
Revisiting Random Channel Pruning for Neural Network Compression

Yawei Li1 Kamil Adamczewski2 Wen Li3 Shuhang Gu4 Radu Timofte1 Luc Van Gool1,5
1Computer Vision Lab, ETH Zürich 2MPI-IS 3UESTC 4USYD 5KU Leuven

{yawei.li, radu.timofte, vangool}@vision.ee.ethz.ch

Abstract

Channel (or 3D filter) pruning serves as an effective way
to accelerate the inference of neural networks. There has
been a flurry of algorithms that try to solve this practical
problem, each being claimed effective in some ways. Yet, a
benchmark to compare those algorithms directly is lacking,
mainly due to the complexity of the algorithms and some
custom settings such as the particular network configura-
tion or training procedure. A fair benchmark is important
for the further development of channel pruning.

Meanwhile, recent investigations reveal that the chan-
nel configurations discovered by pruning algorithms are at
least as important as the pre-trained weights. This gives
channel pruning a new role, namely searching the optimal
channel configuration. In this paper, we try to determine
the channel configuration of the pruned models by ran-
dom search. The proposed approach provides a new way
to compare different methods, namely how well they be-
have compared with random pruning. We show that this
simple strategy works quite well compared with other chan-
nel pruning methods. We also show that under this setting,
there are surprisingly no clear winners among different
channel importance evaluation methods, which then may
tilt the research efforts into advanced channel configura-
tion searching methods. Code will be released at https:
//github.com/ofsoundof/random_channel_
pruning.

1. Introduction
Since the advent of deep learning based computer vision

solutions, network compression has been at the core of re-
ducing the computational complexity of neural networks,
accelerating their inference, and enabling their deployment
on resource constrained devices [20,21,31,41,55,56,63,65].
Channel pruning (or structured pruning, filter pruning) is
one of the approaches that can achieve the acceleration of
convolutional neural networks (CNNs) [10, 18, 30, 32, 40].

The goal of this paper is to conduct an empirical study
on channel pruning procedure that is not paid enough at-

tention to, i.e. random channel pruning. By random prun-
ing, we mean that the pruning ratio of each layer is ran-
domly selected and the channels to be pruned within the
layer are determined by some criterion. Random prun-
ing is frequently referred as a baseline to show the im-
provements of the state-of-the-art channel pruning meth-
ods [11, 12, 35, 39, 42, 47, 49, 61, 64]. Yet, the power of ran-
dom pruning is not fully released. By the rigorous study in
this paper, we have several striking findings as follows.

F1 When brought to the same setting under random prun-
ing, the recent proposed channel pruning criteria [19,
36, 44, 49] performs just comparable with the simple
L1 and L2 norm based pruning criteria.

F2 Compared with channel pruning algorithms that start
with a pre-trained model [9, 17–19, 23, 37–39, 45, 60,
66] (See results in Table 3), random pruning can find
a pruned model with comparable or even superior per-
formances.

F3 Even compared with advanced pruning methods that
optimize the overall network architecture such place-
ment of pooling layers [40] and expansion of available
network width [57], random pruning still narrows the
performance gap (less than 0.5% on ImageNet classi-
fication).

F4 Fine-tuning epochs has a strong influence on the per-
formance of the pruned network. High-performing
pruned networks usually comes with prolonged fine-
tuning epochs.

Those findings lead to several implications. First of all,
considering F1, since L1/L2 based channel pruning could
perform as well as the other pruning criteria, by the law
of Occam’s razor, most of the cases, the simple L1 and
L2 based pruning criteria can just serve the purpose of
channel pruning. Secondly, combining F2 and F3, ran-
dom pruning as a neutral baseline, reveals the funda-
mental development in the field of network pruning. For
algorithms that rely on the predefined network architec-
ture and pre-trained network weight, we haven’t gone far

191



since the advent of network pruning. Beyond that, overall
network architecture optimization brings additional bene-
fits. The performance difference of most methods fall into
a narrow range of 1%, which is close to the performance
of the original network. This on the one hand shows the
characteristic of channel pruning, i.e. the performance of
the channel pruned network is upper bounded by the orig-
inal network 1. On the other hand, it shows the difficulty
of the problem, i.e. every small improvement comes with
huge efforts (mostly computation). Thirdly, considering F4,
for a fair comparison and a long-lasting development of
the field, fine-tuning epoch should be standardized. We
encourage researchers in this field to explain in detail the
training and fine-tuning protocol especially the number of
epochs. As such, computational cost could be kept in mind
for both researchers and industrial practitioners.

The discussion above leads to the unique role that ran-
dom pruning could play in channel pruning, i.e. serving as
a baseline to benchmark different channel pruning meth-
ods [5]. On the one hand, random channel pruning could
bring different pruning criteria under the same regime. As
such, the different channel importance estimation methods
becomes a meta component which is fit to work with the
existing methods. On the other hand, random pruning can
become a baseline for other algorithms. Since the perfor-
mance of channel pruning algorithms can be influenced by
a couple of factors especially the fine-tuning procedure, de-
coupling the influential factors and neutrally showing costs
and benefits helps creating clarity. Random channel prun-
ing also simplifies the pruning algorithm. Instead of resort-
ing to sophisticated algorithms such as reinforcement learn-
ing [18], evolutionary algorithms [40], and proximal gradi-
ent descent [30], channel pruning can be simplified to ran-
domly sampling a pool of sub-networks and selecting the
best from them.

In this paper, random pruning is studied in two settings.
In the first setting, the task is to prune a pre-trained network.
In the second setting, a pre-trained network is not needed
and the pruning algorithm starts with a randomly initial-
ized network. The problem is formulated as an architecture
search problem. To cope with the searching, the network is
reparameterized with an architecture similar to that of the
original network. Since the network is trained and pruned
from scratch, the second setting is referred to as ‘pruning
from scratch’ in this paper. In both cases, random prun-
ing aims at searching the optimal numbers of channels for
a compact network, by randomly sampling the space of all
possible channel configurations. Although being extremely
easy, random pruning performs surprisingly well compared
to the carefully designed pruning algorithms. The surpris-
ing success of random pruning also call for an optimized
sampling method that improves the search efficiency.

1More discussion in the supplementary.

In short, the contributions of this paper are as follows.
1) We present random pruning, a simplified channel prun-

ing method as a strong baseline to benchmark other
channel pruning methods. The properties of random
pruning are analyzed in this paper.

2) We formalize the basic concepts in channel pruning
and try to analyze the reason why random pruning
could lead to results comparable to those of carefully
designed algorithms.

3) We benchmark a number of channel pruning methods,
incl. criteria for random pruning, to get a feel for the
current status of channel pruning.

2. Related Works
Channel pruning methods are one of the primary ways

to compress neural networks along with the reduction of
number of bits in weights via quantization [7, 13] and low
rank approximation [24,31,62,63]. The purpose of channel
pruning methods is to create a thinner architecture while
incurring minimal loss in performance relative to that of the
original network.

The early pruning methods concentrate around, so-
called, unstructured pruning which removes single param-
eters from networks [14, 48]. These approaches, though
interesting theoretically, are more difficult to implement
within current hardware and software settings. Therefore,
much recent work has focused on structured pruning where
network channels can be removed and the models can be
practically compressed and accelerated [2].

The pruning methods fit in different paradigms. Most
common pruning approaches rely on pruning the parame-
ters based on the magnitude of the weights, such as L1/L2
norm [56], or more recent median pruning [19]. When con-
volved, weights provide direct way to compute and, after
pruning, approximate the feature maps [45]. Assessing out-
put feature maps, which corresponds to the channels can be
an alternative to analyze the importance of the parameters
in the network [37, 66]. Another group of pruning methods
which have been developed over a few decades utilize the
gradient of the loss function with respect to the weights by
means of first-order or second-order Taylor series approx-
imations [15, 27, 49]. In this line of work, the weights of
smaller importance have smaller impact on the loss func-
tion and therefore can be removed. Recent approaches are
varied and include assessing channel importance by KL-
divergence [44], simulated annealing [50], importance sam-
pling [3], and learning Dirichlet distribution over parame-
ters [1].

Recently, pruning methods have intertwined with knowl-
edge distillation where two networks, a large and a small
one share output information to produce similar results [21,
30, 33, 54]. Such approach can be also combined with gen-
erative adversarial learning for pruning [38].

192



Nevertheless, the issue with these methods is that al-
though they provide the importance score for the weights,
they neither indicate how many parameters should be
pruned nor provide little justification as to choices of the
pruned architecture. However, it is widely considered that
some of the pruned architectures can be better than oth-
ers [12]. Our work suggests a random architecture search, a
simple, unbiased and general approach to compare most of
the pruning methods and allows to find a good architecture
given a pre-defined model.

We also noticed other works that try to compare differ-
ent methods [22, 41]. Yet, this paper is fundamentally dif-
ferent from those works in the aim and the enlightenment
from the analysis. The aim of [41] is to identify the value
of network pruning as discovering the network architecture
whereas our aim is to propose random pruning as a neu-
tral baseline to compare different pruning methods. The
study in [22] “guides and motivates the researchers to de-
sign more reasonable criteria” while our study finds out
that advanced pruning criteria behaves just comparable with
the naive L1/L2 norm and calls for an optimized sampling
method for efficient search. More discussion is given in the
supplementary.

3. Definition and Preliminaries
3.1. Basic concepts and formalization

Before delving into the details of the random pruning
procedure in this paper, a couple of concepts are first intro-
duced in this section.

Definition 1 (Random selection in channel pruning). As
far as random pruning in the network is concerned, the ran-
domness could occur in different ways. I. Fully random.
The channels to be pruned are fully randomly selected with-
out any constraint across layers. This is often used as a
weak baseline [12, 42, 49]. II. Constrained Random. The
pruning ratio of each layer is determined according to some
prior knowledge. The pruned channels within a layer are
randomly selected. This is studied in [47]. III. Random
channel number selection. The pruning ratio of each layer
is randomly sampled and the filters in a layer are pruned
according certain criteria. In this paper, the third case of
random pruning is studied.

Definition 2 (Channel Configuration Space). The channel
configuration space E of a network is defined as the space
that contains all of the possible channel number configu-
rations. Let cli be the number of channels in a layer li,
then the number of channel configurations within a layer is
2cli − 1 (we need at least one channel in a layer) and the
space of all the configurations contains

∏n
i 2

cli − 1 sam-
ples, where n is the number of layers in an architecture.

Different configurations in the space have varying model
complexity (computation, number of parameters, latency)

(a) Performance of networks in a
neighborhood.

(b) Searching of networks in the
configuration space.

Figure 1. (a) Slightly modified ResNet20 on CIFAR10 image clas-
sification. The accuracy of the networks in the local region of the
configuration space does not vary a lot. (b) Random pruning only
needs to get a sample in the neighborhood of the optimal solution
in the configuration space.

and accuracy. Channel pruning methods aim at finding a
target channel configuration that maximizes the accuracy of
the network given a fixed model complexity. The configu-
ration space is very different from the parameter space of a
network. In the following, two properties that highly influ-
ence the channel pruning algorithms are summarized.

Property 1: The channel configuration space is discrete.
Conducting differentiable analysis in this space is impossi-
ble. This property constitutes a major challenge for chan-
nel pruning and architecture search methods. To conduct a
search in the space, reinforcement learning, evolutionary al-
gorithm, and also proximal gradient descent have been uti-
lized [18, 32, 40].

Property 2: Slightly changing the channel number of a
network does not change the accuracy of the network too
much, which means that channel configurations in a local
region of the configuration space tend to have similar accu-
racy. This property is shown in Fig. 1a, where the accuracy
of the network in the top-left region does change a lot.

This property means that the solution to channel pruning
problem is not unique. Instead, a group of solutions can ex-
ist. This sheds light on the effectiveness of random pruning.
Regularization-based methods gradually update from initial
networks to the optimal solutions [30,56]. By contrast, ran-
dom pruning only needs to get a sample in the neighbor-
hood of the optimal solution instead of optimal solution it-
self (See Fig. 1b). As mentioned in the introduction, we
study random pruning for channel pruning in two settings.
We describe them below.

Setting 1: Pruning pre-trained networks. In this setting,
channel pruning methods take a pre-trained network and
prune the less important channels according to an impor-
tance score.

Setting 2: Pruning from scratch. In this setting, the net-
work is trained from scratch [4,6,32,40,58,59]. During each

193



mini-batch iteration, sub-networks in the allowable channel
configuration space in Sec. 5.1 are trained in parallel such
that four sub-networks are sampled and used for parame-
ter update. To cope with the parallel training, a network
with architectures similar to the original network is rebuilt
according to the description in Sec. 5. After the training, op-
timized searching method is used to seek the candidate net-
works [4,6,58]. A recent work also incorporates the search-
ing phase into the training phase by penalizing parameters
in the rebuilt network, achieving faster convergence [32].

In the process of pruning the network, the crucial bench-
mark is the evaluation of the pruned model itself. When
pruning and finetuning are done iteratively, it is possible
to evaluate the performance of the network during pruning.
But if the network is severely pruned, the accuracy of the
network drops drastically. For example, when directly prun-
ing 30% of the computation in MobileNetV2, Top-1 error
could deteriorate to 90%. Directly evaluating the network
in this case becomes unreliable. In short, we are faced with
the challenge: how to evaluate the performance of a pruned
network in an efficient way?

For the two pruning settings, there exist different solu-
tions. When pruning a pre-trained network with random
pruning, the parameters of the pruned network are updated
by minimizing the difference between the feature maps of
the pruned network and the original network layer by layer
Compared with finetuning the network for several epochs,
the updating the parameters is more efficient, especially
when the number of random samples is large. When prun-
ing from scratch, the solution lies in the parallel training
procedure of the network. During training, a large num-
ber of sub-networks are sampled. The network is trained
such that the accuracy of all of the sub-networks tends to
decrease. Parallel training arms the network with the ca-
pability of interpolating the accuracy of unsampled sub-
networks. Thus, after training, it is possible to evaluate the
performance of the sampled sub-networks reliably.

3.2. Pruning criteria

For channel pruning, it is crucial to evaluate the rela-
tive importance of the channels. There exist several meth-
ods that try to measure the channel importance score from
different perspectives. The most straightforward method is
based on the L1/L2 norms of the filters. Consider an in-
dividual layer in a network with weight parameters W =
[W1, · · · ,Wn], where W ∈ Rn×c×w×h, Wi ∈ Rc×w×h

denotes the i-th output channel of the network (for clar-
ity, we omit the bias). n, c, w × h denote the number of
output channel, input channel, and kernel size of the layer.
Then the L1/L2 norm based importance score is computed
as Inorm = ∥Wi∥p, where p could be 1 or 2. The filters
with smaller norms are likely to be pruned since they gen-
erate output feature map with smaller magnitude.

Yet, some work point out that relying on L1/L2 norms
could be problematic since the batch normalization layer
could recalibrate the magnitude of the feature map [56]. In
addition, the ”smaller-norm-less-informative” criteria does
not respect the distribution of filters in the network [19].
Thus, in [19] geometric median is proposed to overcome
the problem. This criteria discovers the similar filters
which could be replaced by the other filters, Igm =∑

j S(Wi,Wj), where S(·, ·) denotes the similarity be-
tween two filters.

The above criteria are only based on the distribution of
the filters in the network, which may not fully respect their
influence on the accuracy of the network. Thus, in [44],
Kullback–Leibler divergence is used to measure the im-
portance of a channel by masking out it in the network,
Ikl =

∑
k Pk log(

Pk

Qi
k

), where P is the output probabil-

ity of the original network and Qi
k is the probability of

the pruned network by masking out the single channel in
the network. Channels with smaller KL divergence score
have weaker influence on the output probability and can
be pruned. However, this method requires to conduct one
forward-pass for every channel in the network. This is quite
slow compared with other methods. In [49], an accelerated
computing method by estimating the prediction error with
and without a specific parameter. The estimation is done
by taking the first- or second- order Taylor expansion of the
prediction error. In short, the importance score of a chan-
nel is computed by Ite = (

∑
s gsws)

2, where ws denotes a
single weight in the channel Wi and gs denotes the gradi-
ent. Furthermore, in [3, 36], an empirical sensitivity based
on the feature map is proposed. Intuitively, the sensitivity of
a feature map reflects the relative impact it has on the pre-
activations in the next layer. In this paper, we try to compare
the six metrics under random pruning.

4. Pruning Pre-trained Networks

In this section, the random procedure for pruning a pre-
trained model is introduced. The pipeline is shown in Fig. 2.
The pruning algorithm starts with a pre-trained network.
The importance score of individual channels in the pre-
trained network is first computed. The importance score
is the indicator of which channels should be pruned in the
next step. Then we select a number of sub-architectures
and prune the channels with the lowest score. A sub-
architecture is formed by sampling pruning ratios for each
layer separately, and then pruning the number of channels
given by the ratio. A minimum ratio of remaining chan-
nels is set. That is, the range for sampling the pruning ra-
tio is [η, 1] Next, the parameters of the pruned network are
updated by minimizing the squared difference between fea-
tures maps of the pruned network and the original network,
and the accuracy of the pruned network is evaluated on the

194



validation set. The top-5 accurate models are selected and
fine-tuned for several epochs to further recover the accuracy
of the network. Finally, the model with the best accuracy is
selected and fine-tuned for longer epochs. Next, the impor-
tant steps in the pipeline are explained in detail.

4.1. Random sampling

The sub-networks are derived by random sampling the
pruning ratio for each layer independently. In total, a pop-
ulation of N sub-networks are sampled. The configurations
that meet the target computational complexity are kept.
Specifically, let Cprune and Corig denotes the floating point
operations (FLOPs) of the pruned network and the original
network, respectively. Then the samples that meet the fol-
lowing criteria are kept, i.e.∣∣∣∣CpruneCorig

− γ

∣∣∣∣ <= T , (1)

where γ is the overall pruning ratio of the network and T
is the threshold that confines the difference between the ac-
tual and target pruning ratio. During the sampling, the mini-
mum ratio of remaining channels η is empirically set around
(equal to or slightly smaller than) the overall pruning ratio
γ based on the following considerations. 1) This setting
is simple enough and does not involve complicated hyper-
parameter tuning. 2) It allows for a reasonably constrained
random sampling sub-space for the algorithm to explore.
The setting of η prevents the case where a major part of
the channels in a layer is pruned. A bottleneck in the net-
work could harm the performance of the pruned network.
The random sampling procedure searches the configuration
space. Although it seems to be quite easy, it is shown in the
experiments that this procedure is surprisingly competitive.

4.2. Updating network parameter

For each sampled sub-architecture, the network is di-
rectly pruned according to the per-layer pruning ratio. Yet,
the accuracy of the network is very likely to drop dras-
tically after pruning, especially when the pruning ratio is
high. Directly evaluating the pruned network is not reliable.
The common practice is to fine-tune the network for a few
epochs. But this could be time-consuming considering that
a large population of sub-networks are sampled. Instead,
we opt for another solution, i.e. minimizing the distance be-
tween the feature maps of the pruned network and the orig-
inal network [20, 29, 45]. Let Fp ∈ Rn′×d and Fo ∈ Rn×d

denote the feature map of the pruned network and the orig-
inal network, respectively. Note that the feature maps are
reshaped into matrices. Since the network is pruned, its
feature map has less channels than the original network, i.e.
n′ < n. The parameters in the pruned network is updated
by minimizing the following loss function

L = argmin
X

∥F̂o −XFp∥22, (2)

Pre-trained model

Compute the importance score

Sample a sub-architecture

Update parameters with
square loss and test

All samples tested?

Select top-5 models and finetune

Select the best model and finetune

no

yes

1
Figure 2. The pipeline of random pruning a pre-trained model.

where F̂o ∈ Rn′×d is the feature map of the original net-
work with the corresponding channels removed and X ∈
Rn′×n′

is the additional parameter that updates the pruned
network. The parameter X can be derived with least square
solvers. It can be further merged with the original parameter
in the layer of the network. Thus, in fact, no additional pa-
rameter or computation is introduced in the pruned network.
This parameter updating procedure is done layer-wise.

5. Pruning From Scratch

In this section, the procedure used to prune a network
from scratch is described. The pipeline is shown in Fig 3.
In this setting, the pipeline starts with the architecture of
the original network. We build a slimmable network ac-
cording to [59]. The permissible channel configurations are
described in Sec. 5.1. Then the network is initialized and
trained from scratch. Parallel training is conducted. That
is, for each mini-batch iteration during training, four sub-
networks are sampled including the complete network and
three random samples. Four forward and backward passes
are conducted. The gradients during the four backward
passes are accumulated and used to update the parameters
in the network. The maximum network is always sampled,
which guarantees that all of the parameters are updated dur-
ing one iteration. In-place knowledge distillation is used.

After the training stage, the channel configuration is still
searched by random sampling. Thus, a population of N
sub-networks satisfying Eqn. 1 are derived. Owing to the
parallel training, the network gains the capability of interpo-
lating the accuracy of unsampled sub-networks. Thus, the
sub-networks can be evaluated directly on the validation set
and the accuracy is reliable. After that, the top 50 models

195



Original architecture

Rebuild and reparam-
eterize the network

Sample sub-architectures
and conduct parallel training

Training finished?

Sample and test 100 sub-architectures

Select top 50 models and fine-tune

Select the best model and retrain

no

yes

1
Figure 3. The pipeline of the random pruning from scratch.

are further trained for a few epochs. Finally, the best model
among the 50 models is selected and retrained from scratch.
In the next subsection, the considerations for rebuilding the
network are described.

5.1. Designing the network pruning space

One problem encountered in this setting is that the total
number of sub-networks is quite large. Searching in that
large search space is a challenge. Thus, to ease the problem,
the pruning space is restricted as follows.

1) The number of channels is confined to be multiples of
8. Although making the channel number selection dis-
crete, this strategy reduces the possible network sam-
ples significantly. For example in the case ResNet-18,
the number of possible sub-network configurations is
reduced from 2.4× 1024 to 2.8× 1014. This design is
inspired by Property 2 of the configuration space.

2) The minimum number of channels is reset and rounded
to multiples of 8. This again avoids the very narrow
bottleneck in the network. For example, when prun-
ing 30% of the FLOPs of ResNet-18, we empirically
require 40% of the channels must be kept.

3) For a fair comparison with pruning pre-trained net-
works, the maximum network width is not expanded.

6. Experimental Results

The experimental results are shown in this section. The
experiments are conducted on three commonly used net-
works, including VGG [53], ResNet [16] and its variants,
and MobileNetV2 [52]. For ImageNet [8] experiments, the
pre-trained models provided by PyTorch [51] are used as
the baseline. For CIFAR [26] experiments, the original net-

Criterion
Top-1

Error (%)
Top-5

Error (%)
FLOPs [G] /

Ratio (%)
Params [M] /

Ratio (%)

VGG16, Target FLOPs Ratio 70 %
Baseline 26.63 8.5 15.50 /100.00 138.4 /100.00

L1 27.14 8.68 11.11 /71.67 112.3 /81.14
L2 27.01 8.82 10.87 /70.10 128.8 /93.09
GM 27.96 8.77 11.09 /71.55 108.4 /78.34
TE 27.04 8.77 10.65 /68.70 130.4 /94.27
ES 26.76 8.60 10.38 /66.98 130.9 /94.63
KL 27.22 8.88 10.91 /70.37 128.9 /93.15

ResNet18, Target FLOPs Ratio 70 %
Baseline 30.24 10.92 1.82 /100.00 11.69 /100.00

L1 32.08 12.02 1.28 /70.53 8.90 /76.10
L2 31.69 11.79 1.31 /71.92 9.58 /81.92
GM 31.76 11.87 1.30 /71.67 9.97 /85.27
TE 31.76 11.83 1.30 /71.38 9.79 /83.77
ES 31.66 11.86 1.30 /71.31 9.41 /80.53
KL 31.90 11.93 1.31 /72.14 9.77 /83.54

Scratch 31.68 11.71 1.28 /70.38 10.06 /86.05

ResNet18, Target FLOPs Ratio 50 %
Baseline 30.24 10.92 1.82 /100.00 11.69 /100.00

L1 34.98 13.81 0.94 /51.80 7.49 /64.06
L2 35.18 13.97 0.93 /51.30 6.88 /58.88
GM 34.50 13.44 0.92 /50.57 8.04 /68.80
TE 34.66 13.81 0.94 /51.69 8.02 /68.60
ES 35.34 14.03 0.94 /51.90 6.74 /57.67
KL 35.10 13.94 0.93 /50.88 7.78 /66.53

ResNet50, Target FLOPs Ratio 70 %
Baseline 23.85 7.13 4.11 /100.00 25.56 /100.00

L1 24.77 7.51 2.81 /68.41 18.24 /71.35
L2 24.33 7.35 2.94 /71.48 20.23 /79.15
GM 24.65 7.40 2.87 /69.89 18.60 /72.80
TE 24.69 7.43 2.89 /70.32 20.58 /80.53
ES 24.66 7.48 2.89 /70.26 18.06 /70.66
KL 24.66 7.49 2.92 /70.94 18.60 /72.76

MobileNetV2, Target FLOPs Ratio 70 %
Baseline 28.12 9.71 0.314 /100.00 3.50 /100.00

L1 32.22 12.04 0.224 /71.22 2.65 /75.74
L2 31.84 11.85 0.225 /71.63 2.62 /74.81
GM 31.89 11.88 0.223 /71.12 2.69 /76.65
TE 32.09 12.01 0.223 /70.87 2.63 /75.16
ES 31.93 11.77 0.223 /71.03 2.63 /75.10
KL 31.96 11.93 0.225 /71.54 2.64 /75.36

Table 1. Benchmarking channel pruning criteria on ImageNet clas-
sification under the scheme of random pruning.

work is trained for 300 epochs with the initial learning rate
of 0.1 and the batch size of 64. The learning rate decays
by 0.1 at the epochs 150 and 225. When pruning the pre-
trained models, the pruned architectures with the channels
selected by the above methods are tested. The top-5 pruned
models are selected and fine-tuned for 5 epochs. Eventually
to narrow down the search we choose the best model and
fine-tune it again to obtain the final pruned model. For Ima-
geNet and CIFAR, the networks are fine-tuned for 25 and 50
epochs respectively unless otherwise stated. When pruning
from scratch, the network is initially trained for 40 epochs.
After pruning, the network is reinitialized and retrained for
90 epochs. The population of the sampled sub-network is
100. The threshold T for random sampling is set to 0.02.

6.1. Benchmarking channel pruning criteria

It is worth noting that the implemented random pruning
method indicates how many channels of each layer should

196



Criterion
Top-1

Error (%)
Top-5

Error (%)
FLOPs [G] /

Ratio (%)
Params /
Ratio (%)

VGG, CIFAR10
Baseline 5.67 0.58 313.80 /100.00 14.73M /100.00

L1 6.1 0.69 160.50 /51.15 5.05M /34.32
L2 6.06 0.67 150.60 /47.99 6.20M /42.11
GM 5.99 0.52 154.60 /49.27 4.13M /28.04
TE 6.51 0.61 157.00 /50.03 5.84M /39.63
ES 6.21 0.64 157.20 /50.10 7.06M /47.90
KL 6.19 0.66 161.50 /51.47 6.52M /44.26

ResNet56, CIFAR10
Baseline 5.58 0.26 126.80 /100.00 855.8k /100.00

L1 6.72 0.79 63.60 /50.16 503.6k /58.85
L2 6.52 0.76 64.70 /51.03 471.4k /55.08
GM 6.39 0.77 65.40 /51.58 504.0k /58.89
TE 6.86 0.59 65.70 /51.81 442.4k /51.69
ES 6.59 0.67 65.80 /51.89 545.6k /63.75
KL 7.12 0.67 65.20 /51.42 443.3k /51.80

ResNet20, CIFAR100
Baseline 31.53 9.87 41.20 /100.00 278.3k /100.00

L1 33.41 10.42 20.80 /50.49 176.2k /63.29
L2 33.39 10.62 21.00 /50.97 175.9k /63.20
GM 33.32 10.35 20.60 /50.00 183.8k /66.03
TE 34.24 10.92 20.00 /48.54 168.8k /60.65
ES 33.81 10.13 21.00 /50.97 176.3k /63.34
KL 33.32 10.62 21.20 /51.46 187.5k /67.35

Table 2. Benchmarking channel pruning criteria on CIFAR10 and
CIFAR100 image classification under the scheme of random prun-
ing. More results are given in the supplementary.

be pruned and which channels are pruned is decided by the
external criteria. A range of pruning methods are com-
pared and benchmarked under the scheme of random prun-
ing, including the traditional L1 and L2 norm of the filters
(L1, L2), and the recent method based on geometric median
(GM) [19], Taylor expansion (TE) [49], KL-divergence im-
portance metric (KL) [44] and empirical sensitivity analysis
(ES) [36]. In addition, the method of pruning from scratch
based on slimmable networks [58] is also included.

The benchmark results for ImageNet and CIFAR are
shown in Table 1 and Table 2, respectively. The FLOP met-
ric is relatively fixed. Since a threshold T = 0.02 is set, the
difference between the target overall pruning ratio and the
actual overall pruning ratio is within 2%. During the ran-
dom sampling, it is difficult to fix both FLOPs and the num-
ber of parameters. Thus, the number of parameters of the
pruned networks vary. Several conclusions can be drawn by
analyzing the results in Table 1 and Table 2. I. When com-
paring different pruning criteria across different networks
and datasets under the scheme of random pruning, their per-
formance is close to each other. It is quite surprising that the
advanced pruning criteria such as KL and ES do not neces-
sarily outperform the naive ones such as L1 and L2 norm.
II. The number of parameters have significant influence on
the accuracy of the pruned network. When the computa-
tional complexity is about the same, pruned networks with
more parameters tend to have lower error rate. III. Con-
sidering the above two observations, we conclude that there

Methods Epoch
Top-1

Err. (%)
Top-5

Err. (%)
FLOPs
Ratio

Params
Ratio

ResNet50, ImageNet
SFP [17] 100 25.39 7.94 58.2 –

GAL-0.5 [38] 30 28.05 9.06 56.97 83.14
SSS [23] 100 28.18 9.21 56.96 61.15

HRank [37] 480 25.02 7.67 56.23 63.33
Random Pruning 25 25.85 8.01 50.72 54.99
Random Pruning 75 25.22 7.69 50.72 54.99
Random Pruning 120 24.87 7.48 48.99 54.12
AutoPruner [43] 32 25.24 7.85 48.79 –
Adapt-DCP [39] 120 24.85 7.70 47.59 45.01

FPGM [19] 90 25.17 7.68 46.5 –
DCP [66] 60 25.05 7.68 44.50 48.44

ThiNet [45] 87 27.97 9.01 44.17 –

MetaPruning [40] 160 24.60 – 48.78 –
AutoSlim [57] 150 24.40 – 80.60 –

MobileNetV2, ImageNet2012
MetaPruning [40] 160 28.80 – 72.33 –
Random Pruning 120 29.10 – 70.87 –

AMC [18] 120 29.20 – 70.00 –
Adapt-DCP [39] 310 28.55 – 68.92 –

ResNet56, CIFAR10
GAL-0.5 [38] 100 6.62 – 63.40 88.20

[28] 40 6.94 – 62.40 86.30
NISP [60] – 6.99 – 56.39 57.40

Random Pruning 50 6.52 – 51.03 55.08
CaP [46] – 6.78 – 50.20 –
ENC [25] – 7.00 – 50.00 –
AMC [18] – 8.1 – 50.00 –
Hinge [30] 300 6.31 – 50.00 48.73
KSE [34] 200 6.77 – 48.00 45.27

FPGM [19] 200 6.74 – 47.4 –
SFP [17] 300 6.65 – 47.4 –

Table 3. Benchmarking different channel pruning methods.

is no clear winner among the seven compared pruning cri-
teria. IV. Thus, when the pruned networks are fine-tuned
for long enough epochs (e.g. , more than 25 epochs), the
benefits of advanced pruning criteria is substituted by the
prolonged training. V. This means that for both pruning a
pre-trained model and pruning from scratch, efficient search
of the channel configuration space should be at least one of
the major research directions.

6.2. Benchmarking channel pruning methods

To further study the status of channel pruning, we incor-
porate the results of more methods in Table 3. Two net-
works are used to benchmark different methods including
ResNet50 for ImageNet and ResNet56 for CIFAR10. The
results are from the original paper. Note that the number of
fine-tuning epochs is also included. This is crucial for com-
paring different channel pruning methods since the number
of training epochs has quite important influence on the accu-
racy of the final pruned networks. More fine-tuning epochs
usually leads to more accurate pruned networks. Ideally,
for a fair comparison between different methods, the influ-
ence of fine-tuning strategy of the pruning algorithm itself
should be decoupled. That is, the number of fine-tuning
epochs should be fixed. Yet, this is almost impossible since
different methods adopt different training and fine-tuning

197



(a) Comparison between 1000 and 20 samples for
ResNet18.

(b) Random samples vs. error rate in ResNet18. (c) Epochs vs. error rate in ResNet50.

Figure 4. The influence of the random sample size and fine-tuning epochs on the prediction accuracy. Experiments done on ImageNet.

strategies according to requirements of the methods. In any
case, the number of training epochs is still an indicator of
the compared algorithms. When the accuracy of two al-
gorithms is close, the one with fewer fine-tuning epochs is
obviously better. When the fine-tuning epochs of two algo-
rithms are different, we have a tolerance for the accuracy
drop of the one with fewer fine-tuning epochs.

We have a couple conclusions from Table 3. I. On CI-
FAR10, random pruning performs no worse than any of the
compared methods. This shows that for this easy case, ran-
dom pruning could just serve the purpose. II. On ImageNet,
compared with earlier channel pruning methods including
SFP [17], GAL [38], and SSS [23], random pruning outper-
forms under fewer fine-tuning epochs and severer pruning
ratio. III. Random pruning is even comparable with the re-
cent work HRank [37] considering the longer fine-tuning
epochs and larger remained model. IV. Compared with ad-
vanced searching methods such as MetaPruning [40], ran-
dom pruning performs a little bit worse. Yet, we also need
to be aware that the slightly changed baseline network for
MetaPruning is already in favor of FLOPs reduction. The
fine-tuning is also longer. In addition, the potential of ran-
dom pruning could be fully released as shown in the next
subsection. V. Compared with methods that only prune the
pre-trained networks, overall architecture optimization such
as the placement of pooling layers and expansion of maxi-
mum network width could bring additional benefits.

6.3. Ablation study

The characteristics of random pruning is ablated.
Influence of the sampling population. In the former ex-
periments, the number of random samples is fixed to 100.
In Fig. 4b, to study the influence of the population size, the
number of random samples is increased gradually from 20,
100, 500, to 1000. As expected, the Top-1 and Top-5 er-
ror drop steadily from 20 samples to 1000 samples. Mean-
while, the gain of more random sampled does not get satu-
rated. For the studied range, the empirical Top-1 error curve
is a monotonically decreasing and convex. This means that

the gain of accuracy diminished with increase number of
samples. As shown in Fig. 4a, when increasing the num-
ber of random samples, both better and worse sub-networks
could be sampled, which shows the randomness of random
pruning. This is acceptable since we are searching for well-
performed samples. But from another perspective, this phe-
nomenon also calls for advanced searching methods.
Influence of fine-tuning epochs. The importance of fine-
tuning epochs is already emphasized in Sec. 6.2. Here
we quantify the influence of fine-tuning epochs by study-
ing ResNet. The result for ResNet-50 is shown in Fig. 4c.
The result for ResNet-18 is shown in the supplementary.
When the number of fine-tuning epochs is increased from
25 to 100, the Top-1 and Top-5 error of ResNet-50 drops by
0.75% and 0.4%, respectively. This shows the significant
influence of fine-tuning epochs. Again, when benchmark-
ing, the fine-tuning strategy should be considered.
Analysis of additional computational cost. Except fine-
tuning, other additional computational cost for random
pruning includes the evaluation of the pruned models. For
pruning pre-trained models, updating the parameters also
needs to compute the feature maps, which introduces addi-
tional computation. The additional computational cost for
evaluation could be reduced by taking out a smaller part
(say 5000 for ImageNet) of the validation set for evaluation.
This is adopted by some works [18].

7. Conclusion

This work studies the problem of pruning neural network
as an unbiased random search for an optimal network archi-
tecture. The search can be applied both for learning the
architecture from scratch as well as applying it to the pre-
trained model with predefined importance score of the chan-
nels. As a result, random pruning is a simple, general and
explainable baseline which performs well and can be used
as a benchmark to more complex pruning methods.
Acknowledgement: This work is partially supported by the ETH Zürich
Fund (OK), the National Natural Science Foundation of China (Grant No.
62176047), and an Amazon AWS grant.

198



References
[1] Kamil Adamczewski and Mijung Park. Dirichlet prun-

ing for neural network compression. arXiv preprint
arXiv:2011.05985, 2020. 2

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Struc-
tured pruning of deep convolutional neural networks. ACM
Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):1–18, 2017. 2

[3] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan
Feldman, and Daniela Rus. Sipping neural networks:
Sensitivity-informed provable pruning of neural networks.
arXiv preprint arXiv:1910.05422, 2019. 2, 4

[4] Maxim Berman, Leonid Pishchulin, Ning Xu, Matthew B
Blaschko, and Gérard Medioni. AOWS: Adaptive and opti-
mal network width search with latency constraints. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11217–11226, 2020. 3, 4

[5] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, and John Guttag. What is the state of neural network
pruning? arXiv preprint arXiv:2003.03033, 2020. 2

[6] Ting-Wu Chin, Ari S Morcos, and Diana Marculescu.
PareCO: Pareto-aware channel optimization for slimmable
neural networks. arXiv preprint arXiv:2007.11752, 2020. 3,
4

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training deep neural networks with weights and activations
constrained to +1 or-1. arXiv preprint arXiv:1602.02830,
2016. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255. IEEE,
2009. 6

[9] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for efficient evaluation. In Advances in
Neural Information Processing Systems, pages 1269–1277,
2014. 1

[10] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong
Han. Centripetal SGD for pruning very deep convolutional
networks with complicated structure. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4943–4953, 2019. 1

[11] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong
Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless
cnn pruning via decoupling remembering and forgetting. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4510–4520, 2021. 1

[12] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 1, 3

[13] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan. Deep learning with limited numerical
precision. In International Conference on Machine Learn-
ing, pages 1737–1746, 2015. 2

[14] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and Huffman coding. In Proceedings
of International Conference on Learning Representations,
2015. 2

[15] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances
in Neural Information Processing Systems, pages 164–171,
1993. 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 6

[17] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866, 2018. 1,
7, 8

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: AutoML for model compression and ac-
celeration on mobile devices. In Proceeding of the European
Conference on Computer Vision, pages 784–800, 2018. 1, 2,
3, 7, 8

[19] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 1, 2, 4, 7

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. 1, 5

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1, 2

[22] Zhongzhan Huang, Wenqi Shao, Xinjiang Wang, Liang Lin,
and Ping Luo. Rethinking the pruning criteria for convolu-
tional neural network. In Advances in Neural Information
Processing Systems, 2021. 3

[23] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceeding of the
European Conference on Computer Vision, pages 304–320,
2018. 1, 7, 8

[24] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. In Proceedings of the British Machine Vision
Conference, 2014. 2

[25] Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min
Kyung. Efficient neural network compression. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12569–12577, 2019. 7

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[27] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in Neural Information Process-
ing Systems, pages 598–605, 1990. 2

199



[28] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 7

[29] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang.
Few sample knowledge distillation for efficient network
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14639–
14647, 2020. 5

[30] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,
and Radu Timofte. Group sparsity: The hinge between fil-
ter pruning and decomposition for network compression. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 1, 2, 3, 7

[31] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.
Learning filter basis for convolutional neural network com-
pression. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 5623–5632, 2019. 1, 2

[32] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu
Timofte. DHP: Differentiable meta pruning via hypernet-
works. In Proceeding of the European Conference on Com-
puter Vision, pages 608–624. Springer, 2020. 1, 3, 4

[33] Yawei Li, Wen Li, Martin Danelljan, Kai Zhang, Shuhang
Gu, Luc Van Gool, and Radu Timofte. The heterogene-
ity hypothesis: Finding layer-wise differentiated network ar-
chitectures. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2144–
2153, 2021. 2

[34] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu,
David Doermann, Yongjian Wu, Feiyue Huang, and Ron-
grong Ji. Exploiting kernel sparsity and entropy for inter-
pretable CNN compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2019. 7

[35] Yuhang Li, Feng Zhu, Ruihao Gong, Mingzhu Shen, Xin
Dong, Fengwei Yu, Shaoqing Lu, and Shi Gu. Mixmix: All
you need for data-free compression are feature and data mix-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4410–4419, 2021. 1

[36] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,
and Daniela Rus. Provable filter pruning for efficient neural
networks. arXiv preprint arXiv:1911.07412, 2019. 1, 4, 7

[37] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. HRank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1529–1538, 2020. 1, 2, 7, 8

[38] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2790–2799, 2019. 1, 2, 7, 8

[39] Jing Liu, Bohan Zhuang, Zhuangwei Zhuang, Yong
Guo, Junzhou Huang, Jinhui Zhu, and Mingkui Tan.
Discrimination-aware network pruning for deep model com-
pression. arXiv preprint arXiv:2001.01050, 2020. 1, 7

[40] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Tim Kwang-Ting Cheng, and Jian Sun. MetaPruning:

Meta learning for automatic neural network channel prun-
ing. In Proceedings of the IEEE International Conference
on Computer Vision, 2019. 1, 2, 3, 7, 8

[41] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning. In
Proceedings of International Conference on Learning Rep-
resentations, 2019. 1, 3

[42] Zechun Liu, Xiangyu Zhang, Zhiqiang Shen, Zhe Li, Yichen
Wei, Kwang-Ting Cheng, and Jian Sun. Joint multi-
dimension pruning. arXiv preprint arXiv:2005.08931, 2020.
1, 3

[43] Jian-Hao Luo and Jianxin Wu. AutoPruner: An end-to-end
trainable filter pruning method for efficient deep model in-
ference. Pattern Recognition, page 107461, 2020. 7

[44] Jian-Hao Luo and Jianxin Wu. Neural network pruning with
residual-connections and limited-data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1458–1467, 2020. 1, 2, 4, 7

[45] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 1, 2, 5, 7

[46] Breton Minnehan and Andreas Savakis. Cascaded projec-
tion: End-to-end network compression and acceleration. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10715–10724, 2019. 7

[47] Deepak Mittal, Shweta Bhardwaj, Mitesh M Khapra, and
Balaraman Ravindran. Recovering from random pruning:
On the plasticity of deep convolutional neural networks. In
Proceedings of the IEEE Winter Conference on Applications
of Computer Vision, pages 848–857. IEEE, 2018. 1, 3

[48] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. arXiv
preprint arXiv:1701.05369, 2017. 2

[49] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 1, 2, 3, 4, 7

[50] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong
Jin, and Lihi Zelnik. Xnas: Neural architecture search with
expert advice. In Advances in Neural Information Processing
Systems, pages 1977–1987, 2019. 2

[51] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. 2017. 6

[52] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 6

[53] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[54] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE Conference

200



on Computer Vision and Pattern Recognition, pages 1365–
1374, 2019. 2

[55] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
HAQ: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8612–8620,
2019. 1

[56] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-
ing the smaller-norm-less-informative assumption in channel
pruning of convolution layers. In Proceedings of Interna-
tional Conference on Learning Representations, 2018. 1, 2,
3, 4

[57] Jiahui Yu and Thomas Huang. AutoSlim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019. 1, 7

[58] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1803–1811, 2019. 3, 4, 7

[59] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 3, 5

[60] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. NISP: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9194–9203, 2018. 1, 7

[61] Sixing Yu, Arya Mazaheri, and Ali Jannesari. Auto graph
encoder-decoder for neural network pruning. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 6362–6372, 2021. 1

[62] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.
On compressing deep models by low rank and sparse decom-
position. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7370–7379,
2017. 2

[63] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.
Accelerating very deep convolutional networks for classifi-
cation and detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(10):1943–1955, 2015. 1, 2

[64] Yanfu Zhang, Shangqian Gao, and Heng Huang. Explo-
ration and estimation for model compression. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 487–496, 2021. 1

[65] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016. 1

[66] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 1, 2, 7

201


