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Abstract
Space-time memory (STM) based video object segmen-

tation (VOS) networks usually keep increasing memory
bank every several frames, which shows excellent perfor-
mance. However, 1) the hardware cannot withstand the
ever-increasing memory requirements as the video length
increases. 2) Storing lots of information inevitably intro-
duces lots of noise, which is not conducive to reading the
most important information from the memory bank. In
this paper, we propose a Recurrent Dynamic Embedding
(RDE) to build a memory bank of constant size. Specifi-
cally, we explicitly generate and update RDE by the pro-
posed Spatio-temporal Aggregation Module (SAM), which
exploits the cue of historical information. To avoid error
accumulation owing to the recurrent usage of SAM, we pro-
pose an unbiased guidance loss during the training stage,
which makes SAM more robust in long videos. Moreover,
the predicted masks in the memory bank are inaccurate due
to the inaccurate network inference, which affects the seg-
mentation of the query frame. To address this problem, we
design a novel self-correction strategy so that the network
can repair the embeddings of masks with different quali-
ties in the memory bank. Extensive experiments show our
method achieves the best tradeoff between performance and
speed. Code is available at https://github.com/
Limingxing00/RDE-VOS-CVPR2022.

1. Introduction
Video object segmentation (VOS) is a fundamental task

for video understanding, including lots of applications, such

as autonomous driving and video editing. This work fo-

cuses on semi-supervised VOS setting. In this setting, given

the instances annotation of the first frame, the VOS algo-

rithms segment the instances in other frames.

Matching based networks [5, 13, 18, 20, 23–25, 30, 31,
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Figure 1. The inference pipelines of the segmentation of frame

T . c© denotes concatenation. θ denotes the sampling interval

for the update of the memory bank. (a) shows the network read

the space-time memory (STM) pattern memory bank to segment

frame T . As the length of videos increases, the STM pattern mem-

ory bank has an ever-increasing size. In (b), we update a recurrent

dynamic embedding (RDE) to build a memory bank of the con-

stant size, which is maintained by a spatio-temporal aggregation

module (SAM).

39, 44] are popular for semi-supervised VOS. These net-

works have a memory bank mechanism, which encodes

some frames into embeddings and stores those embeddings

in the memory bank to assist the segmentation of the query

frame. Some methods only use the embeddings of a lim-

ited number of frames, such as the ground-truth (GT) frame

[14], the latest frame (for brevity, the latest frame of the

query frame is abbreviated as the latest frame) [27] and

both of them [20, 24, 39]. These methods do not make full

use of historical frames in the video. STM based meth-

ods [5, 13, 18, 23, 25, 30, 31, 44] store the embeddings every

1332



several (e.g., 5) frames in the STM pattern memory bank as

shown in Figure 1(a). Although STM based methods utilize

equal interval sampling to mine the historical information in

the video, as the length of videos increases, the STM pattern

memory bank has an ever-increasing size and inevitably in-

troduces lots of noise. Exponential moving average (EMA)

based methods [17,19,33] try to address the problems. The

EMA based methods index some pixel embeddings from the

embeddings of the query frame and the memory bank ac-

cording to certain criteria and fuse these pixel embeddings

in the EMA way. However, the EMA based methods have a

strong limitation because of the direct summation operation

(see details in Sec. 3.1).

In this paper, we address two problems. 1) How to build

and update a memory bank of the constant size to effec-

tively and efficiently store historical information? 2) Ex-

cept for the GT frame, other masks are inaccurate owing to

the inaccurate network inference, how to correct the poor

embedding encoded from the inaccurate masks?

For problem 1, we propose a recurrent dynamic embed-

ding (RDE) to provide a richer representation for VOS. As

shown in Figure 1(b), to generate and update RDE, we pro-

pose a spatio-temporal aggregation module (SAM) to orga-

nize the cue of the historical information (previous RDE)

and the embedding of the latest frame adaptively. SAM

includes three parts: extracting, enhancing and squeezing.

The extracting part is responsible for organizing the spatio-

temporal relationship between previous RDE and the em-

bedding of the latest frame. Then, the enhancing part re-

inforces the spatio-temporal relationship and the squeezing
part aggregates and compresses the spatio-temporal infor-

mation. We refer to the memory bank maintained by SAM

as the SAM pattern memory bank.

One potential risk of the SAM pattern memory bank is

the recurrent update of RDE may cause error accumulation.

However, we have no GT for training the generated RDE

directly. To tackle this problem, we propose to employ aux-

iliary supervision for the distribution of RDE. In the train-

ing process, we additionally build a STM pattern memory

bank (see Figure 1(a)) to obtain the uncompressed infor-

mation and its read results, which are used to estimate the

distribution for RDE. Thus we design an unbiased guidance

loss to control the approach degree of the two distributions.

Relying on the unbiased guidance loss, the training of the

network is more stable and has higher performance with no

extra computation overhead for deployment.

For problem 2, we design a novel self-correction strat-

egy, which enforces the network to repair the embeddings of

masks with different qualities in the memory bank. Specifi-

cally, we first simulate different perturbated masks and then

constrain the embeddings encoded by perturbated masks to

be close to the embedding encoded by the GT mask with a

mask consistency loss. The mask consistency loss enforce

the network to learn the self-correction ability for inaccurate

masks in the embedding space during the training stage.

To investigate the effectiveness of the proposed meth-

ods, we conduct experiments on DAVIS 2017, DAVIS 2016

and YouTube-VOS 2019. The proposed method achieves

state-of-the-art performance on DAVIS 2017 validation set

(86.1% J&F , 27 FPS), DAVIS 2017 test set (78.9%

J&F), DAVIS 2016 (91.6% J&F , 35 FPS) and superior

performance on YouTube-VOS 2019 (83.3% J&F) with-

out the multi-scale inference. Furthermore, we demonstrate

the effectiveness of our method in the synthetic long video.

For the synthetic long video, J&F and FPS of our method

are almost unchanged as the length of the synthetic long

video increases.

Our contributions can be summarized as follows:

• We propose an easy-to-extend recurrent dynamic em-

bedding (RDE) to provide a richer representation for

VOS compared with the embedding of the GT frame

and the latest frame, which is maintained by the pro-

posed spatio-temporal aggregation module (SAM).

• To avoid error accumulation owing to the recurrent us-

age of SAM, we propose an unbiased guidance loss

during the training stage, which makes SAM more ro-

bust in long videos.

• Considering inaccurately predicted masks in the mem-

ory bank affect the segmentation performance due to

the inaccurate network inference, we design a novel

self-correction strategy, which enforces the network to

learn the self-correction ability for inaccurate masks in

the embedding space.

• Extensive experiments on several benchmarks and the

synthetic long video show the effectiveness and supe-

riority of our method.

2. Related Work
2.1. Semi-supervised VOS

Semi-supervised VOS mainly focuses on propagating

the certain object mask of one frame. It can be roughly

divided semi-supervised VOS into three categories: 1) On-

line fine-tuning based methods [22,36], which usually learn

general segmentation features and fine-tune the network to

the target video during the test time. 2) Propagation based

methods [3, 21], which refine the target segmentation mask

in a temporal label propagation way. 3) Matching based

methods [6, 23, 25, 30, 44] which encode some frames into

embeddings and store those embeddings in the memory

bank to segment the query frame.

2.2. Matching based VOS network

STM [25] is a popular network in matching based meth-

ods, which constructs a continuously updated memory bank
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Figure 2. Illustrating the architectures: (a) The main pipeline of our framework. During the training stage, we maintain two individual

memory banks which are updated in the STM pattern and our SAM pattern separately. During the inference, we only utilize our SAM

pattern memory bank. θ denotes the sampling interval for the update of the memory bank. (b) Self-correction strategy. The proposed mask

consistency loss LMC enforces the mask encoder to learn the self-correction ability for the inaccurate masks. (c) The structure of SAM,

which organizes the historical information and the embedding of the latest frame adaptively.

of historical frames. Compared with using limited frames

(the GT frame [14] or the latest frame [27]), memory

bank excavates the information of historical frames even

more. Recently, matching based networks have received

widespread attention. [5,13,20,30] improve the readout op-

eration of the memory bank, [37] applies a local attention

with the help of the optical flow, [10] utilizes the global and

instance embedding learning to address multi-objects VOS.

Although these methods have achieved satisfactory perfor-

mance, they ignore two key problems: 1) As the number

of video frames increases, the hardware cannot afford the

ever-increasing memory requirements. 2) Storing lots of in-

formation inevitably introduces lots of noise, which is not

conducive to reading the most important information from

the memory bank.

2.3. Efficient VOS network
The methods of efficient VOS usually belong to propaga-

tion based methods or matching based methods. SAT [3] is

one of propagation based methods, which deals with each

object as a tracklet and segments the object via two feed-

back loops. OSMN [39] is one of the matching based meth-

ods, which adopt the GT frame and the latest frame to guide

the segmentation of the query frame with two modulators.

Recently, the most popular inference setting for VOS is

to save the feature embedding of historical frames every 5

frames (STM pattern). Some methods [17,19,33] try to use

exponential moving average (EMA) to build a more effi-

cient characterization to record the historical information.

However, these methods only perform between the most

similar embeddings due to the direct summation operation

(see details in Sec. 3.1), which is a strong limitation.

3. Method

3.1. Revisit Memory Bank Update with EMA

In STM [25], the image and mask are encoded into two

embedding spaces, named key and value. In addition to the

key and value of the GT frame and the latest frame, previ-

ous EMA based methods build an independent embedding,

IE. Take key update as an example, let kIE
t (p) denotes

the key at time t and kQ(q) denotes the key of the query

frame Q, where p and q are the coordinate of the spatial po-

sition. [17, 19] utilize EMA to update the historical embed-

ding kIE
t−θ(p) with the query embedding kQ(q) by certain

rules (see details in the supplementary material). The new

embedding kIE
t (p) in the memory bank can be formulated

as follows:

kIE
t (p) = (1− λ)kQ(q) + λkIE

t−θ(p) (1)

where λ is a hyper-parameter to control the update strength

and θ denotes the update interval. We argue that EMA

based methods have a strong limitation, in which the two

additional items in Eq. 1 must be similar in the parame-

ter space because of the summation operation. Thus these

methods [17, 19] index the most similar embeddings to up-

date. Our method associates the embeddings to update the

extra embedding adaptively.
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3.2. Framework Overview

Encoders. The main pipeline of our framework is illus-

trated in Fig 2(a). For a query frame of size H × W , the

image encoder ImageE is responsible for extracting image

features. We also adopt a mask encoder MaskE to encode

a certain frame and its mask to store into the memory bank.

Both the encoders adopt ResNet-50 [12] as the backbone

and use two simple projection heads following STM [25]

to obtain two embeddings, key k ∈ R
Ck× H

16×W
16 and value

v ∈ R
Cv× H

16×W
16 . Here Ck and Cv are the numbers of the

channel dimension (Ck = 64, Cv = 512 in our experi-

ments).

Memory Reading and Decoder. Following STCN [6],

for the SAM pattern memory bank m at time t, we keep

target-agnostic key km
t and target-specific value vm

t,i, where

i denotes the i-th object. For the similarity S(p, q) between

the key from the SAM pattern memory bank km
t (p) and the

key of the query frame kQ
t (q), we perform negative squared

Euclidean distance, which can be formulated as

S(p, q) = −||km
t (p)− kQ

t (q)||22 (2)

where p and q are the coordinate of the spatial position

of km
t (p) and kQ

t (q) separately. And the softmax oper-

ation is applied on the spatial dimension for similarity S
to obtain the softmax-normalized affinity matrix W, W =
softmax(S). Relying on W, the readout feature vm→Q

t,i of

the i-th object from the SAM memory bank can be obtained

by the matrix multiplication �:

vm→Q
t,i = W � vm

t,i. (3)

The readout feature vm→Q
t,i concatenates with the value of

the query frame to pass through the light-weight decoder

described in [6] to get the segmentation results ỹmt,i of the

i-th object at frame t. Similar to the SAM pattern memory

bank, we concatenate the readout feature vM→Q
t,i from the

STM pattern memory bank M with the value of the query

frame to obtain the segmentation results ỹMt,i of the i-th ob-

ject at frame t.

3.3. SAM Pattern Memory Bank

The main challenge of keeping the size of the memory

bank constant is how to select the most useful informa-

tion. The STM pattern memory bank can store the his-

torical information losslessly, but has ever-increasing size

and inevitably introduces lots of noise. In our design, we

build a SAM pattern memory bank to address the chal-

lenge. During the training stage, the STM and SAM pat-

tern memory banks are maintained at the same time. Dur-

ing the inference, we only use the SAM pattern memory

bank, which can keep the size of the memory bank con-

stant. Specifically, the STM pattern memory bank M in-

cludes {kM
t , vMt,i}, while the SAM pattern memory bank m

includes {km
t , vmt,i}.

Recurrent Dynamic Embedding. We find the embed-

ding of the latest frame changes over time, providing more

useful information for the segmentation of the query frame

but lacking the use of historical information. We propose a

recurrent dynamic embedding (RDE) in the memory bank

to fuse the the cue of the historical information with the the

embedding of the latest frame to provide a richer represen-

tation for VOS. We denote the RDE embedding at time t as

{kRDE
t , vRDE

t,i } ∈ {km
t , vmt,i}.

Spatio-temporal Aggregation Module. To generate and

update RDE, we propose a spatio-temporal aggregation

module (SAM), which exploits the cue of historical in-

formation. SAM includes three parts: extracting, en-
hancing and squeezing as shown in Figure 2(c). The

extracting part is responsible for organizing the spatio-

temporal relationship between the embedding of previous

RDE {kRDE
t−θ , vRDE

t−θ,i} (θ denotes the sampling interval) and

the embeddings of the latest frame {kL
t , vL

t,i}. First, we con-

catenate previous RDE {kRDE
t−θ , vRDE

t−θ,i} and the embedding

of the latest frame {kL
t , vLt,i} to obtain the feature x. Take

kRDE
t update as an example,

x = Cat(kRDE
t−θ , kL

t ), x ∈ R
Ck×2× H

16×W
16 (4)

where Cat denotes concatenation operation in the time di-

mension. Inspired by self-attention mechanism [35], in the

extracting part, we organize the spatio-temporal relation-

ship between previous RDE kRDE
t−θ and the embedding of

the latest frame kL
t−θ to obtain the aggregation feature xagg ,

xagg =
1

C(x)
ω(x)Tφ(x ↓)g(x ↓). (5)

C(x) is a normalization factor, which presents the total

number of the spatial position of x. The function ω, φ and

g are 1× 1× 1 convolution in our implementation. x ↓ de-

notes x processed by the max-pooling operation (no down

sampling on the time axis), which can decrease the compu-

tational complexity.

Relying on the aggregation feature xagg , in the enhanc-
ing part, we enhance xagg in the form of residuals by atrous

spatial pyramid pooling (ASPP) [2]. Finally, in the squeez-
ing part, we compress the enhanced feature by a simple

2 × 3 × 3 convolution, which is denoted as Squeeze func-

tion. The formula can be expressed as

kRDE
t = Squeeze(xagg +ASPP (xagg)). (6)
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previous RDE and the embedding of the latest frame adap-

tively fuse and maintain the constant size for the mem-

ory bank, where the key mapping is R
Ck×2× H

16×W
16 →

R
Ck×1× H

16×W
16 . For the multiple objects, we concatenate

the object dimension to the batch dimension like the imple-

mentation of STM [25]. For the key and value of RDE, we

maintain two different SAMs respectively.

Unbiased Guidance Loss. One potential risk of the SAM

pattern memory bank is the update of RDE may cause error

accumulation, especially when it is used repeatedly. An-

other problem is that the key and value of RDE are gener-

ated separately by two different SAMs, the distribution of

them is difficult to directly define. Suppose the update pro-

cess of the STM pattern memory bank is a good teacher,

the estimated distribution read from the SAM pattern mem-

ory bank ought to approach the estimated distribution read

from the STM pattern memory bank. Thus, during the train-

ing stage, we maintain two individual memory banks for

the segmentation of the query frame, which is updated in

the STM and SAM patterns separately. We propose an un-

biased guidance loss LUG, which controls the distribution

of the readout feature from the SAM pattern memory bank

vm→Q
t,i to approach the distribution of the readout feature

from the STM pattern memory bank vM→Q
t,i . The unbiased

guidance loss LUG is computed as follows:

LUG =
∑
i

KL(vM→Q
t,i ||vm→Q

t,i ). (7)

KL function denotes Kullback–Leibler (KL) divergence,

which is a non-symmetric measure of the difference be-

tween two distributions.

Self-correction Strategy. Considering the quality of the

mask in the memory bank affects the segmentation of the

query frame, we propose a mask consistency loss LMC to

constrain the consistency of the embedding of masks of dif-

ferent qualities and the embedding of the GT mask. We first

obtain the key k1 and value v1,i of the first frame. And we

perform perturbation transform such as the random dilation

and eroding on the first frame to obtain the perturbated key

k̈1 and perturbated value v̈1,i. The mask consistency loss

LMC can be calculated by

LMC = KL(k1||k̈1) +
∑
i

KL(v1,i||v̈1,i) (8)

where KL function denotes KL divergence.

Overall Loss Functions. During the training stage, we

sample 5 frames. Inspired by the slowfast network [9], we

utilize the SAM pattern memory bank to segment the third

and fifth frames to handle different rate of videos. Besides,

we utilize STM pattern memory bank to segment the second

and fourth frames for the training stability. We use boot-

strapped cross entropy (BCE) following [5] to supervise the

final segmentation results, which is computed as follows:

LSeg =
1

2
(
∑
i

∑
t=2,4

BCE(ỹM
t,i, yt,i)︸ ︷︷ ︸

STM pattern item

+

∑
i

∑
t=3,5

BCE(ỹmt,i, yt,i)︸ ︷︷ ︸
SAM pattern item

)
(9)

where ỹMt,i and ỹmt,i denote the segmentation results read

from the STM pattern memory bank and the SAM pattern

memory bank separately. yt,i denotes the GT mask of the

i-th object at frame t. The overall loss function is computed

as follows:

Loss = LSeg + �[t = 3, 5]μLUG + γLMC (10)

where μ and γ are hyper-parameters to control the strength.

We set μ = 10 and γ = 10 in our experiments. �[·] is the

indicator function.

Inference Strategy. As shown in Figure 2(a), during the

inference, we employ SAM recurrently to update RDE.

Specifically, in a video of any length, SAM inputs previous

RDE at time t − θ and the embeddings of the latest frame

at time t to generate RDE at time t, where θ is the sampling

interval. The new RDE is stored in the SAM pattern mem-

ory bank to assist the segmentation of the query frame and

the old RDE is discarded.

4. Experiments

4.1. Datasets and Metrics

DAVIS. DAVIS 2016 [28] is a popular benchmark for

video single object segmentation, whose validation set in-

cludes 20 videos. DAVIS 2017 [29] is a popular benchmark

for video multiple objects segmentation, whose validation

set and test set are 30 densely annotated videos.

YouTube-VOS. YouTube-VOS 2019 [38] is a large-scale

benchmark for multi-object video segmentation, providing

3,471 videos for the training (65 categories) and 507 videos

for the validation. There are additional 26 unseen categories

in the validation set for evaluating the generalization.

Metrics. For the DAVIS datasets, we use the region simi-

larity J , the contour accuracy F and their average J&F to

evaluate the segmentation results. For YouTube-VOS 2019,

we follow the official evaluation server to report J and F
of the seen and unseen categories, and the average of them.
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4.2. Implementation Details

Training Stages. Following STCN [6], we first train the

network equipped with the STM pattern memory bank on

the static datasets [4, 16, 32, 34, 43] with 75k iterations and

batch size of 64. The static images are processed by syn-

thetic deformations like STM [25]. Secondly, we train the

network quipped with the SAM and STM pattern memory

banks on BL30K [1, 7] proposed in [5] with 500k itera-

tions and batch size of 8. Finally, we fine-tune the network

quipped with the SAM and STM pattern memory banks

on YouTube-VOS and DAVIS 2017 with 75k iterations and

batch size of 16 (main stage). BatchNorm layers are frozen

during the training stage following [25].

Training Details. We adopt four 16 GB Tesla V100 GPUs

to implement Pytorch. All networks are optimized by

Adam optimizer [15]. We pretrain the network on the static

datasets and BL30K with the initial learning rate of 2e-5

and 1e-5. And we fine-tune the network on the main stage

with the initial learning rate of 2e-5. The data augmentation

is the same as STCN [6]. Besides, we sample 3 frames in

the first pre-training stage and 5 frames in other stages.

Inference Details. During inference, we only use the

SAM pattern memory bank. Specifically, in addition to

maintaining our RDE by SAM, we sample the embedding

of the latest frame and two repeated embedding of the GT

frame. This setting is to keep a sampling balance between

the accurate template information (GT frame) and dynamic

information (latest frame or our RDE). We use top-k fil-

ters [5] k = 40 on all datasets. The sampling interval θ
is set to 3 on all DAVIS datasets and 4 on YouTube-VOS

2019.

4.3. Compare with the State-of-the-art Methods

We denotes the memory bank of the constant size dur-

ing the inference as Constant Cost (CC). As the video

length increases during the inference, the CC methods can

maintain a relatively stable speed and constant require-

ments of the memory. For brevity, our Recurrent Dynamic

Embedding for VOS method is denoted as RDE-VOS.

DAVIS. We compare the proposed method with previous

state-of-the-art methods for VOS on the DAVIS 2017 val-

idation set, DAVIS 2017 test set and DAVIS 2016 valida-

tion set. On the DAVIS 2017 validation set, as shown in

Table 1, our method even outperforms STCN [6] by 0.7%

for J&F and runs about 35% faster (27 vs 20.2 FPS).

Compared with SwiftNet [33], our method suppresses it by

5% for J&F and has a slight advantage for the speed (+2

FPS). On the DAVIS 2017 test set, as shown in Table 2, our

method still has great advantages. On DAVIS 2016 valida-

tion set, as shown in Table 3, our method outperforms CC

Method CC J&F J F FPS

STM† [25] × 81.8 79.2 84.3 10.2

KMN† [30] × 82.8 80.0 85.6 <8.4

JOINT† [23] × 83.5 80.8 86.2 4.0

LCM† [13] × 83.5 80.5 86.5 <8.5

RMNet† [37] × 83.5 81.0 86.0 <11.9

MiVOS†∗ [5] × 84.5 81.7 87.4 11.2

HMMN† [31] × 84.7 81.9 87.5 <10.0

STCN†∗ [6] × 85.3 82.0 88.6 20.2
GCNet [17]

√
71.4 69.3 73.5 <25.0

Liang et al. [19]
√

74.6 73.0 76.1 4.0

G-FRTM† [26]
√

76.4 - - 18.2

PReMVOS [21]
√

77.8 73.9 81.7 0.01

SwiftNet† [33]
√

81.1 78.3 83.9 <25.0

SST† [8]
√

82.5 79.9 85.1 -

Ge et al.† [10]
√

82.7 80.2 85.3 6.7

RDE-VOS† √
84.2 80.8 87.5 27.0

RDE-VOS†∗ √
86.1 82.1 90.0 27

Table 1. Results on the DAVIS 2017 validation set. CC denotes

constant cost during the inference. † indicates YouTube-VOS [38]

is added during the training stage. ∗ denotes BL30K [5] is added

during the training stage.

Method CC 600p J&F J F
STM† [25] × √

72.2 69.3 75.2

KMN† [30] × √
77.2 74.1 80.3

RMNet† [37] × × 75.0 71.9 78.1

Ge et al.† [10] × × 75.2 72.0 78.3

STCN†∗ [6] × × 77.8 74.3 81.3

MiVOS†∗ [5] × × 78.6 74.9 82.2
CFBI† [40]

√ × 74.8 71.1 78.5

Ge et al.† [10]
√ × 75.2 72.0 78.3

CFBI+† [41]
√ × 75.6 71.6 79.6

RDE-VOS† √ × 77.4 73.6 81.2

RDE-VOS†∗ √ × 78.9 74.9 82.9

Table 2. Results on the DAVIS 2017 test set. 600p denotes evalu-

ating on 600p resolution.

method SwiftNet [33] by 1.2% for J&F and runs about

40% faster (35 vs 25 FPS). Compared with STCN [6], our

method is 30% faster while J&F is almost unchanged (-

0.1%). We also show the qualitative result of the validation

set of DAVIS 2017 in Figure 4. More qualitative results can

be found in the supplementary material.

YouTube-VOS. On a large-scale YouTube-VOS 2019

validation set, we compare our method with recent state-

of-the-art methods in Table 4. Although our method does

not surpass STCN on YouTube-VOS 2019 validation set, it

still surpasses other state-of-the-art methods, regardless of

whether BL30K is added.
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Method CC J&F J F FPS

RMNet† [37] × 88.8 88.9 88.7 11.9

STM† [25] × 89.3 88.7 89.9 6.3

KMN† [30] × 90.5 89.5 91.5 8.4

LCM† [13] × 90.7 89.9 91.4 8.5

HMMN† [31] × 90.8 89.6 92.0 10.0

MiVOS†∗ [5] × 91.0 89.7 92.4 16.9

STCN†∗ [6] × 91.7 90.4 93.0 26.9

GCNet [17]
√

86.6 87.6 85.7 25.0

CFBI+† [41]
√

89.9 88.7 91.1 5.9

SwiftNet† [33]
√

90.4 90.5 90.3 25.0

RDE-VOS† √
91.1 89.7 92.5 35.0

RDE-VOS†∗ √
91.6 90.0 93.2 35.0

Table 3. Results on the DAVIS 2016 validation set. CC denotes

constant cost during the inference.

Method CC Overall Jseen Fseen Junseen Funseen

STM† [25] × 79.2 79.6 83.6 73.0 80.6

MiVOS†∗ [5] × 82.4 80.6 84.7 78.2 85.9

STCN†∗ [6] × 84.2 82.6 87.0 79.4 87.7
CFBI† [40]

√
81.0 80.6 85.1 75.2 83.0

SST† [8]
√

81.8 80.9 - 76.6 -

RDE-VOS † √
81.9 81.1 85.5 76.2 84.8

RDE-VOS †∗ √
83.3 81.9 86.3 78.0 86.9

Table 4. Results on the YouTube-VOS 2019 validation set.

Synthetic Long Video. Recently, the popular bench-

marks include short video clips. For example, DAVIS 2017

only has 67 frames per video clip on average. However,

many practical applications need to handle more frames.

Compared with STCN [6], we demonstrate the effectiveness

of our method in the scene where includes more frames.

Take a DAVIS 2017 case “cows” (the basic length is 104) as

an example, exerting video forward and backward as a ba-

sic unit, we repeatedly sample multiple basic units to syn-

thesize a long video. This synthesis method ensures each

frame contains GT and the adjacent frames have smooth

transitions. As shown in Figure 3, as the length of the syn-

thetic long video increases, the performance and speed of

our method is almost unaffected, while the performance

and speed of STCN obviously decrease. Here we do not

change any hyper-parameter compared with the setting on

the DAVIS datasets. Besides, we utilize the official code

of STCN and minimize the sampling interval to 60 frames

under maximizing the usage of the GPU memory. All input

data is stored in the CPU and inferred on one GPU.

Inference Time. We evaluate the inference time on one

Tesla V100 GPU with full floating point precision. On the

validation set of DAVIS 2017 and DAVIS 2016, as shown

in Table 1 and 3, our method has a great advantage in speed

compared with STCN (27 vs 20.2 FPS on DAVIS 2017 and

35 vs 26.9 FPS on DAVIS 2016).

Figure 3. J&F and FPS of our method and STCN [6] on the

synthetic long video. Note different colored lines refer to different

metrics. When the length of the synthetic long video is 1, 10, 15

and 20 times of the original, J&F and FPS of our method are

almost unchanged. However, both J&F and FPS of STCN have

an obvious reduction.

4.4. Ablation Study

Dataset Setting. We compare the results whether to adopt

BL30K [5] in Table 1, 2, 3 and 4. Without the BL30K

pre-training, our method has superior performance on all

datasets with a higher speed compared with other state-of-

the-art methods. After adding the BL30K pre-training, our

method has a stable improvement on all datasets.

Inference Setting. Table 5 shows different inference

strategies adopting the memory bank. Compared with only

using the embedding from the first frame or the latest frame,

only using our RDE has the best performance of 81.8% for

J&F . Besides, based on using the embeddings from the

first frame, the latest frame, and both of them, adding our

RDE can further improve J&F by 13.7%, 1.8% and 0.8%

separately. Based on using RDE and the embedding of both

the first frame and the latest frame, we explore the sampling

balance of the accurate template information (GT frame)

and dynamic information (latest frame or our RDE). We find

additionally sample the embedding of the GT frame to keep

the sampling balance between the two types of information

can further improve J&F by 0.7%. We use this strategy in

all experiments unless otherwise specified. We also show

the ablation of different sampling intervals θ, where the

sampling interval of 3 provides the best result.

Loss Function Setting. In Table 6, we perform abla-

tion of different loss functions without the BL30K [5] pre-

training. Both our proposed LMC and LUG can improve

the performance to different degrees, and their combination

can maximize the performance (+1.7% J&F). Besides, al-

though we do not use the STM pattern memory bank during

the inference, we find supervising the segmentation results
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Figure 4. Qualitative results on the DAVIS 2017 validation set. We compare MiVOS [5] and STCN [6] under the challenging scale and

deformation case, and our method has a notable improvement.

Variants J&F J F
Strategy permutation

RDE 81.8 78.0 85.7

First frame 71.6 67.8 75.4

First frame & RDE 85.3 81.6 89.0

Latest frame 80.4 76.9 83.8

Latest frame & RDE 82.2 78.4 86.0

First frame & latest frame 84.6 81.0 88.2

F & L & RDE 85.4 81.6 89.2

First frame ×2 & latest frame 85.1 81.5 88.7

First frame & latest frame ×2 84.0 80.4 87.6

2F & L & RDE 86.1 82.1 90.0
Sampling interval θ

2F & L & RDE (θ = 2) 85.1 81.4 88.9

2F & L & RDE (θ = 3) 86.1 82.1 90.0
2F & L & RDE (θ = 4) 85.1 81.5 88.8

2F & L & RDE (θ = 5) 84.2 80.5 87.9

Table 5. Ablation of inference strategies on DAVIS 2017 valida-

tion set. F & L & RDE represents first frame, latest frame and

RDE. 2F represents we sample the embeddings of the GT frame

twice in order to keep balance of the accurate template information

and dynamic information, which is used in all experiments unless

otherwise specified.

Ablation Settings J&F J F

Loss

w/o LMC 83.7 80.5 86.9

w/o LUG 82.9 79.5 86.4

w/o LMC & LUG 82.5 79.1 86.0

LSeg w/o STM pattern item 83.0 79.4 86.6

Full 84.2 80.8 87.5

Table 6. Ablation of different loss functions without the BL30K

[5] pre-training.

of the STM pattern item in Eq. 9 can assist the training of

the SAM pattern (+1.2% J&F).

4.5. Limitations.

During the inference, we set the sampling interval of the

RDE update to θ. This simple setting is easy to plug in

other matching based VOS methods. We fix the sampling

interval θ = 3 on the DAVIS datasets and achieve the new

state-of-the-art performance. We increase the sampling in-

terval on YouTube-VOS by 1 to fit the motion pattern on

YouTube-VOS. A better solution for future work is to use

a learnable discriminator [11] or gate mechanism [42] to

adaptively control the update interval of SAM, which can

handle different scenes better.

5. Conclusion
In this paper, we explore how to build and update a mem-

ory bank of the constant size to maximize the segmentation

performance of the query frame. The key insight is we pro-

pose a recurrent dynamic embedding (RDE) to provide a

richer representation for VOS compared with the embed-

dings of the GT frame and the latest frame. To generate

and update RDE, we propose a novel spatio-temporal ag-

gregation module (SAM), which organizes the cue of the

historical information and the embedding of the latest frame

adaptively. To avoid error accumulation owing to the recur-

rent usage of SAM, we propose an unbiased guidance loss

during the training stage, which makes SAM more robust

in long videos. Besides, we design a novel self-correction

strategy so that the network can encode and self-repair the

embeddings of masks with different qualities.
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