leverage random weights to differentiate the node
learning. For classification, we set γc

l , γc
r based on the com-

parison of Lc
l , L

c
r. We set the nodes with lower loss values

with higher random weights. For bbox regression, we set
the weights γb

l , γb
r according to the relative comparison of

ql, qr. For instance, if ql < qr, we restrict γb
l < γb

r . It is
consistent with the intuition that we learn the selective node
with higher priority in a fast way, meanwhile learning the
remaining one in a slow way. Empirically, we sample the
lower weight from U(0.1, 0.3) and the higher weight from
U(0.9, 1.1). This slow-fast randomized manner would ben-
efit the learning of the whole decision head.

Besides of differentiating node decisions, we also need
to ensure the performance of the whole decision tree. That
is, the predictive decision output from the whole tree should
be good. To achieve this, we formulate associative loss
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Figure 3. Decision head for object detection. (a) shows the common decision head. (b) shows R(Det)2-B which disentangles the decision
choice and values by soft decision trees. (c) shows R(Det)2-M which leverages the routing masks to produce the divergent input features
for decision. (d) shows R(Det)2-T which unifies task disentanglement into R(Det)2-based decision head.

based on the fused prediction c, b. The associative loss
can be the same as the original classification or bbox re-
gression loss in form, with the fused prediction as the input.
As illustrated in Figure 2-right, the associative loss for clas-
sification and bbox regression is formulated as:

Lcls
a (c, y) = Lcls (plcl + prcr, y) (5)

Lbbox
a (b, B) = Lbbox (qlbl + qrbr, B) (6)

The routing probabilities and prediction values are simulta-
neously optimized with the associative loss. Specially, the
routing probability which indicates the decision choice is
only supervised by this associative loss, resulting in appro-
priate routing in inference.

The whole loss is formulated as follows:

Lall = λ
(
Lcls
s + Lbbox

s

)
+ (1− λ)

(
Lcls
a + Lbbox

a

)
(7)

where λ ∈ [0, 1] is the coefficient to balance between se-
lective loss and associative loss. It is noteworthy that the
Lcls, Lbbox for computing the selective and associative
loss can be commonly-used loss functions for classifica-
tion (e.g., cross-entropy loss, Focal loss [22]) and bbox re-
gression (e.g., Smooth-L1 loss, IoU loss [34, 42, 45, 48]).
With soft decision trees, we can generate multiple deci-
sions with different visual cues. Moreover, the divergent
learning helps enhance feature representations and suppress
over-optimization, further promote object detection.

4. Decision head for detection
We construct the head with decision trees for object de-

tection. The common-used head of R-CNN detectors [1,17,
21,33] is single-prediction type, as in Figure 3(a). Typically,
two fully-connected (fc) layers are sequentially connected
with region-pooled features, with one additional fc layer for
classification and bbox regression, respectively. In order to
obtain decision values for multiple nodes, we first generate

predictions cl, cr and bl,br with the features output from
the same structure as the common head. We further add
another narrow branch with 1∼2 fc layers to produce the
routing probabilities pl, pr and ql, qr, as illustrated in Fig-
ure 3(b). We record this as the Basic head for randomized
decision routing, as R(Det)2-B. The routing choices and pre-
dictions are disentangled with this basic head structure.

Moreover, we add the routing masks for features before
prediction to increase the divergence of decisions from mul-
tiple nodes. The decision values cl, cr and bl,br are gen-
erated with route-wise masked features. As in Figure 3(c),
we average the batched region-wise features to obtain a sin-
gle context-like vector. Another fc layer with Sigmoid is
imposed on this vector to produce routing masks for differ-
ent nodes. By multiplying the route-wise masks on the last
features before decision, we further diversify the input for
different nodes of decision. The dependence of node de-
cisions can be further reduced. We record this as Masked
head for randomized decision routing, as R(Det)2-M.

Inspired by efforts on disentangling the classification
and localization tasks for detection, we develop another
R(Det)2-T. We separate the last feature computation before
the multitask prediction and unify the task-aware feature
learning into our framework, as in Figure 3(d). Since it is
not the main focus of this work, we have not involved more
complicated task-aware head designs [37, 43, 46]. Yet it is
noteworthy that the proposed R(Det)2 can easily be plugged
into these detectors for performance improvement.

5. Experiments

Datasets. We evaluate our proposed approach on the
large-scale benchmark MS COCO 2017 [23]. Following
common practice, we train detectors on training split with
∼115k images and evaluate them on val split with 5k im-
ages. We also report the results and compare with the state-
of-the-art on COCO test-dev split with 20k images. The
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B M T AP AP50 AP75 APS APM APL

2fc 37.4 58.1 40.4 21.2 41.0 48.1

2fc ✓ 38.8 59.8 41.8 22.3 42.3 50.9
✓ 39.1 60.5 42.3 22.5 43.1 50.5

✓ 38.9 60.2 42.1 23.1 42.1 50.2

4conv ✓ 38.7 59.0 41.9 22.4 42.0 50.4
1fc ✓ 39.2 59.7 42.4 22.8 42.8 51.5

✓ 39.5 59.8 42.9 22.7 43.1 51.7

4conv ✓ 39.3 60.2 42.7 22.5 42.8 51.6
(res) ✓ 40.1 60.8 43.3 23.3 43.5 52.6
1fc ✓ 40.4 61.2 44.1 23.8 43.7 53.0

Table 1. Ablation study on different types with R(Det)2. The
baseline is Faster R-CNN equipped with ResNet-50 backbone. B,
M and T represents R(Det)2-B, R(Det)2-M and R(Det)2-T for de-
cision heads, respectively.

standard mean average precision (AP) across different IoU
thresholds is used as the evaluation metric.

Training details. We implement the proposed R(Det)2

as the plug-in head and integrate it into existing detec-
tors. Our implementation is based on the popular mmde-
tection [4] platform. If not specially noted, the R(Det)2

serves for the decision in R-CNN of two-stage detectors,
as Faster R-CNN [33], Cascade R-CNN [1]. We train the
models with ResNet-50/ResNet-101 [18] backbones with 8
Nvidia TitanX GPUs. The learning rate is set to 0.02 and
the weight decay is 1e-4, with momentum 0.9. The models
for ablation studies are trained with the standard 1× con-
figuration. No data augmentation is used except for stan-
dard horizontal image flipping. We only conduct multiscale
training augmentation for evaluation on COCO test-dev to
compare with the state-of-the-art.

Inference details. It is noteworthy that the randomized
decision routing is only performed in training phase. In
inference, we perform on the single image scale without
specific noticing. Following standard practice, we evaluate
the models with test time augmentation (TTA) as multiscale
testing to compare with the state-of-the-art.

5.1. Ablation study

Effects of components. We first conduct the ablative ex-
periment to evaluate the effects of different components for
R(Det)2 (Table. 1). We integrate the proposed decision head
structure into the R-CNN stage and apply randomized deci-
sion routing for training. We first follow the common set-
ting with 2×1024 fully-connected layers (referred as 2fc) to
generate region-wise features, with decision values for mul-
ticlass classification and bbox regression predicted based on
them. By converting 2fc to R(Det)2-B, we increase the de-
tection AP to 38.8%, yielding 1.4% of improvement. By

Lcls Lbbox AP AP50 AP75 APS APM APL

Baseline 37.4 58.1 40.4 21.2 41.0 48.1

CE S-L1 40.4 61.2 44.1 23.8 43.7 53.0
Focal S-L1 40.5 61.2 44.4 24.2 43.6 52.6
CE IoU 40.9 61.2 44.5 23.9 44.2 53.7
Focal IoU 41.0 61.1 44.5 24.3 44.3 53.7

Table 2. Comparison with different loss functions. The base-
line model is Faster R-CNN with ResNet-50 as the backbone. CE
indicates the cross-entropy loss. Focal indicates the original focal
loss [22]. S-L1 indicates the Smooth-L1 loss. IoU indicates the
loss computed by the negative-log of intersection-over-union [45].

adding routing masks for region-wise features, R(Det)2-M
achieves 39.1% detection AP , 1.7% of improvement. It is
reasonable since the mask multiplying would promote the
decision differences between nodes, leading to the improve-
ment of joint decision. We further replace 2fc with 4×256
convolutional layers with 1 fully-connected layer (referred
as 4conv1fc). The achieved AP increases to 38.7%, 39.2%
and 39.5% with R(Det)2-B, R(Det)2-M, R(Det)2-T, respec-
tively. We further add residual connections between neigh-
boring convolutions for feature enhancement, referred to as
4conv(res)1fc. By integrating 4conv(res)1fc with R(Det)2-
B, we achieve AP of 39.3% and AP75 of 42.7%. By inte-
grating R(Det)2-M, the achieved AP is 40.1% and AP75

is 43.3%. With task disentanglement as R(Det)2-T, we
achieve AP , AP50, AP75 of 40.4%, 61.2% and 44.1%, re-
spectively. Compared to the baseline, the AP , AP50, AP75

is increased by 3.0%, 3.1% and 3.7%, respectively. In par-
ticular, the R(Det)2 significantly improves the detection ac-
curacy on large objects, leading to the APL improvement
by a large margin. Compared with the baseline, we achieve
4.9% of APL improvement ultimately. It verifies that the
features contain much more information to be exploited, es-
pecially for larger objects with high-resolution visual cues.
Our proposed R(Det)2 which produces decisions with mul-
tiple nodes can focus on the evidence from diverse aspects,
leading to significant performance improvement.

Effectiveness with different loss functions. The pro-
posed randomized decision routing can be combined with
any existing classification and localization losses. We con-
duct experiments to evaluate the effectiveness of R(Det)2

with different loss functions(Table 2). When we apply the
Softmax cross-entropy loss for classification and Smooth-
L1 loss for bbox regression, we achieve 40.4% AP , 61.2%
AP50, 44.1% AP75. Compared to baseline Faster R-CNN
with the same losses, we increase the AP , AP50, AP75 by
3.0%, 3.1%, 3.7%, respectively. The AP is slightly higher
with focal loss [22] applying for classification. The detec-
tion AP is further increased with IoU loss [45] applied for
bbox regression. The detection AP reaches 41.0%. Com-
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Backbone AP AP50 AP75 APS APM APL

R50 37.4 58.1 40.4 21.2 41.0 48.1
+R(Det)2 41.0 61.2 44.8 24.6 44.1 53.7

(+3.6) (+3.1) (+4.4) (+3.4) (+3.1) (+5.6)

R50-DCN 41.3 62.4 45.0 24.6 44.9 54.4
+R(Det)2 44.2 64.5 48.3 26.6 47.7 58.6

(+2.9) (+2.1) (+3.3) (+2.0) (+2.8) (+4.2)

R101 39.4 60.1 43.1 22.4 43.7 51.1
+R(Det)2 42.5 62.8 46.3 25.1 46.4 55.7

(+3.1) (+2.7) (+3.2) (+2.7) (+3.7) (+4.8)

R101-DCN 42.7 63.7 46.8 24.9 46.7 56.8
+R(Det)2 45.0 65.4 49.2 27.2 48.8 59.6

(+2.3) (+1.7) (+2.4) (+2.3) (+2.1) (+2.8)

Table 3. Comparison with different backbone networks. R-
50 and R-101 indicates ResNet-50 and ResNet-101, respectively.
R(Det)2 is plugged in Faster R-CNN with various backbones and
achieves consistent performance gains.

pared with the baseline, the AP is increased by 3.6% and
APL is increased by 5.6%. It indicates that the proposed
R(Det)2 performs well with different combinations of loss
functions, which further demonstrates its effectiveness.

Effectiveness on different backbone networks. With
Faster R-CNN as the baseline detector, we conduct the ab-
lative experiment to evaluate the effectiveness of R(Det)2

on various backbones(Table 3). With ResNet-50 as the
backbone, the achieved AP , AP50 and AP75 of R(Det)2

is improved by 3.6%, 3.0%, and 4.1%, respectively. With
ResNet-50-DCN (ResNet-50 with deformable convolution)
as the backbone, we achieve the detection AP of 44.2%,
2.9% improvement. The performance gain of R(Det)2 with
ResNet-101 is also significant. By equipping with R(Det)2,
the detection AP of ResNet-101 reaches 42.5% and AP75

reaches 46.3%, 3.1% and 3.2% higher than the baseline.
With ResNet-101-DCN as the backbone, the AP reaches
45.0% and AP75 is 49.2%. In particular, the detection accu-
racy over large objects is improved significantly. The APL

over the different backbones is increased by 5.6%, 4.2%,
4.8% and 2.8%, respectively. Experiments show that the
proposed R(Det)2 is effective among object detectors with
various backbones.

Generalization on different detectors. We plug
R(Det)2 into existing detectors to evaluate the general-
ization capability (Table 4). Other than Faster R-CNN,
we integrate R(Det)2 with libra R-CNN [30], dynamic R-
CNN [46], cascade R-CNN [1]. The backbone is ResNet-
50. Upon libra R-CNN, R(Det)2 improves the detection AP
by 3.1% and AP75 by 3.6%, yielding 41.4% AP and 45.5%
AP75. On cascade R-CNN, the powerful detector with cas-
cade structure, R(Det)2 also shows consistent improvement.

It improves the detection AP by 2.2% and AP50 by 2.4%,
respectively. Since the dynamic R-CNN [46] adaptively
changes the hyperparameters of Smooth-L1 loss for bbox
regression, we present the detection accuracy by random-
ized routing upon Smooth-L1 loss, instead of IoU loss with
better performance. By equipping R(Det)2, the AP and
AP75 is increased by 2.1%. Besides, R(Det)2 is quite effec-
tive to improve the detection performance of large objects.
The APL of libra R-CNN and cascade R-CNN is increased
by a large margin with R(Det)2, leading to 5.2% and 4.1%
improvement, respectively. For DoubleHead R-CNN [43]
and one-stage RetinaNet [22] with designed head, we fix
the head for task-aware decision. Only randomized rout-
ing based training leads to 1.4% of AP improvement with
DoubleHead R-CNN and 1.8% of AP improvement with
RetinaNet [22]. The experiment validates that the proposed
R(Det)2 performs well on existing detectors.
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Figure 4. Effects on hyperparameter λ to balance the selective
loss and associative loss for decision routing.

Effects of hyperparameter λ. We leverage the hyper-
parameter λ to balance the selective and associative loss in
randomized decision routing. We further evaluate the ef-
fects of λ with ResNet-50-based Faster R-CNN. The curves
of detection AP changing along with λ are plotted in Fig-
ure 4. The detection accuracy is the highest when λ = 0.5.
That means we assign the weights for the selective and as-
sociative loss nearly equal. The detection AP remains sta-
ble when λ is between 0.1 to 0.9. If we further reduce λ
to 0.001 and reduce the impact of selective loss, the detec-
tion AP with Smooth-L1 loss for bbox regression decreases
to 38.6%, by 1.8% points. It indicates that the selective
loss which aims to differentiate node decisions is essential
for performance improvement. Since only associative loss
guides the optimization of routing probabilities, increasing
λ to nearly 1 would lead to unstable models (the parameters
to generate routing probabilities pl, pr, ql, qr is nearly the
same as random initialized ones), we restrict λ ≤ 0.95. The
detection AP at λ = 0.95 is decreased by 0.3∼0.4%.

Model complexity and computational efficiency. The
model complexity of R(Det)2 is mainly caused by the ad-
ditional branches for routing probability, routing mask, and
task-aware features. From Table 5 we can see that the com-
plexity is mainly caused by task-aware feature computa-
tion. Considering this, we develop R(Det)2-Lite with nar-
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Detector AP AP50 AP75 APS APM APL

Libra R-CNN [30] 38.3 59.5 41.9 22.1 42.0 48.5
+R(Det)2 41.4(+3.1) 61.4(+1.9) 45.5(+3.6) 24.7(+2.5) 45.0(+3.0) 53.7(+5.2)

Cascade R-CNN [1] 40.3 58.6 44.0 22.5 43.8 52.9
+R(Det)2 42.5(+2.2) 61.0(+2.4) 45.8(+1.8) 24.6(+2.1) 45.5(+1.7) 57.0(+4.1)

Dynamic R-CNN [46] 38.9 57.6 42.7 22.1 41.9 51.7
+R(Det)2 41.0(+2.1) 59.7(+2.1) 44.8(+2.1) 23.3(+1.2) 44.2(+2.3) 54.8(+3.1)

DoubleHead R-CNN [43] 40.1 59.4 43.5 22.9 43.6 52.9
+R(Det)2 41.5(+1.4) 60.8(+1.4) 44.5(+1.0) 24.2(+1.3) 45.0(+1.4) 53.9(+1.0)
RetinaNet [22] 36.5 55.4 39.1 20.4 40.3 48.1
+R(Det)2 38.3(+1.8) 57.4(+2.0) 40.8(+1.7) 22.6(+2.2) 42.0(+1.7) 50.5(+2.4)

Table 4. Generalization with different detectors. R(Det)2 shows AP improvement on various detectors.

Type #FLOPs #params AP (%)

4conv1fc 129.0G 15.62M 37.6

R(Det)2-B 132.6G 19.31M 39.8
R(Det)2-M 132.6G 25.88M 40.5
R(Det)2-T 146.3G 45.97M 40.9
R(Det)2-Lite 130.2G 18.48M 40.2

Table 5. Model complexity comparison of R(Det)2 head.

row computation for routing probabilities and masks, lead-
ing to 40.2% AP and nearly ignorable model complexity.

Visualization. We present the comparative visualiza-
tion in Figure 5. The detected results by ResNet-101 based
Faster R-CNN are shown in Figure 5(a) and those from the
R(Det)2 are shown in Figure 5(b). It can be seen that the
proposed R(Det)2 is effective to improve both the detec-
tion and localization performance. Specially, the R(Det)2

is quite effective in reducing the repeated detections and
avoiding over-confident ones.

5.2. Comparison with the state-of-the-art

We integrate the proposed R(Det)2 into Cascade R-CNN
to compare with the state-of-the-art methods on COCO test-
dev dataset. The backbone is ResNeXt-101 (64×4d) [44]
with deformable convolution and swin transformer [26].
The comparative study is presented in Table 6. We first
compare the single-model single-scale model performance.
With 12 epochs (1×) of training, the R(Det)2 achieves
AP of 50.0%, outperforming Faster R-CNN [33], Libra R-
CNN [30], Cascade R-CNN [1] by a large margin. Com-
pared with the recent Sparse R-CNN [38] with the same
backbone, we achieve 1.1% AP improvement with 1/3
training iterations. It is also comparable with deformable
DETR [51] with transformer architecture and much more

epochs of training (50 epochs). The detection accuracy is
further improved with more epochs of training and test-time
augmentation as multi-scale testing and horizontal image
flipping. With 24 epochs of training and TTA, the R(Det)2

achieves AP of 54.1% and AP50 of 72.4%. Compared with
DyHead with stacked self-attention modules [8], the AP50,
APL is improved by 0.3% and 1.0%, respectively. Besides,
we adapt the backbone of ViT as swin transformer [26].
With 12 epochs of training, the achieved AP of single-scale
testing is 55.1% and that of multi-scale testing is 57.4%. It
validates the R(Det)2 performs well with various backbones
and is effective for high-performance object detection.

6. Conclusion

The decision head is important for high-performance ob-
ject detection. In this paper, we propose a novel approach as
the randomized decision routing for object detection. First,
we plug soft decision trees into neural networks. We further
propose the randomized routing to produce accurate yet di-
vergent decisions. By randomized routing for soft decision
trees, we can obtain multi-node decisions with diverse fea-
ture exploration for object detection. Second, we develop
the decision head for detection with a narrow branch to gen-
erate routing probabilities and a wide branch to produce
routing masks. By reducing the relevance of node deci-
sions, we develop a novel tree-like decision head for deep
learning-based object detection. Experiments validate the
performance of our proposed R(Det)2.
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Figure 5. Comparison of detection results for the baseline Faster R-CNN and R(Det)2 equipped one. The models are with ResNet-101
as the backbone and trained with COCO 115k-train. The example test images are from COCO 5k-val. The rectangles mark the detected
bounding boxes with attached category labels and confidences. The detection results of baseline model are presented in (a) (39.3% AP)
and those of R(Det)2 are presented in (b) (42.5% AP).

Methods Backbone ME TTA AP AP50 AP75 APS APM APL

Retina-Net [22] ResNeXt-101 18e 40.8 61.1 44.1 24.1 44.2 51.2
FCOS [40] ResNeXt-101 24e 43.2 62.8 46.6 26.5 46.2 53.3
ATSS [47] ResNeXt-101-DCN 24e 47.7 66.5 51.9 29.7 50.8 59.4
OTA [14] ResNeXt-101-DCN 24e 49.2 67.6 53.5 30.0 52.5 62.3
IQDet [28] ResNeXt-101-DCN 24e 49.0 67.5 53.1 30.0 52.3 62.0

Faster R-CNN [33] ResNet-101 12e 36.7 54.8 39.8 19.2 40.9 51.6
Libra R-CNN [30] ResNeXt-101 12e 43.0 64.0 47.0 25.3 45.6 54.6
Cascade R-CNN [1] ResNet-101 18e 42.8 62.1 46.3 23.7 45.5 55.2
TSP-RCNN [39] ResNet-101-DCN 96e 47.4 66.7 51.9 29.0 49.7 59.1
Sparse R-CNN [38] ResNeXt-101-DCN 36e 48.9 68.3 53.4 29.9 50.9 62.4
Deformable DETR [51] ResNeXt-101-DCN 50e 50.1 69.7 54.6 30.6 52.8 64.7

Ours - R(Det)2 ResNeXt-101-DCN 12e 50.0 69.2 54.3 30.9 53.0 63.9
Ours - R(Det)2 Swin-L [26] 12e 55.1 74.1 60.4 36.0 58.6 70.0

Centernet [11] Hourglass-104 100e ✓ 47.0 64.5 50.7 28.9 49.9 58.9
ATSS [47] ResNeXt-101-DCN 24e ✓ 50.7 68.9 56.3 33.2 52.9 62.4
IQDet [28] ResNeXt-101-DCN 24e ✓ 51.6 68.7 57.0 34.5 53.6 64.5
OTA [14] ResNeXt-101-DCN 24e ✓ 51.5 68.6 57.1 34.1 53.7 64.1

Dynamic R-CNN [46] ResNet-101-DCN 36e ✓ 50.1 68.3 55.6 32.8 53.0 61.2
TSD [37] SENet154-DCN 36e ✓ 51.2 71.9 56.0 33.8 54.8 64.2
Sparse R-CNN [38] ResNeXt-101-DCN 36e ✓ 51.5 71.1 57.1 34.2 53.4 64.1
RepPoints v2 [5] ResNeXt-101-DCN 24e ✓ 52.1 70.1 57.5 34.5 54.6 63.6
Deformable DETR [51] ResNeXt-101-DCN 50e ✓ 52.3 71.9 58.1 34.4 54.4 65.6
RelationNet++ [6] ResNeXt-101-DCN 24e ✓ 52.7 70.4 58.3 35.8 55.3 64.7
DyHead [8] ResNeXt-101-DCN 24e ✓ 54.0 72.1 59.3 37.1 57.2 66.3

Ours - R(Det)2 ResNeXt-101-DCN 24e ✓ 54.1 72.4 59.4 35.5 57.0 67.3
Ours - R(Det)2 Swin-L [26] 12e ✓ 57.4 76.1 63.0 39.4 60.5 71.5

Table 6. Comparison of R(Det)2 with the state-of-the-art object detection methods on COCO test-dev dataset. DCN indicates that
using the deformable convolution to enhance the feature representations of backbone. TTA indicates test-time augmentation such as
multi-scale testing and horizontal image flipping. ME indicates more epochs of training.
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