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Abstract

In this work, we focus on scene flow learning on point
clouds in a self-supervised manner. A real-world scene can
be well modeled as a collection of rigidly moving parts,
therefore its scene flow can be represented as a combina-
tion of rigid motion of each part. Inspired by this obser-
vation, we propose to generate pseudo scene flow for self-
supervised learning based on piecewise rigid motion es-
timation, in which the source point cloud is decomposed
into a set of local regions and each region is treated as
rigid. By rigidly aligning each region with its potential
counterpart in the target point cloud, we obtain a region-
specific rigid transformation to represent the flow, which
together constitutes the pseudo scene flow labels of the en-
tire scene to enable network training. Compared with most
existing approaches relying on point-wise similarities for
scene flow approximation, our method explicitly enforces
region-wise rigid alignments, yielding locally rigid pseudo
scene flow labels. We demonstrate the effectiveness of our
self-supervised learning method on FlyingThings3D and
KITTI datasets. Comprehensive experiments show that our
method achieves new state-of-the-art performance in self-
supervised scene flow learning, without any ground truth
scene flow for supervision, even outperforming some super-
vised counterparts.

1. Introduction
Scene flow [35] is a 3D motion field to describe the mo-

tion of every point between two time steps. As an essen-
tial representation of dynamics, scene flow can be applied
in numerous downstream applications, such as robotics and
autonomous driving, for dynamic scene understanding. Due
to the wide applications of 3D sensors, scene flow estima-
tion with point clouds as input has attracted broad inter-
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(a) Input point clouds from two frames

(b) Pseudo labels by nearest search

(c) Pseudo labels by our method

Figure 1. Comparison of the pseudo scene flow labels produced by
nearest neighbor search and our proposed method. (a) Input point
clouds from two consecutive frames; (b) Pseudo labels generated
by the point matching with per-point nearness as a measure; (c)
Pseudo labels generated by our proposed method. Green line rep-
resents the correct pseudo label with absolute error less than 0.1m
or relative error less than 10%. Red line represents the incorrect
pseudo label.

est. However, scene flow data is difficult to collect [25],
which makes supervised learning approaches suffer from
a shortage of real-world training samples. To overcome
the reliance on scene flow data, scene flow learning in a
self-supervised manner is proposed as a promising solution,
which is the focus of our work here.

To enable deep network training under the self-
supervised setting, it is crucial to approximate the scene
flow labels given unlabelled point cloud data. To do so,
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most previous approaches [1, 13, 16, 27, 29, 34, 42] perform
point matching between two consecutive point clouds to es-
tablish point correspondences and treat the 3D coordinate
difference between each matching pair as the pseudo scene
flow label. However, the point matching strategies applied
in these approaches mainly consider point-wise similari-
ties, but often fail to capture potential structured motions
of points, leading to inconsistent pseudo scene flow labels.
Fig. 1 (b) shows an example of the estimated pseudo scene
flow labels based on point matching with per-point nearness
as a measure.

For a real-world scene, most of the structures in this
scene are rigid or almost so [23]. This allows us to decom-
pose a non-rigid scene into a collection of rigidly moving
parts, such that the entire scene flow can be approximated
by estimating the rigid motion of individual parts. Based
on this intuition, in this work, we propose to generate the
pseudo scene flows from point clouds by piecewise rigid
motion estimations.

To achieve this goal, an over-segmentation approach is
employed to decompose the source point cloud into super-
voxels and these supervoxels are treated as rigid during the
pseudo label generation. By solving an independent rigid
registration for each supervoxel, we find a rigid transfor-
mation that rigidly aligns this supervoxel with its poten-
tial counterpart in the target point cloud. Based on the
rigid transformation estimate, we produce the rigid flow
of each supervoxel, thereby generating the entire scene
flow approximation as pseudo labels for self-supervised
learning. Different from most existing self-supervised ap-
proaches that neglect potential structured motions of points,
our method explicitly enforces region-wise rigid alignments
and generates locally rigid pseudo scene flow labels, where
the pseudo labels of points in the same supervoxel obey the
same rigid motion pattern.

Main contributions of this paper are listed as follows:

• We present a new self-supervised scene flow learn-
ing approach (RigidFlow) that solves the pseudo scene
flow label generation as a piecewise rigid motion esti-
mation task;

• By decomposing the source point cloud into a set of
local regions, we propose a piecewise pseudo label
generation module that explicitly enforces region-wise
rigid alignments and produces rigid pseudo flow for
each local region.

• Our proposed RigidFlow achieves state-of-the-art per-
formance in self-supervised scene flow learning, with-
out any ground truth scene flow for supervision, even
outperforming some supervised counterparts.

2. Related Work
Scene flow estimation on images. Scene flow estima-
tion [35] aims to predict a 3D field in a scene to represent
the motion of each point. Nowadays, the local rigidity as-
sumption has been widely used in numerous advanced ap-
proaches [2, 9–11, 14, 18, 21, 22, 25, 33, 36–38] to estimate
scene flow from images. Especially, UnRigidFlow [18]
and EffiScene [11] address unsupervised scene flow esti-
mation from images by jointly learning rigidity masks to
constrain scene flow predictions. Unlike these methods that
use highly regular 2D images as input and employ photo-
metric error as the major loss function, we focus on scene
flow estimation from sparse 3D point clouds and explore
the application of the local rigidity to pseudo scene flow la-
bel generation, so that self-supervised scene flow learning
can be achieved by any supervised loss functions with our
generated pseudo labels.
Supervised scene flow estimation on point clouds. With
the development of 3D sensors, estimating scene flow from
point clouds has been drawing a lot of attention. Vari-
ous approaches [3, 6–8, 15, 19, 20, 30, 41] have been pro-
posed to estimate scene flow from point clouds by super-
vised learning. Particularly, the local rigidity has also been
applied in some of them [3, 6, 15]. PointFlowNet [3] and
Rigid3DSceneFlow [6] propose to directly estimate rigid
motion for each 3D object. HCRF-Flow [15] employs the
local rigidity to refine scene flow predictions. Different
from these fully-supervised approaches learning to refine or
constrain predicted flow by the local rigidity, without any
ground truth data, we explore how to produce pseudo labels
with the guidance of the local rigidity assumption to achieve
self-supervised scene flow learning.
Self-supervised scene flow estimation on point clouds.
In self-supervised scene flow learning, without ground truth
scene flow, most previous methods [1, 13, 16, 27, 29, 34, 42]
propose to establish point correspondences between source
and target point clouds by point matching, and treat the
3D coordinate difference between each matching pair as
a pseudo scene flow label. Specifically, [1, 27, 34] adopt
a nearest neighbor loss and [13, 29, 42] adopt a Chamfer
loss for self-supervision. In the two loss functions, point
correspondences are built by the nearest search. And, [16]
builds point correspondences by solving an optimal trans-
port. However, the two point matching strategies mainly
consider point-wise similarities but fail to capture poten-
tial structured motions of points, leading to unsatisfactory
scene flow approximation. Motivated by the local rigid-
ity assumption, we propose to generate pseudo labels by
a piecewise rigid motion estimation. By explicitly enforc-
ing region-wise rigid alignments between the source and
the target, our method generate locally rigid pseudo scene
flow labels, where the pseudo labels of points in the same
supervoxel obey the same rigid motion pattern. Although
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the local rigidity has been considered in some recent self-
supervised works [1, 29], the clue of rigidity is limited to
smooth or constrain the flow predictions as a regularization.
Its ability to improve pseudo label generation is far from
being explored.

3. Preliminaries: Rigid registration and ICP
As a crucial task in computer vision, point cloud regis-

tration has been well studied in the literature [4, 5, 31, 32,
39, 40]. Given two point clouds, X = {xi ∈ R3}Nx

i=1 and
Y = {yi ∈ R3}Ny

i=1, point cloud rigid registration aims to
predict a rigid transformation that aligns X to Y . The rigid
transformation can be written as [RXY , tXY ], where the
rotation matrix RXY ∈ SO(3) and the translation vector
tXY ∈ R3. The objective function of point cloud registra-
tion can be expressed as:

E(RXY , tXY ;X,Y ) =
1

n

n∑
i=1

∥RXY xi + tXY − ym(i)∥22, (1)

where m is the point mapping from points in X to their
corresponding points in Y .

Since the point mapping m is unknown, the iterative
closest point (ICP) [4] is widely employed to address this
problem by alternating between estimating the rigid trans-
formation and finding the point mapping. In each iteration,
based on the previous point mapping estimate, the current
rigid transformation is updated by solving the least-square
problem in Eq. (1). And then, based on the current rigid
transformation estimate, the point mapping of each point is
updated to its closest match in another point cloud:

m(i) = argmin
j

∥RXY xi + tXY − yj∥22. (2)

Although the ICP is efficient, the performance depends
heavily on the initialization of rigid transformation and
point matching.

4. Method
Given a temporal sequence of point clouds, P = {pi ∈

R3}Ni=1 at frame t and Q = {qi ∈ R3}Ni=1 at frame t + 1,
scene flow estimation aims to estimate the 3D motion field
F = {fi ∈ R3}Ni=1 in a scene. In this paper, we target at
self-supervised point cloud scene flow estimation, where no
ground truth scene flow annotations D are provided. To en-
able network training without ground truth labels, we focus
on effective pseudo scene flow label generation, such that
the scene flow learning can be achieved using the pseudo
labels D̂ as supervision.

In this section, we first introduce how to produce pseudo
scene flow for a real-world scene by a piecewise rigid mo-
tion estimation. After that, we present the details of our al-
gorithm and explain how to use the generated pseudo labels
to achieve self-supervised training. Fig. 2 is the overview
of our method.

4.1. Generating Pseudo Labels by Piecewise Rigid
Motion Estimation

Scene flow is the 3D motion field of objects in a scene.
If the scene contains only a rigidly moving object, the scene
flow from Prigid to Qrigid follows the rigid transformation
[RPQ, tPQ] between the two point clouds:

D = RPQPrigid + tPQ − Prigid. (3)

Thus, for a rigidly moving object, when the ground truth
scene flow is unavailable, we can produce the scene flow by
finding its optimal rigid transformation between Prigid and
Qrigid.

For a complex real-world scene, although it is not rigid,
most of the structures in this scene are rigid or almost rigid,
which makes it possible to approximate a non-rigid scene
into a set of rigidly moving regions. Therefore, we can es-
timate the flow of each rigidly moving region by finding its
optimal rigid motion, thereby generating the entire scene
flow. In other words, we can generate pseudo scene flows
by a piecewise rigid motion estimation.

Decomposing the point cloud P into K rigid regions
{P (1),P (2), ...,P (K)}, the piecewise rigid motion estima-
tion from P to Q for the region P (k) can be considered as
an independent rigid body registration from P (k) to Q:

[R∗
k, t

∗
k] = arg min

[Rk,tk]
E(Rk, tk;P

(k),Q), (4)

E(Rk, tk;P
(k),Q) =

1

Nk

Nk∑
i=1

∥Rkp
(k)
i + tk − qm(k)(i)∥

2
2, (5)

where Nk is the point number in the rigid region P (k),
m(k)(i) is the point mapping from the i-th point in P (k)

to its correspondence in Q, and [R∗
k, t

∗
k] is the optimal rigid

transformation for P (k).
Following Eq. (3), with [R∗

k, t
∗
k], the pseudo rigid scene

flow estimate D̂(k) for this region can be computed by:

D̂(k) = R∗
kP

(k) + t∗k − P (k). (6)

Combining the pseudo rigid scene flow estimates for all K
rigid regions {D̂(1), D̂(2), ..., D̂(K)}, we obtain the final
pseudo scene flow labels D̂ for self-supervised training.

4.2. Piecewise pseudo label generation module

In order to convert pseudo label generation into a
piecewise rigid motion estimation, we first employ an
oversegmentation method [17] to split the point cloud
P into supervoxels and treat these supervoxels as rigid
moving regions. After obtaining the supervoxels, we
employ a piecewise pseudo label generation module to
generate scene flow labels for each supervoxel via finding
its rigid transformation from P (k) to Q. In this module, we
follow the principle of ICP algorithm [4], i.e., alternately
estimating point mapping and rigid transformation, such

16961



Optimization-based
over-segmentation

Update
point mapping

𝑚(")

Update
transformation

[𝑅", 𝑡"]

Initialize mapping
by predicted flow

𝑚(")

Generate 
pseudo labels

'𝐷(")

When converged

Source point cloud 𝑃

Target point cloud 𝑄

Predicted flow 𝐹

Supervoxels
{𝑃 $ , … , 𝑃 % }

Supervoxel
𝑃 !

Pseudo labels '𝐷(") for 𝑃 "

Pseudo flow labels '𝐷 for 𝑃

Piecewise pseudo label generation module

Figure 2. Overview of our pseudo scene flow label generation approach. In our approach, we employ an optimization-based over-
segmentation method [17] to split the point cloud in the first frame into a set of supervoxels and estimate the rigid transformation of
each supervoxel. Based on the rigid transformation estimate, we generate the pseudo labels for each supervoxel, thereby obtaining the
pseudo labels for the entire scene.

Algorithm 1 Pseudo scene flow label generation by piece-
wise rigid motion estimation
Input: Source point cloud P , Target point cloud Q,
Predicted scene flow from NNs being trained F ;
Output: Pseudo scene flow labels D̂ ;
Procedure:

1: Split P into a set of supervoxels {P (1), ...,P (K)};
▶ Oversegmentation

2: for k = 1, ...,K do
3: m(k)(i)← argminj ∥p(k)

i + f
(k)
i − qj∥22

▶ Initializing by predicted flow
4: while not converged do
5: Find the matches Q(k) for P (k) based on m(k)

6: H(k) ←
∑Nk

i=1(p
(k)
i − p(k))(q

(k)
i − q(k))⊤

7: Rk ← V (k)U (k)⊤, tk ← −Rkp
(k) + q(k)

▶ Updating rigid transformation
8: m(k)(i)← argminj ∥Rkp

(k)
i + tk − qj∥22

▶ Updating point mapping
9: end while

10: D̂(k) ← R∗
kP

(k) + t∗k − P (k)

▶ Generating pseudo labels
11: end for
12: D̂ ← {D̂(1), ..., D̂(K)}

that the region-wise rigid alignment between this region
with its counterpart is explicitly enforced. Next, we present
the details of this module.

Initializing point mapping by predicted flow. The per-
formance of ICP relies greatly on the initialization of rigid
transformation and point mapping. When solving the reg-
istration from P (k) to Q, for each point p(k)

i in P (k), a

straightforward way of initialization is to set its closest point
in Q as the initial correspondence. Inspired by [16], we
establish the initial point mapping based on the predicted
scene flow F from neural networks being trained. Specifi-
cally, we warp the point p(k)

i by its predicted flow f
(k)
i , and

then take the closest point of this warped point as the initial
match:

m
(k)
inital(i) = argmin

j
∥p(k)

i + f
(k)
i − qj∥22. (7)

As the training progresses, the accuracy of the predicted
scene flow will be gradually improved, making the closest
search of the warped points more likely to find the correct
matches and establish good initial point correspondences.

Updating rigid transformation estimate. Based on the
previous point mapping estimate, we update the rigid trans-
formation for each supervoxel by solving the least-square
problem shown in Eq. (4) and Eq. (5) with the point map-
ping fixed. Specifically, following [4, 39, 40], we apply the
singular value decomposition (SVD) to it.

For the points in supervoxel P (k), we first select their
matches Q(k) from Q according to the point mapping es-
timate m(k). The centers of P (k) and Q(k) are defined
as p(k) = 1

Nk

∑Nk

i=1 p
(k)
i and q(k) = 1

Nk

∑Nk

i=1 q
(k)
i . The

cross-covariance matrix for supervoxel P (k) can be written
as:

H(k) =

Nk∑
i=1

(p
(k)
i − p(k))(q

(k)
i − q(k))⊤. (8)

Using SVD to decompose H(k), we have H(k) =

U (k)S(k)V (k)⊤. The rigid transformation estimate for su-
pervoxel P (k) can be updated in closed-form as:

Rk = V (k)U (k)⊤,

tk = −Rkp
(k) + q(k).

(9)
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Updating point mapping estimate. Based on the current
rigid transformation estimate, the point mapping of each
point in supervoxel P (k) is updated to its closest point in
Q:

m(k)(i) = argmin
j

∥Rkp
(k)
i + tk − qj∥22. (10)

Generating pseudo labels for each supervoxel. After
several alternating iterations between Eq. (9) and Eq. (10),
we obtain the final rigid transformation estimates for each
supervoxel as the optimal rigid transformation. Following
Eq. (6), we generate pseudo rigid scene flow for each su-
pervoxel. The method of our pseudo label generation is
sketched in Algorithm 1.

4.3. Self-supervised training with pseudo labels

Using the generated pseudo labels for supervision, we
can achieve the self-supervised training of scene flow es-
timation networks with supervised loss functions. In this
paper, we choose FLOT [30] as the default estimation net-
work and use the l1-norm loss function for self-supervised
learning:

L =
1

3N

N∑
i=1

∥fi − d̂i∥1, (11)

where fi is the predicted scene flow for point i and d̂i is our
generated pseudo label.

5. Experiment
To validate the effectiveness of our self-supervised learn-

ing method, we compare our method with the state-of-the-
art fully-supervised and self-supervised approaches. Then,
we conduct various ablation experiments to analyze the
contribution of different components. Finally, we design
some quantitative and qualitative experiments to evaluate
the generated pseudo labels for further analysis. All experi-
ments are performed on the large-scale synthetic FlyingTh-
ings3D [24] dataset and the real-world KITTI 2015 [25,26]
dataset.
Datasets. 3D data are not directly provided by the two
original datasets, thus the point clouds need to be extracted
from the original data. Following [30], we denote the
two point cloud datasets prepared by HPLFlowNet [7] as
FT3Ds and KITTIs, respectively. For FT3Ds and KITTIs,
there are no occluded points in the processed point clouds.
We denote the two datasets prepared by FlowNet3D [19] as
FT3Do and KITTIo, respectively, where occluded points
are preserved. Specially, FlowNet3D [19] also splits the
KITTIo data to use the first 100 pairs for finetuning and the
rest 50 pairs for testing. Here, we denote the finetuning part
as KITTIf and the rest testing data as KITTIt. Follow-
ing the raw data sampling strategy used in [16], we extract
some raw point clouds from KITTI dataset as training sam-
ples (6026 pairs) and denote them as KITTIr. There is no
overlap between KITTIr and KITTIo.

Implementation details. During evaluation, we conduct
two main experiments, one for point clouds without occlu-
sions and one for point clouds with occlusions.

For the experiment on point clouds without occlusions,
we follow the experimental setting in [7, 13, 42]. Specif-
ically, we train a FLOT [30] model by our self-supervised
approach on FT3Ds training set and test it on FT3Ds testing
set and KITTIs. For a pair of point clouds, we randomly
sample 8192 points in each point cloud as input. In the
pseudo label generation phase, we decompose the source
point cloud into 40 supervoxels with an over-segmentation
method [17] and set the iteration number in our piecewise
pseudo label generation module to 4. We set the batchsize
to 1 and use Adam optimizer [12] with an initial learning
rate of 0.001.

For the experiment on point clouds with occlusions, we
train a FLOT model on KITTIr using our self-supervised
method and evaluate it on KITTIo and KITTIt. For each
training sample, we randomly sample 2048 points in each
point cloud as input. In the pseudo label generation phase,
we split the source point cloud into 40 supervoxels and set
the iteration number to 2. We set the batchsize to 4 and use
Adam with an initial learning rate of 0.001.

Our code is implemented based on PyTorch [28],
FLOT [30] and S3DPC [17].
Evaluation metrics. We evaluate our method on four
evaluation metrics adopted in [7,30]. We denote the ground
truth scene flow and predicted scene flow as D and F , re-
spectively. The metrics are defined as follows: EPE(m):
∥D−F ∥2, end point error, averaged over all points; AS(%):
the ratio of points with EPE < 0.05m or relative error < 5%;
AR(%): the ratio of points with EPE < 0.1m or relative er-
ror < 10%; Out(%): the ratio of points with EPE > 0.3m
or relative error > 10%.

5.1. Comparison with State-of-the-art Methods

5.1.1 Results on FT3Ds and KITTIs

We evaluate our self-supervised learning method on FT3Ds

testing set and KITTIs data, following the experimental
setting in [7, 13, 42]. We compare our method with five
advanced self-supervised approaches: Ego-motion [34],
PointPWC-Net [42], SLIM [1], Self-Point-Flow [16] and
FlowStep3D [13]. In Table 1, our approach achieves the
best performance on EPE, AS, and AR, and obtains the
second best performance on Out, which demonstrates the
effectiveness and the generalization ability of our self-
supervised learning algorithm. Especially, our method is the
only self-supervised approach that achieves an EPE met-
ric below 7cm. For this metric, our method outperforms
the recent FlowStep3D by 17.6% and 38.3% on FT3Ds and
KITTIs respectively, despite the model capacity of our used
FLOT is significantly less than that of their FlowStep3D
(0.11 M v.s. 0.68 M).
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Table 1. Quantitative results on FT3Ds testing set and KITTIs.
Full. represents fully-supervised training, Self. represents self-
supervised training. Compared with self-supervised approaches,
our approach achieve the state-of-the-art performance on three
metrics. Especially, our approach is the only self-supervised one
that achieves an EPE metric below 7cm. Without any ground truth
scene flow for supervision, our approach even outperforms some
supervised ones.

Data Method Sup. EPE ↓ AS ↑ AR ↑ Out ↓

FT3Ds

FlowNet3D [19] Full. 0.0864 47.89 83.99 54.64
HPLFlowNet [7] Full. 0.0804 61.44 85.55 42.87
PointPWC-Net [42] Full. 0.0588 73.79 92.76 34.24
FLOT [30] Full. 0.0520 73.20 92.70 35.70
FlowStep3D [13] Full. 0.0455 81.62 96.14 21.65
Ego-motion [34] Self. 0.1696 25.32 55.01 80.46
PointPWC-Net [42] Self. 0.1213 32.39 67.42 68.78
Self-Point-Flow [16] Self. 0.1009 42.31 77.47 60.58
FlowStep3D [13] Self. 0.0852 53.63 82.62 41.98
Ours Self. 0.0692 59.62 87.10 46.42

KITTIs

FlowNet3D [19] Full. 0.1064 50.65 80.11 40.03
HPLFlowNet [7] Full. 0.1169 47.83 77.76 41.03
PointPWC-Net [42] Full. 0.0694 72.81 88.84 26.48
FLOT [30] Full. 0.0560 75.50 90.80 24.20
FlowStep3D [13] Full. 0.0546 80.51 92.54 14.92
Ego-motion [34] Self. 0.4154 22.09 37.21 80.96
PointPWC-Net [42] Self. 0.2549 23.79 49.57 68.63
SLIM(8192 point) [1] Self. 0.1207 51.78 79.56 40.24
Self-Point-Flow [16] Self. 0.1120 52.76 79.36 40.86
FlowStep3D [13] Self. 0.1021 70.80 83.94 24.53
Ours Self. 0.0619 72.37 89.23 26.18

We also compare our self-supervised method with some
supervised approaches that are trained on FT3Ds train-
ing set. As shown in Table 1, without any ground truth
for supervision, our self-supervised method outperforms
FlowNet3D [19] and performs on par with HPLFlowNet [7]
on FT3Ds. Evaluated on KITTIs without fine-tuning,
our self-supervised method has better generalization abil-
ity than FlowNet3D and HPLFlowNet. Qualitative results
on FT3Ds are shown in Fig. 3.

5.1.2 Results on KITTIo and KITTIt

We evaluate our self-supervised learning method on KITTIo
and KITTIr. In KITTIo data, following [30], we remove all
points with depth larger than 35m for evaluation. As shown
in Table 2, our method outperforms Self-Point-Flow [16]
on all metrics. The FLOT trained on KITTIr via our
self-supervised method achieves better performance than
the fully-supervised FLOT [30] trained on FT3Do, which
demonstrates the advantage of our self-supervised learn-
ing strategy. That is, compared with learning from labeled
synthetic data, the proposed self-supervised learning allows

Table 2. Quantitative results on KITTIo. Without any ground
truth scene flow for supervision, our method outperforms Self-
Point-Flow [16], and even performs better than supervised
FlowNet3D [19] and FLOT [30].

Method Sup. Train. data EPE ↓ AS ↑ AR ↑ Out ↓
FlowNet3D [19] Full. FT3Do 0.173 27.6 60.9 64.9
FLOT [30] Full. FT3Do 0.107 45.1 74.0 46.3
Self-Point-Flow [16] Self. KITTIr 0.105 41.7 72.5 50.1
Ours Self. KITTIr 0.102 48.4 75.6 44.2

Table 3. Quantitative results on KITTIt following the test settings
in [29]. Without pre-trained on FT3Do with supervision, our self-
supervised FLOT and FlowNet3D still achieve better performance.

Method Pre-train Training data EPE ↓ AS ↑ AR ↑
JGF [27] ✓ FT3Do + KITTIf 0.218 10.17 34.38
WWL [29] ✓ FT3Do + KITTIf 0.169 21.71 47.75
Ours (FlowNet3D) KITTIr 0.152 30.17 61.14
Ours (FLOT) KITTIr 0.117 38.75 69.73

Table 4. Ablation study for piecewise pseudo label generation
module (PPLG). NN: nearest neighbor search. RCA: region-wise
center alignment. RRA: region-wise rigid alignment. ∆ denotes
the difference in metric with respect to the baseline method.

Method NN RCA RRA EPE ↓∆EPE
nearest neighbor search ✓ 0.217 0.000
+ region-wise center alignment ✓ ✓ 0.089 -0.128
+ region-wise rigid align. (Ours) ✓ ✓ 0.071 -0.146

models to learn better representations from unannotated re-
alistic data directly. Some qualitative results on KITTIo are
shown in Fig. 3.

Then, we compare the performance of our method with
WWL [29] and JGF [27] in a self-supervised learning man-
ner. Following WWL [29], the experiment is conducted
on KITTIt. As shown in Table 3, without pre-trained on
FT3Do with full-supervision, the FLOT and the FlowNet3D
trained via our proposed self-supervised method still per-
form better than theirs.

5.2. Ablation study

We validate the effectiveness of each component in our
method. Models are trained on FT3Ds training set and
tested on FT3Ds testing set.
Piecewise pseudo label generation module. At the core
of our design is the piecewise pseudo label generation
module (PPLG). For each supervoxel, this module gener-
ates pseudo labels by alternately estimating point mapping
and rigid transformation to explicitly enforce region-wise
rigid alignments. The module contains three key steps:
point mapping initialization, rigid transformation update,
and point mapping update.
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Figure 3. Qualitative results on FT3Ds (top) and KITTIo (bottom). Bule points represent the source point cloud. Green points represent
the points translated by the correct scene flow predictions. Red points represent the points translated by the incorrect predictions. The
scene flow predictions are measured by AR.

Table 5. Comparison of different strategies in pseudo label gen-
eration module. IwoF: point mapping initialization without pre-
dicted flow. IwF: point mapping initialization with predicted flow.
GC: label generation from correspondence. GR: label generation
from rigid motion.

Method IwoF IwF GC GR EPE ↓
Strategy I ✓ ✓ 0.356
Strategy II ✓ ✓ 0.080
Ours ✓ ✓ 0.071

To demonstrate the advantage of region-wise rigid align-
ment in pseudo scene flow generation, we design two base-
line methods for comparison: nearest neighbor search, de-
noted by NN, and region-wise center alignment, denoted
by RCA. In nearest neighbor search, for each point, we di-
rectly treat the initial match derived from our point mapping
initialization (Eq. 7) as the corresponding point to produce
a pseudo label without considering any region-wise con-
straints. As shown in Table 4, compared with the method
of nearest neighbor search (NN), by enforcing region-wise
alignments, our module significantly reduces the EPE met-
ric by 14.6cm. For the method of region-wise center align-
ment, when updating transformation, we only encourage the
center of each supervoxel to coincide with that of its coun-
terpart rather than enforcing region-wise rigid alignments.
Specifically, we fix the rotation matrix Rk in Eq. (6), Eq. (9)
and Eq. (10) to an identity matrix. As shown in Table 4, by
enforcing region-wise rigid alignments, our module outper-
forms the method of region-wise center alignment (RCA)
by 22.8% on EPE metric, which demonstrates the effective-
ness of our region-wise rigid alignment approach.

We next study the initialization strategy and the label
generation strategy in PPLG. In our module, we initialize
the point mapping by the predicted flow from neural net-
works being trained, denoted as IwF, and produce pseudo
rigid scene flow from the optimal rigid transformation,

Table 6. The impact of different update iteration numbers.

Iteration No. 1 2 3 4
EPE ↓ 0.077 0.073 0.071 0.069

Table 7. The impact of different supervoxel numbers.

Desired supervoxel No. 80 60 40 20
EPE ↓ 0.074 0.073 0.071 0.077

Table 8. Time consumption of our method to generate pseudo la-
bels for a training sample with 8,192 points in each point cloud.

Component Over-segmentation Label generation Total
Time (ms) 76.1 96.4 172.5

denoted as GR. To verify the advantages of our design,
we include two strategies for comparison: Strategy I
initializes the point mapping without using predicted flow,
denoted as IwoF, and Strategy II produces pseudo scene
flow based on the coordinate difference between each
optimal correspondence, denoted as GC. As shown in
Table 5, our module outperforms Strategy I and Strategy II
by around 80% and 14% on the EPE metric, respectively,
which demonstrates the effectiveness of our design. And
Table 6 shows the impact of different update iteration
numbers on our method.

Impact of supervoxel number. When generating pseudo
labels, we decompose a scene into a set of supervoxels and
find the rigid motion of each supervoxel. As shown in Ta-
ble 7, the model achieves the best performance when our
self-supervised method decomposes each scene into 40 su-
pervoxels for label generation.
Time consumption. We evaluate the running time of our
pseudo label generation method for a training sample with
8192 points in each point cloud. In Table 8, the total time
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Predicted flow

Pseudo label

Figure 4. The end point error (EPE, the lower, the better) of model
predictions (Blue curve) and generated pseudo labels (Orange
curve) on some training samples. During the training, the accu-
racy of pseudo labels is consistently higher than that of predicted
flow. This allows us to apply the pseudo labels as supervision.

consumption for a training sample is 172.5ms on a single
1080ti GPU.

5.3. Analysis on pseudo labels

We conduct some quantitative and qualitative experi-
ments to evaluate the generated pseudo labels for further
analysis. In Fig. 4, using part of training samples (197 sam-
ples) as testing data, we compare the error of our generated
pseudo labels and the predictions of the trained network.
We can make the following observations from Fig. 4. (1)
During the training, the quality of our generated pseudo la-
bels is gradually improved. (2) The accuracy of pseudo la-
bels is consistently higher than that of predicted flow. This
allows us to apply the pseudo labels as supervision. (3) The
performance gap between pseudo labels and network pre-
dictions is gradually reduced. As illustrated in Fig. 5 (c)-
(e), the quality of our generated pseudo labels for the air-
plane and the chair are gradually improved along with train-
ing iterations, which demonstrates the effectiveness of our
pseudo label generation method. More quantitative and
qualitative results are in supplementary.

6. Conclusion

In this paper, we propose to produce pseudo scene flow
labels by a piecewise rigid motion estimation. By solving
an independent rigid registration for each region, we find
a region-specific rigid transformation to represent the flow,
thereby generating the entire scene flow approximation as
pseudo labels for self-supervised learning. Comprehen-
sive experiments on FlyingThings3D and KITTI datasets
demonstrate that our proposed approach achieves state-of-
the-art performance in self-supervised scene flow learning,
without any ground truth scene flow for supervision, even
outperforming some supervised counterparts.

(a) Input point clouds (b) Supervoxels (c) Pseudo labels after 2e3 iter.  

(d) Pseudo labels after 2e4 iter.  (e) Pseudo labels after 2e5 iter.  (f) Ground truth scene flow

Figure 5. Our generated pseudo labels after different training iter-
ations for the same scene. (a) Input point clouds. Blue points rep-
resent the source point cloud and gray points represent the target.
(b) Supervoxel results of the source point cloud. Different col-
ors indicate different supervoxels. (c) - (e) Our generated pseudo
labels after different training iterations. Green line indicates the
correct pseudo label measured by AR. Red line indicates the in-
correct pseudo label. (f) Ground truth scene flow. The quality
of our generated pseudo labels for the airplane and the chair are
gradually improved along with training iterations.

7. Limitations

Although achieving remarkable results, our method still
has some limitations. Firstly, our pseudo label generation
method is based on the local rigidity assumption. For scenes
with strongly non-rigid motion, the local rigidity assump-
tion may be not suitable. In practice, these scenes are not
common. Secondly, our method generates pseudo labels by
enforcing region-wise alignments. Occluded regions with-
out valid counterparts will affect our method. To evaluate
the impact of occlusion issues on our method, in Sec. 5.1.2,
we conduct experiments on real-world point cloud data with
occluded regions. As shown in Table 2 and Table 3, com-
pared with existing approaches, our method achieve the best
results. Dealing with non-rigid motions and occlusion is-
sues is worthy of in-depth exploration in our future work.
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