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Abstract

This work aims to tackle Model Inversion (MI) attack on
Split Federated Learning (SFL). SFL is a recent distributed
training scheme where multiple clients send intermediate
activations (i.e., feature map), instead of raw data, to a cen-
tral server. While such a scheme helps reduce the compu-
tational load at the client end, it opens itself to reconstruc-
tion of raw data from intermediate activation by the server.
Existing works on protecting SFL only consider inference
and do not handle attacks during training. So we pro-
pose ResSFL, a Split Federated Learning Framework that
is designed to be MI-resistant during training. It is based
on deriving a resistant feature extractor via attacker-aware
training, and using this extractor to initialize the client-
side model prior to standard SFL training. Such a method
helps in reducing the computational complexity due to use
of strong inversion model in client-side adversarial training
as well as vulnerability of attacks launched in early training
epochs. On CIFAR-100 dataset, our proposed framework
successfully mitigates MI attack on a VGG-11 model with
a high reconstruction Mean-Square-Error of 0.050 com-
pared to 0.005 obtained by the baseline system. The frame-
work achieves 67.5% accuracy (only 1% accuracy drop)
with very low computation overhead. Code is released at:
https://github.com/zlijingtao/ResSFL.

1. Introduction

Collaborative training schemes have become popular in

applications where preserving data privacy is very impor-

tant. A representative example is federated learning [13],

which has been used in a broad range of computer vision

tasks involving private data, such as in human face recog-

nition. Split Federated Learning (SFL) [18] is a recent col-

laborative training scheme that combines the merits of Split

Learning (SL) [6] and Federated Learning (FL). It has sig-

nificant advantages on computation reduction and memory
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Figure 1. ResSFL overview. (a) Multi-client SFL training pro-

cess. (b) MI attack performed by server. The client-side model is

queried to build inversion model and the clients’ intermediate ac-

tivations are used to reconstruct private data. (c) High-level view

of the ResSFL framework, consisting of pre-training step and re-

sistance transfer step.

usage compared to FL [7, 13] and significantly faster com-

pared to the original SL scheme.

In SFL, a neural network model is split into a client-

side model and a server-side model. Multiple clients oper-

ate on their private inputs using their client-side model and

pass the intermediate activations to the server. The server

then computes on the more expensive server-side model

and passes gradients back to clients. After an epoch, lo-
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cal copies of client-side model are averaged similar to FL.

Such a scheme is described in Figure 1(a). Thus SFL avoids

clients’ raw data being sent to the server and also reduces

client’s computation overhead.

Unfortunately, SFL is reported to be vulnerable to

Model Inversion (MI) attack [9, 21]. Here the honest-but-

curious [17] server behaves as the attacker. As shown

in Figure 1(b), by training an inversion model of the client-

side model, the server can reconstruct clients’ raw data from

intermediate activations it received during SFL training.

Prior works provide MI resistance for SFL inference

by protecting intermediate activations [9, 19–21] or confi-

dence score (intermediate activations of last softmax layer)

[22–24]. However, MI resistance at training time is sig-

nificantly more difficult. While inference-time defense

only needs to make the final model resistant to MI attack,

training-time defense must be resistant to MI attack anytime
during the SFL training process. This is because the honest-

but-curious server has access to all intermediate activations

and can launch an attack anytime.

To defend against MI attack during training and achieve

low computational capability of the clients, we present

ResSFL, a two-step Split Learning framework that is resis-

tant to MI attacks. The first step uses attacker-aware train-

ing to develop MI-resistant feature extractor and the second

step uses this extractor to initialize client-side training prior

to standard SFL-based training. An overview of our pro-

posed framework is depicted in Figure 1(c).

The attacker-aware training emulates a strong attacker

using a strong inversion model and adds bottleneck lay-

ers [2] to the inversion model to reduce the feature space.

To reduce the computational complexity of such a process

at the client-side and address vulnerability issues in early

training epochs, the attacker-aware training scheme is im-

plemented on an expert device and the MI resistant model

is used to initialize the client side model. The clients then

implement a lite-version attacker-aware training to achieve

good accuracy on the new task while maintaining the resis-

tance of the expert. Our contributions can be summarized

as follows:

• Two-step resistant SFL framework. We present a

novel two-step resistant SFL framework based on the

proposed attacker-aware training and resistance trans-

fer. To the best of our knowledge, this is the first work

that successfully mitigates training-time MI attack
while achieving good accuracy in SFL.

• Attacker-aware Training Method. We use a combi-

nation of (i) strong inversion model to mimic the MI

attack behavior and (ii) bottleneck layers to shrink the

large feature space resulting in good MI resistance and

accuracy.

• Protect Training by Resistance Transfer. We use

transfer learning to protect early-epoch vulnerability

of attacker-aware training as well as reduce high com-

putation cost of client-end training with complex in-

version models.

2. Background

2.1. Split Learning

Split Learning [6] is a collaborative training scheme that

is suitable for training using low-end edge devices. By split-

ting the neural network model into a client-side model and

a server-side model, most of the computations can be of-

floaded to the server. We use cut-layer to denote the split

location. Figure 1 (a) shows a SL scheme with cut-layer of

4, implying that the client-side model has 4 layers.

In the state-of-the-art variant of SL called Split Feder-
ated Learning (SFL) [18], multiple clients participate in the

training process in parallel. The clients’ models are aver-

aged at the beginning of each epoch similar to FL. The par-

allelism makes it much faster than the original scheme [6],

where only one client can train at a time and passes the up-

dated client-side model to the next in a round-robin fashion.

We specifically consider the SFL-V2 scheme in [18] and re-

fer to it as SFL in the rest of the paper.

2.2. Threat Model

In the SFL scheme, each client has a local copy of the

client-side model denoted as Ci for client i; the server-side

model is denoted as S. The training process executes for a

total of T epochs with client models being synchronized by

averaging the local copies at the beginning of each epoch at

the server; the synchronized central copy is denoted as C∗.

The intermediate activations of all training data from client

i at epoch t (t > 0) is denoted as Ai
t.

The server uses MI attack [3] to reconstruct the raw in-

puts. We only consider the training-based MI attack [3, 25]

where an auxiliary dataset with similar data distribution is

required. The other optimization-based MI attack [1, 9] has

weaker performance and is included only in the supplemen-

tary material. To perform MI attack, at epoch t, the attacker

uses an inversion model G that maps the feature space of

Ai
t to input space. Model G is trained to minimize Mean-

Square-Error (MSE) loss between the ground-truth image

and the reconstructed image. We assume the server use the

validation dataset as the auxiliary dataset, xaux. The opti-

mization process of G is:

G = argmin
G

MSE(G(C(xaux)),xaux) (1)

Then, the trained inversion model G is used to recon-

struct the intermediate activation Ai
t sent by client i to reveal

its private training data.
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x∗
priv = G(Ai

t) (2)

Assumption I. HBC condition. We assume the server is

honest-but-curious (HBC) [17], that is, it follows the proto-

col properly and sends back computationally correct results.

However, it records all the intermediate activation Ai
t sent

by the client i. We rule out malicious conditions in [?] since

a malicious server can neutralize any possible defense.

Assumption II. White-box assumption. The server has

full query access and white-box assumption on client-side

model C∗, the training algorithm including defensive meth-

ods, architecture information and model parameters. The

assumption is practical since the server can also act as a

participating client with its own private data.

Assumption III. Increased Strength of Inversion Model.
We assume that the server can try different model archi-

tectures to instantiate the inversion model for MI attack.

Unlike previous works [19, 21, 25] which use a single ar-

chitecture (usually very simple), we allow the server to use

inversion models with increased complexity, as shown in

Table 1. Note that since the server has no dearth of com-

putational resources, it can easily support high complexity

models.

Table 1. Description of inversion models with increasing complex-

ity L0 → L3.

Depth Width FLOPs*

L0 2× Conv2D + Conv2DTranspose 16 Channels 3.6M

L1 2× BasicBlocks + Conv2DTranspose 16 Channels 5.1M

L2 4× BasicBlocks + Conv2DTranspose 32 Channels 18.7M

L3 6× BasicBlocks + Conv2DTranspose 64 Channels 76.2M

*: FLOPs are measured using an input of size [1,128,8,8], which

corresponds to intermediate activation of VGG-11 model with cut-

layer of 2. In comparison, the client-side model has 21.5 M

FLOPs. Architecture details are provided in supplementary ma-

terial.

2.3. Resistance Definition

Similar to previous works on MI attack [23, 25], we de-

fine MI resistance as the MSE between the ground-truth im-

age xpriv and the reconstructed image x∗
priv generated us-

ing inversion model G. We choose the inversion model from

Table 1 that achieves the best performance. Empirically, we

set an MSE value of 0.02 as the resistance target.

3. Motivation
3.1. High Computation Cost

Attacker-aware training is a popular defense method

adopted in defending adversarial attacks [5, 8]. It is also

used for protecting confidence score from MI attack during

inference [24]. Here an inversion model is used to train the

“purifier” that modifies the confidence score to fool the MI

attack.

While this method can be used during SFL training, an

inversion model needs access to ground-truth data, meaning

the inversion model must be kept locally at client-side. Sim-

ulating a weak attacker using the low end L0 or L1 inver-

sion models during training is fine but does not help defend

against a strong attacker (as shown later in Figure 4). On the

other hand, simulating a strong attacker has a high compu-

tation cost. For example, using the L3 decoder costs 76.2M

FLOPs, which is over 3x higher than the client-side model

(21.5M FLOPs). Such a method is clearly not acceptable

for SFL, which is designed for resource-constrained clients.

3.2. Early-Epoch Vulnerability

We note that early epochs of the training process can be

vulnerable even with a proper defense. Evaluation with our

proposed attacker-aware training shows that while the sys-

tem is able to build up enough resistance at the end of the

training process, the early stages show very low resistance

(shown later in Figure 5). This is because resistance build-

ing is a slow progressive process, similar to accuracy. Thus

during the early training epochs, the model has vulnerable

interfaces that can be exploited for an MI attack.

4. Defense Framework
To address the high computational cost of implement-

ing strong inversion models at the client side and early-

epoch vulnerability issues, we build a two-step framework

called ResSFL. It consists of a pre-training step, where we

build up a feature extractor with strong MI resistance, and

a follow-up resistance transfer step, where the resistant fea-

ture extractor is used to initialize the client-side model of

the SFL scheme. Figure 2 describes the proposed scheme.

Specifically, an expert (i.e. one powerful client or a third

party) that has a high computation budget handles the pre-

training step on a source task (task 1). The pre-training step

utilizes attacker-aware training (A1) and bottleneck layers

(A2). Then, the resistant feature extractor is used as an ini-

tialization for SFL scheme on a new task (task 2). A low

complexity attacker-aware fine-tuning method (B1) is used

to update the client-side model to adapt to the new task with

high accuracy while preserving MI resistance.

4.1. Attacker-aware Training

The proposed attacker-aware training includes an inver-

sion model Di parameterized by W i
D for client i. Di takes

the intermediate activation Ai as input and generates the re-

constructed image x∗
i – similar to what a real attacker would

do. The attacker-aware training with Di takes the Min-Max

optimization form of:
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Figure 2. The proposed ResSFL scheme. The expert builds a MI-resistant client-side model using attacker-aware training in step (A). This

is followed by a resistance transfer step (B) that solves a new task by reusing the client-side model obtained in (A). Note: (A1) consists of

two training steps in Algorithm 1, and (B1) is described in section 4.2.

min
W i

C ,WS

max
W i

D

N∑
i=1

LCE(S(WS ;C
i(W i

C ;xi),yi)

︸ ︷︷ ︸
Cross-Entropy Loss

+

λ×
N∑
i=1

R(Di(W i
D;Ci(W i

C ;xi)),xi)

︸ ︷︷ ︸
Inversion Score

(3)

where W i
C ,WS denote the parameters for client-side and

server-side models. Lxi,yi
is cross-entropy loss calculated

on client i’s private data (xi,yi). R is the score func-

tion which evaluates the quality of the reconstructed images

compared to ground-truth images xi. λ is a constant that

controls the strength of the inversion score.

From equation 3, we see that computing the inversion

score requires access to the private image xi, meaning the

second optimization must be done locally at client side in

a SFL scheme. We use structural similarity index (SSIM)

score [26] for the R function to evaluate the quality of the

image reconstruction. SSIM has a better correlation with

human perceived image quality compared to MSE and is

widely adopted in image restoration tasks.

Algorithm 1 shows the detailed process of attacker-

aware training applied on a SFL scheme. N clients compute

in parallel (line 7), and client-side model synchronization

(line 4) is done at the beginning of each epoch. We adopt

the same strategy as in [4] to solve the Min-Max optimiza-

tion problem. Each client i undergoes two training steps

in each epoch t (corresponding to line 11 and line 13). The

first training step (line 11) adapts the inversion model Di by

maximizing the score R by keeping Ci fixed. The second

training step (line 13) is the standard training process, where

W i
C and WS are updated to minimize the cross-entropy loss.

Here, we add the inversion model’s score as a regularization

term. We limit the regularization effect to W i
C by keeping

Di fixed, similar to [4], which fixes the discriminator when

training the generator. The strength of the regularization is

Algorithm 1 Attacker-aware Training

Require: For N clients (N = 1 in pre-training step), in-

stantiate private training data (Xi,Yi) for 1, 2, ..., N ,

client-side model Ci, local inversion model Di and

server-side model S. λ is the strength of the inversion

score.

1: function TRAIN (Xi, Yi)

2: initialize Ci, Di, S
3: for epoch t ← 1 to num epochs do
4: C∗ = 1

N

∑N
i=1 C

i

5: for client i ← 1 to N in Parallel do
6: Ci ← C∗

7: for step s ← 1 to num batches do
8: Image batch (xi,yi) ← (Xi,Yi)

9: Ai
t = Ci(xi)

10: score = R(Di(W i
D;Ai

t),xi)
11: maxW i

D
(score)

12: loss = LCE(S(WS ;Ai
t),yi)

13: minW i
C ,WS

(loss+ λscore)
14: end for
15: end for
16: end for
17: end function

controlled by λ.

Addition of Bottleneck Layers: The accuracy and resis-

tance performance of the attacker-aware training outlined

above is not as good, as shown later in Figure 4. The large

feature space of the intermediate activation makes it more

vulnerable to MI attack. In fact, it has been shown in [14]

that attacking intermediate activation rather than confidence

score, can result in better MI attack performance.

So our approach is to reduce the dimension of interme-

diate activations through the use of bottleneck layers intro-

duced in [2]. We implement bottleneck layers using a pair

of Conv2D layers lin and lout. lin has input channel size

same as original channel size of the intermediate activation,
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and output channel size of C, while lout has input channel

size of C and output channel size same as the input channel

size of lin. Both layers have kernel size of 3. For simplicity,

we use Cx-Sy to denote bottleneck layers with channel size

of x and stride of y.

While use of bottleneck layer in mitigating MI attack is

new, use of only bottleneck layers does not improve perfor-

mance, as much as will be shown later in Table 4. However

a combination of attacker-aware training and bottleneck lay-

ers gives us way better performance in terms of both resis-

tance and accuracy. Thus, we present attacker-aware train-

ing with bottleneck layers as the method on which to build

up model resistance.

4.2. Attacker-aware fine-tuning

Typically in transfer learning, a complex task is trans-

ferred to simple tasks and so domain transfer can be done

by freezing the client-side model and fine-tuning the server-

side model. However, freezing the client-side model can

cause significant accuracy drop. Another option is to allow

a small learning rate, which leads to a compromised resis-

tance performance. To balance accuracy and resistance, we

allow the initial model to be tunable and propose a cheaper

version of attacker-aware training with low learning rate

called attacker-aware fine-tuning, to preserve the resistance.

We only allow a low learning rate of 0.005 (compared to a

learning rate of 0.02 for rest of the model) on the client-

side model and apply the attacker-aware training using the

least complex L0 inversion model. Also, we reduce the fre-

quency of inversion model training (line 11 in Algorithm 1)

to once every 5 training steps (f = 5) to reduce the over-

head of training inversion model at the client-side.

5. Experiments

Settings. To simulate a multi-client SFL, we randomly par-

tition the training dataset evenly to create training datasets

(private data) for each client. The server uses validation

dataset to validate the model as well as perform the MI at-

tack. We use Stochastic Gradient Descent (SGD) for client-

side model and server-side model, and set learning rate to

0.05 with proper learning rate decay. We use Adam op-

timizer [10] with learning rate of 0.001 for training both

the inversion model in performing MI attack as well as

in attacker-aware training. Each model is trained for 200

epochs. Our scheme has two hyperparameters: inversion

score strength parameter λ for attacker-aware training and

Cx-Sy for the bottleneck layers. We refer to baseline meth-

ods as those that apply attacker-aware training from scratch

in SFL, instead of the two-step ResSFL method. We fix the

model architecture to VGG-11 and cut-layer setting to 2 in

this section.
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Figure 3. Baseline attacker-aware training methods with L0

(weak) and L3 (strong) inversion models without adding bot-

tleneck layers, on VGG-11 with cut-layer of 2 on CIFAR-100

datasets.

5.1. Build MI-resistant Model (Pre-training)

Inversion Model Complexity. Figure 3 shows that using

a weak inversion model in baseline attacker-aware training

(without bottlneck layers) suffers from low resistance (low

MSE). We found that the inversion score of the weak in-

version model is stuck at a very low value implying a bad

reconstruction which translates to poor inversion ability. In

contrast, using a strong inversion model (L3) closely sim-

ulates the attacker and provides high MI resistance for a

large λ. As shown in Figure 3, the resistance improves sig-

nificantly for inversion model L3 when λ = 1.2 but with

significant drop in accuracy.

Adding Bottleneck Layers. For the pre-training step, we

apply the proposed attacker-aware training together with

bottleneck layers, and train a VGG-11 model with cut-layer

of 2. We vary the bottleneck setting and regularization

strength λ in equation 3 and show corresponding results in

Figure 4. Clearly, bottleneck settings (C12-S1 and C8-

S1) achieves much better resistance than without Bottle-

neck (None). On CIFAR-10 & CIFAR-100, attacker-aware

training with a narrow bottleneck setting of C8-S1 can in-

crease the MSE to above 0.02 while still maintaining over

90% accuracy.

5.2. Transfer MI resistance (SFL training)

Different Transfer Strategies. We transfer the pre-trained

resistant model from two source tasks CIFAR-10 and

CIFAR-100 to different target tasks CIFAR-100/CIFAR-10

[11], Facescrub [16], SVHN [15] and MNIST [12] on a 2-

client SFL scheme. For FaceScrub and MNIST, we scale

the original image to 32x32x3 so that it can be fed into

the same client-side model that was pre-trained on CIFAR-

10/CIFAR-100. The performance of resistance transfer is

shown in Table 3. The proposed attacker-aware fine-tuning

achieves a good balance between accuracy and resistance

compared to simple strategies such as freeze and simple fine-
tuning with small learning rate (set at 0.005). For instance,

on CIFAR-100, compared to simple fine-tuning, our pro-

posed attacker-aware fine-tuning achieves only 0.4% lower

accuracy with 0.028 higher MSE. And on SVHN, our pro-

posed method achieves almost no drop in accuracy with
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Figure 4. Attacker-aware training applied on VGG-11 with cut-

layer of 2 for CIFAR-10/CIFAR-100 datasets. Cx−Sy stands for

channel size x and stride of y.

only 0.004 lower MSE than freeze.

Transfer Performance to Different Datasets. The resis-

tance transfer performance is excellent when transferring

from CIFAR-10 to CIFAR-100. For example, CIFAR10

to CIFAR-100 transfer achieves a very high MSE of 0.050

with only 1% accuracy drop. This is because CIFAR-10

is more difficult to achieve resistance while CIFAR-100 is

easier as shown in Figure 4. So a model being resistant on

CIFAR-10 should still be resistant on CIFAR-100. Same

for the SVHN dataset, where we successfully reach MSE of

0.045 with almost no accuracy drop. However, resistance

transfer fails when transferring a simple task to a hard task.

For example in CIFAR-100 to CIFAR-10, the MSE is very

low at 0.006 on CIFAR-10 even if we only freeze the client-

side model. It also shows that the resistance performance

weakens when transferring from a source dataset with mul-

tiple input channel to a target dataset with a single input

channel (i.e. MNIST). We plan to investigate this in the

near future.

Generalization to Multiple Clients. We generalize the ex-

periments from 2 clients to more client cases. As shown in

Table 2, when the number of clients increase to 20, the pro-

posed scheme achieves similar resistance performance with

slight drop in accuracy. Using a client sampling technique,

we can extend to 100 clients.

5.3. Training-time Resistance Performance

To showcase how our framework based on resistance

transfer addresses the training-time MI attack, we perform

the MI attack at different epochs during SFL training. We

use the VGG-cut2 model as the representative model for our

ResSFL framework. For comparison, we use two versions

of the baseline method with λ = 0.3 with and without C8-

Table 2. Resistance transfer results for multiple clients from

CIFAR-10 to SVHN and CIFAR-100 dataset of VGG-cut2 model.

N SVHN CIFAR-100

Accu MSE Accu MSE

2 96.0 0.045 67.5 0.050

5 95.8 0.041 66.9 0.050

10 95.5 0.041 66.6 0.050

20 95.5 0.041 66.6 0.048

100a 95.4 0.040 65.8 0.046

a with a sampling rate of 10% per round.

S1 bottleneck layers. Figure 5 shows the performance of

the baseline method and the ResSFL on MI attack at dif-

ferent epochs (t = 1, 5, ..., 200). ResSFL framework has a

steady MI resistance during the training-time, and is consis-

tently better than the target resistance of 0.02 MSE (the red

dashed line).

0
0.02
0.04
0.06
0.08

1 5 10 20 50 200

M
SE

Epoch

ResSFL Baseline (w/o BN) Baseline (with BN)

Figure 5. Resistance performance of ResSFL and two baseline

methods (with and without bottleneck layers) against training-time

MI attack as a function of epoch number.

5.4. Evaluation of Existing Methods

Existing methods on protecting MI on SFL target pro-

tection of intermediate activations using perturbation-based

methods and regularization-based methods. Perturbation-

based methods include Laplacian noise [19], dropout [9],

topk-prune described in [25] and adversarial noise [23]. The

method in [19] adds noise to the intermediate activation,

where the noise follows a Laplacian distribution parameter-

ized by scale b (location parameter μ is kept at 0). [9] uses a

mask (each element takes 0 with probability p otherwise 1)

and multiplies it element-wise with the intermediate activa-

tion. Topk-prune preserves top k percent elements while

setting others to zero. [23] crafts adversarial noise using

FGSM [5] on a surrogate inversion model (we use L3 inver-

sion model) and adds it to the intermediate activation, we

use the ε to scale the gradient’s sign. Another line of works

apply regularization-based method to build model’s intrin-

sic resistance, similar to our proposed attacker-aware train-

ing. Works based on information correlation such as [22]

and [21] use mutual information and distance correlation

to regularize the training. However, [22] is not suitable for

SFL as it requires a lot of local computation and so we only
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Table 3. Transfer resistance of pre-trained VGG-11 model with cut-layer of 2 on a two-client SFL scheme. Results of fine-tuning client-side

model with lite-version attacker-aware training are shown in the last three columns.

Source Task Target Task Baseline
Accuracy

Freeze Simple
Fine-tuning

Attacker-aware
Fine-tuning

Accu MSE Accu MSE Accu MSE

CIFAR-10 SVHN 96.1 92.2 0.049 95.9 0.037 96.0 0.045

CIFAR-10 CIFAR-100 68.5 62.4 0.077 67.9 0.022 67.5 0.050

CIFAR-10 FaceScrub 82.2 63.5 0.021 68.1 0.015 65.2 0.021

CIFAR-10 MNIST 99.6 99.6 0.003 99.6 0.002 99.4 0.003

CIFAR-100 SVHN 96.1 93.6 0.050 96.0 0.023 95.8 0.039

CIFAR-100 FaceScrub 82.2 65.0 0.019 69.1 0.015 67.8 0.021

CIFAR-100 CIFAR-10 91.9 89.5 0.006 91.5 0.004 90.8 0.005

CIFAR-100 MNIST 99.6 99.6 0.003 99.6 0.002 99.4 0.003

Table 4. Comparison with previous defenses against MI attack on VGG-11 with cut-layer of 2 in a two-client SFL scheme, on CIFAR-100

dataset with original accuracy of 68.5% (w.o. any defense). All previous methods fail to get a value over 0.02 MSE while keeping the

accuracy drop to be less than 5%. In contrast, our proposed ResSFL achieves 0.050 MSE with only 1% accuracy drop.

Accuracy MSE
(L0)

MSE
(Best) Accuracy MSE

(L0)
MSE
(Best)

Laplacian [19]

b = 0.05 65.4 0.009 0.006

AdvNoise [23]

ε = 0.05 65.8 0.012 0.007

b = 0.08 62.2 0.012 0.008 ε = 0.08 64.6 0.026 0.012

b = 0.10 58.4 0.016 0.011 ε = 0.10 62.0 0.037 0.018

Dropout [9]

p = 0.15 64.2 0.010 0.006

DistCorr [21]

α = 1.0 63.6 0.014 0.009

p = 0.20 61.6 0.011 0.007 α = 1.5 63.2 0.036 0.014

p = 0.25 57.8 0.012 0.009 α = 2.0 62.1 0.051 0.019

TopkPrune [25]

k = 50 65.4 0.007 0.004
Bottleneck

Layers [2]

c16-s1 64.4 0.008 0.008

k = 60 61.1 0.007 0.004 c8-s1 63.4 0.020 0.013

k = 70 50.4 0.008 0.005 c4-s1 58.0 0.032 0.020

ResSFL λ0.3-c8-s1 67.5 0.072 0.050

include [21] in Table 4.

We vary hyper-parameter settings for each method

and keep accuracy in a reasonable range. Except for

perturbation-based methods that directly apply on a trained

model, we retrain the model and test the MI resistance dur-

ing inference. As shown in Table 4, all previous defensive

methods cannot achieve more than 0.02 MSE using both L0

and the best inversion model in MI attacks with accuracy

drop of less than 5%. Distance correlation method performs

well against simple L0 inversion model, but fails badly un-

der a strong MI attack using the best inversion model.

5.5. Cost Analysis

The number of parameters and floating point operations

(FLOPs) of different schemes are listed in Table 6. The

computation overhead of inversion model training depends

on its complexity and updating frequency. Using the pro-

posed attacker-aware fine-tuning, ResSFL has much less

computation overhead with 27% FLOPs and 20% param-

eters compared to the the original SFL scheme, and use

0.01% parameters and 0.17% FLOPs compared to the pop-

ular FL scheme [13].

6. Ablation Study
Choice of Topology. We extend the ResSFL framework

to other topologies (with different architecture and different

cut-layer settings). The second column in Table 5 presents

the settings on VGG-11 architecture with cut-layer of 1 and

2, ResNet-20 architecture with cut-layer of 2, 3 and 4, and

MobileNet-V2 architecture with cut-layer of 2, 3, and 4

are presented. We act as the expert and tune the channel

size/stride size of bottleneck and inversion score strength

λ, to train client-side models towards the resistance tar-

get of 0.02 MSE on CIFAR-10 dataset. For example, for

ResNet20 architecture with cut-layer of 3, the target resis-

tance is achieved with C1-S1 bottleneck and λ=0.3. The
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Table 5. Transfer resistance of pre-trained models with different architectures on a two-client SFL scheme, from source task CIFAR-10 to

target task CIFAR-100. We include FLOPs (measured by feeding a single image), and two popular image quality metrics SSIM and Peak

Signal-to-Noise Ratio (PSNR) (using the best inversion model); higher means better image quality.

Topology ResSFL
Setting FLOPs Original

Accuracy
ResSFL

Accuracy MSE SSIM PSNR

VGG-cut1 λ0.5-c1-s1 2.1M 68.5 52.3 0.041 0.553 14.4

VGG-cut2 λ0.3-c8-s1 21.5M 68.5 67.5 0.050 0.547 14.2

VGG-cut3 λ0.3-c12-s1 41.6M 68.5 67.8 0.038 0.539 15.3

Res-cut2 λ2.0-c1-s2 5.3M 67.8 55.2 0.052 0.554 13.6

Res-cut3 λ0.3-c1-s1 10.2M 67.8 62.0 0.048 0.556 13.9

Res-cut4 λ0.5-c2-s1 15.1M 67.8 65.6 0.043 0.719 15.6

Mob-cut2 λ0.5-c1-s1 3.7M 71.4 67.3 0.020 0.787 17.6

Mob-cut3 λ0.5-c2-s1 18.7M 71.4 70.9 0.037 0.717 15.6

Mob-cut4 λ0.3-c4-s1 31.6M 71.4 70.8 0.062 0.538 13.3

Table 6. Cost analysis of competing schemes on VGG-11 with

cut-layer 2 on CIFAR-100.

Scheme Parameters FLOPs Resistance

FL 9.8M (1.00x) 153.7M (1.00x) High

SFL 76.0K (0.01x) 20.9M (0.14x) Low

ResSFL 91.5K (0.01x) 26.5M (0.17x) High

right three columns in Table 5 show the resistance achieved

on CIFAR-100 dataset using resistance transfer for differ-

ent topologies. We notice that for the same architecture,

increasing the cut-layer gets a better accuracy, and better re-

sistance most of the time. Across architecture choices, the

MobileNet-V2 performs typically well. Applying ResSFL

on MobilNet-V2 with cut-layer of 2 helps achieve a very

good accuracy as well as a super high MSE with very small

number of FLOPs. VGG-11 architecture can also achieve

a very good resistance with only 1% accuracy drop. Thus,

different topologies have different computation complexi-

ties, accuracy and resistance tradeoffs, and the topology de-

sign space needs further investigation.

7. Conclusion
We present ResSFL, a two-step SFL framework that con-

sists of an attacker-aware training that achieves high MI re-

sistance by an expert and then transferring the resistance to

the clients to improve their MI resistance during SFL train-

ing. We show that a combination of attacker-aware train-

ing with a complex inversion model and addition of bottle-

neck layers to the model helps the expert build up strong

MI resistance. Transferring this resistance to the clients not

only reduces the computational demands at the client-end

but also addresses the vulnerability due to attacks in earlier

training epochs. We show using the attacker-aware fine-

tuning can achieve better balance between accuracy and re-

sistance. We also show that the framework can support mul-

tiple clients and can be generalized to different architecture-

cut-layer configurations. Finally, we show that ResSFL

applied to VGG11 model on CIFAR-100 dataset achieves

0.050 MSE compared to 0.005 MSE obtained by the base-

line scheme with only 1% accuracy drop; the corresponding

reconstructed faces are very noisy, as shown in Figure 6, and

demonstrate the power of the proposed ResSFL scheme.

Ground Truth
MIA on SFL
MSE: 0.005

MIA on ResSFL
MSE: 0.050

FaceScrub
Ground Truth

MIA on ResSFL
MSE: 0.021

MIA on SFL
MSE: 0.005

MSE: 0.045

Ground Truth

MIA on ResSFL

MIA on SFL
MSE: 0.007

SVHN

CIFAR-100

Figure 6. Visualization of MI attack reconstructed images. Model

architecture is VGG-11 with cut-layer of 2.
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