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Abstract

Domain Adaptive Object Detection (DAOD) leverages a
labeled domain to learn an object detector generalizing to
a novel domain free of annotations. Recent advances align
class-conditional distributions by narrowing down cross-
domain prototypes (class centers). Though great success,
they ignore the significant within-class variance and the
domain-mismatched semantics within the training batch,
leading to a sub-optimal adaptation. To overcome these
challenges, we propose a novel SemantIc-complete Graph
MAtching (SIGMA) framework for DAOD, which completes
mismatched semantics and reformulates the adaptation with
graph matching. Specifically, we design a Graph-embedded
Semantic Completion module (GSC) that completes mis-
matched semantics through generating hallucination graph
nodes in missing categories. Then, we establish cross-
image graphs to model class-conditional distributions and
learn a graph-guided memory bank for better semantic
completion in turn. After representing the source and target
data as graphs, we reformulate the adaptation as a graph
matching problem, i.e., finding well-matched node pairs
across graphs to reduce the domain gap, which is solved
with a novel Bipartite Graph Matching adaptor (BGM). In
a nutshell, we utilize graph nodes to establish semantic-
aware node affinity and leverage graph edges as quadratic
constraints in a structure-aware matching loss, achieving
fine-grained adaptation with a node-to-node graph match-
ing. Extensive experiments verify that SIGMA outper-
forms existing works significantly. Our code is available
at https://github.com/CityU-AIM-Group/SIGMA.

1. Introduction

Well-trained object detectors [23, 24, 33] have been
proven to achieve promising performance with a consistent
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Figure 1. Illustration of the proposed SemantIc-complete Graph
MAtching (SIGMA) framework for DAOD.

distribution of training and test data. However, deploying
these methods in a novel domain leads to the catastrophic
performance degradation due to the domain gap [3], which
significantly limits the generalization and transferability of
object detectors. Furthermore, this challenge also restricts
the application of object detection in real-world scenarios,
such as self-driving under distinctive weather conditions
and video analysis containing novel scenes.

To overcome this limitation, Unsupervised Domain
Adaptation (UDA) methods have been explored to adapt
the unlabeled target domain and the annotated source do-
main, and one of the main streams of UDA works is to align
feature distributions between source and target domains.
Early works [3, 12, 27] adopt a pixel-to-pixel adaptation
in terms of hierarchical features, yielding a global align-
ment of the whole image with per-pixel adaptation. Some
works [3, 37, 41] focus on foreground objects and conduct
more precise adaptation on those regions of interest. Re-
cently, some works [32,37,41,42] aim to align cross-domain
class-conditional distributions in the implicit feature space
and achieve adaptation in a category-to-category manner.
These works model category centers with prototypes and
minimize the distance of cross-domain prototypes to bridge
the domain gap at the category level.

Though satisfactory performance, there are still two
challenges in existing category-level adaptation works [32,
37, 41, 42]. Firstly, these works neglect the significant
within-class variance and directly align handcraft category
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centers, which inevitably bring about a sub-optimal adap-
tation. Due to the diverse size and appearance of object
instances, the within-class variance covers essential infor-
mation to represent class-conditional distributions, e.g., the
scale and shape, which should also be aligned for domain
adaptation. Overlooking the within-class variance could
lead to lots of non-adapted object instances and the poten-
tial overlapping of different class-conditional distributions
with false-positive classification errors. Although some
works have introduced explicit variance [2] to relieve the
problem of existing center-based measurements, they fol-
low the Gaussian assumption to model feature distributions,
which is not optimal in the non-convex deep feature space.
These observations motivate us to design a new paradigm to
align cross-domain pixel-pairs in the non-euclidean graph-
ical space [39], which models and adapts class-conditional
distributions without handcraft center-based alignment.

The second challenge lies in the domain-mismatched se-
mantics within the training batch. Some existing works [32,
37, 42] only perform adaptation on the co-occurred cate-
gories in two domains, ignoring mismatched categories ap-
pearing in a single domain. Neglecting missing categories
leads to a non-effective adaptation due to the loss of seman-
tic knowledge. As shown in Figure 1, the train only appears
in the source batch, while these bicycles are available in the
target domain, yielding inconsistent semantics across do-
mains. These mismatched semantics bring about the dif-
ficulty of explicitly estimating class centers, limiting the
adaptation of class-conditional distributions. Furthermore,
the missing semantics in the target domain even result in the
potential risk towards source-specific direction since the su-
pervised source classification could generate a biased class-
conditional distribution [35]. Hence, we are committed to
designing a semantic completion strategy through generat-
ing novel hallucination samples [40] in the missing cate-
gories, which relieves the negative impact of mismatched
semantics and achieves more effective adaptation.

To overcome the aforementioned challenges, we propose
a SemantIc-complete Graph MAtching (SIGMA) frame-
work for DAOD, which completes domain-mismatched se-
mantics and reformulates the adaptation as a graph match-
ing problem, i.e., finding the suitable matching between
graph nodes to bridge the domain gap. As shown in Fig-
ure 1, we design a Graph-embedded Semantic Comple-
tion module (GSC) to complete the mismatched semantics,
which utilizes domain-level statistics to generate hallucina-
tion nodes in the missing categories. Then, we establish
graphs to model class-conditional distributions for both do-
mains and learn a graph-guided memory bank to improve
the capacity of semantic completion in turn. Based on our
reformulation of domain adaptation, we propose a Bipartite
Graph Matching adaptor (BGM) to solve the graph match-
ing problem between the source and target graph, achieving

a fine-grained domain alignment. We utilize graph nodes
to learn semantic-aware node affinity and introduce graph
edges in a structure-aware matching loss for the Quadratic
Assignment Problem (QAP). This graph-matching-based
domain alignment enables a fine-grained adaptation with
well-matched semantics and relieves the biased and non-
effective adaptation in existing prototype-based methods.
To be summarized, our contributions are as follows.

• We propose a SemantIc-complete Graph MAtching
(SIGMA) framework for DAOD, which aligns the
class-conditional distribution with graph matching. To
the best of our knowledge, this work represents the first
attempt to leverage graph matching theory to bridge
the domain gap in the detection community.

• We propose a Graph-embedded Semantic Completion
module (GSC) to complete mismatched semantics by
generating hallucination nodes and a Bipartite Graph
Matching adaptor (BGM) that reformulates DAOD as
a graph matching problem to bridge the domain gap.

• Extensive experiments on three benchmarks demon-
strate that SIGMA achieves state-of-the-art results and
outperforms DAOD counterparts significantly.

2. Related Work

2.1. Domain Adaptive Object Detection

Domain adaptive object detection (DAOD) aims to
bridge the domain gap between the training and testing data,
which can be categorized into style-transfer [13, 14, 16],
self-labeling [14, 21], and domain-alignment [3, 17, 27].
As one of the main streams, domain-alignment approaches
adopt adversarial feature alignment and minimize the cross-
domain discrepancy to bridge the domain gap. Early works
align global features [3, 17, 27] with diverse mechanisms,
e.g., spatial attention [17] and strong-weak alignment [27].
Besides, some works tend to align a community of local pix-
els with essential attributes, e.g., region proposals [16] and
object centers [12]. Recently, some works have introduced
a more precise adaptation in class-conditional distributions
at the category level. GPA [37] utilizes RoI-based graphs
to model prototypes and narrows down these cross-domain
measurements. PARPN [41] extends the idea of prototype
alignment in the RPN stage, and the authors in [42] extend
the batch-wise prototypes at the domain level. However,
these works ignore the significant within-class variance,
leading to a sub-optimal alignment of class-conditional dis-
tributions. This work breaks this barrier with graph match-
ing, avoiding the inaccuracy adaptation caused by handcraft
prototype design and center-based alignment.
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Figure 2. Overview of the proposed SIGMA framework for DAOD. V2G represents vision-to-graph transformation.

2.2. Graph Matching

Graph matching establishes pair-wise node correspon-
dences between two graphs, and gives a one-to-one match-
ing of graph nodes belonging to different graphical entities.
As a Quadratic Assignment Problem (QAP) [20] with com-
binational nature, graph matching solvers [20, 38] optimize
a cross-graph permutation matrix to encode matched node
pairs, considering both node and structure affinities. Re-
cently, graph matching has been extended to visual corre-
spondence detection [8], multi-object tracking [10], point
cloud registration [6] to model pair-wise relationships in
the graphical space. Gao, et al. [8] model key-point-based
graphs on images and establish graph matching between im-
ages covering the same objects. Fu et al. model graphs on
the 3D rigid point cloud and perform graph matching on two
homogeneous point sets to achieve robust point cloud regis-
tration. The authors in [10] perform graph matching across
the tracklet and detection space to achieve high-quality ob-
ject tracking. Different from aforementioned scenarios with
off-the-shelled graph definition and pair-wise labels, we in-
novatively reformulate DAOD as a graph matching prob-
lem, and leverage the QAP solver to bridge the domain gap.

3. Motivation and Preliminaries
We theoretically analyze existing category-level adapta-

tion approaches, and demonstrate our motivation and new
solution as follows. Considering the batch-wise source
and target observation S = {(xi

s, y
i
s)}Bi=1 and T =

{xi
t}Bi=1 drawn from the inconsistent domain distribution

Ps and Pt (Ps ̸= Pt), existing approaches [32, 37, 41,
42] aim to model and align class-conditional distributions
PX|Y (ϕ(xs/t)|y), where ϕ(·) is the feature extractor. These
works first estimate category centers µy

s/t = EX|Y [ϕ(x)|y]
with handcraft priors, e.g., mean-values of object features

µy
s/t =

1
Ns/t

∑Ns/t

i RoIyi , and then minimize the domain-
discrepancy between µy

s and µy
t . However, these methods

potentially achieve a biased adaptation depending only on
center-based knowledge, and fail to adapt mismatched cat-
egories Ωmiss

s/t appearing in a single domain due to the in-

tractable µ
y=Ωmiss

s/t

s/t .
To overcome these issues, we generate novel samples in

the missing categories Ωmiss
s/t to complete the mismatched

semantic, and establish a cross-image graph Gs/t to model
the class-conditional distribution PX|Y (ϕ(xs/t)|y) for each
domain. Then, we reformulate domain adaptation as a
graph matching problem between Gs and Gt, which can be
solved with a differential QAP [6, 8, 10] as follows,

min
Π
F(Π) = ||As −ΠAtΠ

T ||2F − tr(XT
uΠ),

Π ∈ [0, 1]Ns×Nt ,ΠlNs
≤ lNt

,ΠT lNt
≤ lNs

,
(1)

where As ∈ RNs×Ns and At ∈ RNt×Nt represent the ad-
jacent matrix encoding structure information of the graph
Gs and Gt respectively, Ns/t is the number of graph nodes,
|| · ||F is the Frobenius norm, Xu ∈ RNt×Ns is the unary
affinity matrix and generally specified as the node affinity
Maff [8], and Π is the relaxed permutation matrix encod-
ing node-to-node assignment 1 and Πi,j = 1 indicates that
the node vis ∈ Gs is matched with the node vjt ∈ Gt.

Different from existing works [37, 41, 42] overlooking
mismatched categories, we complete missing semantics and
effectively align the distribution for each appeared cate-
gory. Besides, our method achieves a fine-grained adapta-
tion guided by graph matching, breaking the barrier of exist-
ing center-based methods adopting sub-optimal alignment.

1We follow [8] to relax the one-hot permutation matrix with continuous
values to satisfy the differential requirement of neural network training.
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4. Proposed Method
The overall workflow the proposed SIGMA framework

is shown in Figure 2. Given batch-wise annotated source
images {(xi

s, y
i
s)}Bi=1 and unlabeled target images {xi

t}Bi=1,
we use a shared feature extractor ϕ to extract image-level
features {ϕ(xi

s/t)}
B
i=1, which are sent to Graph-embedded

Semantic Completion module (GSC) (Figure 2(a)). In the
GSC module, we first transform visual features to the graph-
ical space (V2G) and perform domain-guided node com-
pletion (DNC) to complete mismatched semantics, obtain-
ing semantic-complete node sets Vs/t. Then, we establish
cross-image graphs Gs/t to model the class-conditional dis-
tribution with enhanced nodes Ṽs/t, which also serves to
learn a graph-guided memory bank (GMB) to improve the
semantic completion in turn. Afterwards, the well-modeled
graphs Gs/t are sent to the Bipartite Graph Matching adap-
tor (BGM) (Figure 2(b)). We use graph nodes Ṽs/t for
cross graph interaction (CGI) and learn a semantic-aware
node affinity (SNA) matrix M̃aff . Besides, we leverage
graph edges Es/t to serve as quadratic constraints (QC) to
optimize the graph matching permutation, achieving fine-
grained adaptation with well-aligned node pairs.

4.1. Graph-embedded Semantic Completion

Given batch-wise annotated source images {(xi
s, y

i
s)}Bi=1

and unlabeled target images {xi
t}Bi=1 with C categories,

we first adopt the domain-shared backbone ϕ to extract vi-
sual features {ϕ(xi

s/t)}
B
i=1, ϕ(xi

s/t) ∈ RD×W×H . For the
source features, we perform spatial-uniformed sampling to
collect the pixels inside ground-truth boxes as class-aware
foreground nodes and a ratio 1

C+1 of pixels outside fore-
ground boxes as background samples. For the target do-
main, we forward-propagate target features in classification
head to obtain pseudo score mapsMt ∈ RC×W×H as the
surrogate sampling principle. Then we sample the pixels
satisfying maxC(Mi

t) > τfg as class-aware foreground
nodes and a ratio 1

C+1 of low-score pixels (maxC(Mi
t) <

τbg) as background samples2. After sampling fine-grained
visual features, we perform a non-linear projection to obtain
the raw node embedding Vraw

s/t = {vis/t}
Ns/t

i=1 , achieving the
transformation from the visual space to the graphical space.
Domain-guided Node Completion. The object categories
ΩB

s/t ∈ {0, 1, ..., C} within a training batch are always
mismatched between the source and target domain, limit-
ing the adaptation of class-conditional distributions. Hence,
we propose a semantic completion strategy to generate hal-
lucination nodes in missing categories Ωmiss

s = {ω|ω ∈
ΩB

t , ω /∈ ΩB
s }, Ωmiss

t = {ω|ω ∈ ΩB
s , ω /∈ ΩB

t }, ob-
taining semantic-complete nodes Vs/t. To generate ad-

2τfg is empirically set 0.5 to satisfy the active condition of the non-
linear sigmoid function and τbg is set 0.05 following the commonly used
score-threshold setting in existing object detectors [19, 23, 24, 33].

ditional nodes containing non-existing semantics, we de-
fine a graph-guided memory bank Ss/t ∈ RC×D to save
the category-specific knowledge of inner-domain seman-
tics, and we will explain the learning strategy of this mem-
ory bank in the next section. Considering the source and
target domains share a similar category space [3], we fully
utilize the semantic cues from the counterpart domain to
guide the node generation, which provide a joint measure-
ment of the class-conditional distribution within the batch.
Specifically for the completion of the source-missing cat-
egory ω ∈ Ωmiss

s , we calculate the standard variance of
target nodes {v(ω)

t } in class ω to obtain a variant vector
σ
(ω)
t ∈ RD, which approximates the scale of the distribu-

tion for the missing category ω. Then, we load the cor-
responding memory seed S(ω)

s from the memory bank to
serve as the category-specific expectation µ

(ω)
s . After that,

we perform Gaussian sampling and adopt a linear projec-
tion P(·) to obtain hallucination nodes VH

s = {vhs |vhs =

P(xh
s ), x

h
s ∼ N(µ

(ω)
s , σ

(ω)
t )} belonging to the mismatched

categories. The same completion is also conducted in the
target domain to obtain the nodes VH

t in the target-missing
categories Ωmiss

t . Instead of aligning these statistic-based
estimations directly [37, 41, 42], we fully utilize domain
knowledge to generate novel and unbiased samples, avoid-
ing the biased and sub-optimal alignment. Finally, both ex-
isting nodes and hallucination ones constitute the semantic-
complete node set Vs/t for the followed graph modelling.
Graph-guided Memory Bank. Since the nodes Vs/t de-
rive from different images within a batch, we establish
a cross-image graph to model the class-conditional distri-
bution with long-distance semantic dependency, and pro-
pose a memory bank to preserve graph-based knowledge,
which helps the DNC to generate better hallucination nodes
in turn. Specifically, we first introduce edge connections
Es/t between nodes Vs/t and set up a cross-image graph
Gs/t = {Vs/t, Es/t} in each domain. For the graph edge,
we utilize edge drop [26] to avoid the potential relation-
ship bias caused by the abundant visual correspondence:
As/t = Edgedrop{softmax[Vs/tWe(Vs/tWe)

T ]}, where
As/t is the adjacent matrix encoding structure information,
andWe is a learnable linear projection. Then, we perform
single-layer graph convolution with the graph-based mes-
sage propagation among nodes to aggregate cross-image se-
mantic knowledge, yielding the enhanced node representa-
tion: ṽis/t = LN(

∑|NRi|
vj
s/t

∈NRi
Ai,j

s/tv
j
s/tWgcn+vis/t), where

NRi represents the neighbour nodes of vis/t, Wgcn is the
learnbale parameter, and LN is the layer normalization [1].

To provide representative and robust dependency for
the hallucination node generation, we introduce a memory
bank to save class-specific graph embedding and design a
cluster-based update strategy for the memory bank learn-
ing. Specifically, we randomly initialize a memory bank
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Ss/t ∈ RC×D at the beginning of the training and gradu-
ally update memory seeds with appeared graph nodes. For
each appeared category ω within a training batch, we col-
lect graph nodes {ṽ(ω)

s/t }, ṽ
(ω)
s/t ∈ RD in class ω and load the

corresponding memory seed S(ω)
s/t ∈ RD from the memory

bank Ss/t. Then, we get both the memory seed and graph
nodes together {S(ω)

s/t , ṽ
(ω)
s/t } and conduct spectral cluster-

ing [31] in the graphical space to generate two clusters, i.e.,
a seed-included cluster πseed

s/t = {S(ω)
s/t , ṽ

(ω)
s/t } and an “else”

cluster πelse = {ṽ(ω)
s/t }. Since the domain-level knowledge,

referred to as the memory seed, provides a more robust and
precise estimation compared with the batch-wise measure-
ment, we only utilize the nodes in πseed

s/t to update the mem-
ory bank, which relieves the impact of noisy nodes appeared
in the early training stage:

S(ω)
s/t ← sim(bs/t,S

(ω)
s/t )S

(ω)
s/t + [1− sim(bs/t,S

(ω)
s/t )]bs/t,

(2)

where sim(bs/t,S
(ω)
s/t ) =

bs/t·S
(ω)

s/t

∥bs/t∥2·
∥∥∥S(ω)

s/t

∥∥∥
2

indicates the

adaptive momentum for better gradient-free learning [34,
42], and bs/t =

1
|πseed

s/t
|−1

∑
ṽ
(ω)

s/t
∈πseed

s/t

ṽ
(ω)
s/t . We only utilize

existing graph nodes to update memory seeds, and remove
those hallucination ones to avoid the potential negative im-
pact of handcraft Gaussian priors for the model learning.

4.2. Bipartite Graph Matching

Given the graph Gs/t, we reformulate the cross-domain
alignment as a graph matching problem, i.e., solving the
QAP between Gs and Gt. Specifically, we use graph nodes
Ṽs/t to establish cross-graph interaction and learn a node
affinity M̃aff . Besides, we introduce graph edges Es/t to
bridge the domain gap with a structure-aware matching loss.
Cross Graph Interaction. Since graph matching is a col-
laborative optimization problem between two graphical en-
tities, the message propagation across graphs is essential
for the optimal solution in graph-based affinity learning.
Hence, we introduce the knowledge exchange between Gs
and Gt to establish the cross-domain semantic interaction:

V̂s = LN{softmax[(ṼsWq)(ṼtWk)
T ](ṼtWv)Wp + Ṽs},

V̂t = LN{softmax[(ṼtWq)(ṼsWk)
T ](ṼsWv)Wp + Ṽt},

(3)
where V̂s/t = {v̂is/t}

Ns/t

i=1 is the graph node set with cross-
domain perception, LN is the layer normalization [1], and
W(·) are learnable parameters. To enhance the graphical se-
mantics, we introduce an auxiliary node classification task
by adopting a classifier fcls with the Cross Entropy loss:

Lnode = −
Ns+Nt∑
i=1

yilog{softmax[fcls(v̂
i
s/t)]}, (4)

where yi represents the ground-truth label for source nodes
and the pseudo label (obtained from score maps Mt) for
target nodes. Dense relationships can be established among
nodes belonging to different domains, serving the sparse
and fine-grained adaptation with interactive semantic cues.
Semantic-aware Node Affinity. Given the graph nodes
V̂s/t with cross-domain perception, we further learn an
affinity matrix to model the node correspondence between
Gs and Gt. Different from existing graph matching ap-
proaches [6, 8, 10] utilizing local visual representations, we
leverage the category-level semantic with inherent relation-
ships to learn a semantic-aware affinity matrix. Specifically,
we define the entry of the node affinity matrix as follows:
Mi,j

aff = fmlp{fp(v̂is)⃝c fp(v̂
j
t )}, Maff ∈ RNs×Nt , where

⃝c is the concatenation operation, fp indicates a linear pro-
jection, and fmlp is a multi-layer perceptron layer (MLP)
with a single output channel. This MLP layer learns in-
herent semantic relationships between two graph nodes and
encodes them into affinity representations. Maff is then sent
to the Instance Normalization layer as [6] and the differen-
tial Sinkhorn layer [30] to obtain a double-stochastic affin-
ity matrix M̃aff with maximum k-iteration optimization (k
is set 20 enough for optimization). Finally, each positive
entry in the affinity matrix M̃aff indicates a matched node
pair across two graphs for fine-grained domain adaptation.
Structure-aware Matching Loss. Since graph nodes are
drawn from the graphically modeled class-conditional dis-
tribution, we align the node pairs across two domains with
homogeneous semantics (v̂(ω)

s ∈ Gs and v̂
(ω)
t ∈ Gt), to

adapt the distribution for category ω. Specifically, we pro-
pose a structure-aware matching loss to achieve this fine-
grained domain adaptation with node-to-node graph match-
ing, which consists of three components as follows,

Lmat =
∑
i

1

Ns
[max

j
(M̃aff ⊙YΠ)i,j − 1]2

+
∑
i,j

1

||1−YΠ||1
[M̃aff ⊙ (1−YΠ)]2i,j

+
∑
i,j

1

Ns · Nt
(AsM̃aff − M̃affAt)i,j ,

(5)

where the (i, j) entry in YΠ ∈ RNs×Nt is 1 if vis ∈ Gs
and vjt ∈ Gt are in the same category ω, otherwise 0, and
M̃aff ∈ RNs×Nt is the node affinity. The first term works
on correctly matched node pairs and enhances the best-
matching of correct cases, named True-positive Enhance-
ment (TE) (as the Red entries of Figure 2 ŶΠ ). The sec-
ond term evaluates the difference between the node affin-
ity and ground-truth to suppress wrongly activated cases,
i.e., False-positive Suppression (FS) (as the Grey entries
of Figure 2 ŶΠ). Besides, we introduce structure-aware
Quadratic Constrains (QC) as the third term to minimize
the structural difference of matched node pairs in a local
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Method Backbone person rider car truck bus train motor bike mAP SO/ GAIN

CFFA [42]CV PR′20

VGG-16

34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6 20.8/ 17.8
EPM [12]ECCV ′20 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0 18.4/ 17.6
RPNPA [41]CV PR′21 33.6 43.8 49.6 32.9 45.5 46.0 35.7 36.8 40.5 20.8/ 19.7
UMT [5]CV PR′21 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7 21.8/ 19.9
MeGA [34]CV PR′21 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8 24.4/ 17.4
ICCR-VDD [36]ICCV ′21 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0 22.8/ 17.2
KTNet [32]ICCV ′21 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9 18.4/ 22.5
SSAL [21]NeurIPS′21 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6 20.4/ 19.2
SIGMA (ours) 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5 18.4/ 25.1

GPA [37]CV PR′20

ResNet-50

32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5 22.8/ 16.7
EPM [12]ECCV ′20 39.9 38.1 57.3 28.7 50.7 37.2 30.2 34.2 39.5 24.2/ 15.3
DIDN [18]ICCV ′21 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5 28.6/ 11.9
DSS [35]CV PR′21 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9 22.8/ 18.1
SDA [25]ICCV ′21 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3 22.8/ 20.5
SIGMA (ours) 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2 24.2/ 20.0

Table 1. Results on Cityscapes→Foggy Cityscapes (%) with VGG-16 and ResNet-50 backbone networks. SO represents the source only
results and GAIN indicates the adaptation gains compared with the source only model.

neighborhood. Based on the consistent objective of Eq. 1
and Eq. 5 about graph matching, each source node will be
aligned to the optimal-matched counterpart in the target do-
main in the same category, achieving a fine-grained align-
ment of class-conditional distributions during training.

4.3. Model Optimization

During training, we adopt class-agnostic global align-
ment [12] on visual features {xi

s/t}
B
i=1 with adversarial

loss LGA. Considering the non-grid correspondence among
graph nodes and the non-euclidean representation of graph-
ical space [39], we design a Node Discriminator (ND) to
align well-matched nodes, consisting a gradient reversed
layer [7], three stacked discrimination blocks fb (each block
is FC-LayerNrom-ReLU), and a domain classifier fdc fol-
lowed with the Binary Cross Entropy (BCE) loss: LNA =
−
∑Ns

i Dlog{fdc[fb(vis)]}−
∑Nt

i (1−D)log{fdc[fb(vit)]},
where D is the domain label as [3] and vis/t are existing
graph nodes. Then, the overall optimization objective of
the proposed framework is denoted as:

L = λ1Lnode + λ2Lmat + LNA + LGA + Ldet, (6)

where Lnode is the node classification loss, Lmat is the
graph matching loss, LNA is the node alignment loss, LGA

is the global alignment loss [12] and Ldet is the detection
loss. λ1/2 are set 0.1 respectively to control the intensity.

5. Experiments
5.1. Datasets and Evaluation

We conduct extensive experiments on three adaptation
scenarios following the standard UDA setting in existing
literature [3,12,21,32]. We use the mean Average Precision

Method S→C SO/GAIN K→C SO/GAIN

EPM [12]ECCV ′20 49.0 39.8/ 9.2 43.2 34.4/ 8.8
DSS [35]CV PR′21 44.5 34.7/ 9.8 42.7 34.6/ 8.1
MEGA [34]CV PR′21 44.8 34.3/ 10.5 43.0 30.2/ 12.8
RPNPA [41]CV PR′21 45.7 34.6/ 11.1 - -
UMT [5]CV PR′21 43.1 34.3/ 8.8 - -
KTNet [32]ICCV ′21 50.7 39.8/ 10.9 45.6 34.4/ 11.2
SSAL [21]NeurIPS′21 51.8 38.0/ 13.8 45.6 34.9/ 10.7
SIGMA (ours) 53.7 39.8/ 13.9 45.8 34.4/ 11.4

Table 2. Comparison results (%) on Sim10K→Cityscapes (S→C)
and KITTI→Cityscapes (K→C) with VGG-16 backbone.

with different IoU thresholds (mAPIoU ) for comparison and
utilize SO/GAIN to assess the source only results3 and the
adaptation gains compared with the SO. Besides, we also re-
port the results of GA [12] that adopts global alignment [3]
on the FCOS [33] detector as our baseline counterpart.
Cityscapes→Foggy Cityscapes. The Cityscapes [4] is
a street scene datasets captured with on-board cameras
under the dry weather condition, which consists of the
train set (2975 images) and validation set (500 images)
with eight categories of annotated bounding boxes. Foggy
Cityscapes [28] is a synthesized dataset based on the
Cityscapes with foggy noise. We explore the weather con-
ditioned domain gap in this adaptation scenario.
Sim10k→Cityscapes. Sim10k [15] is a simulated dataset
obtained from the video game Grand Theft Auto V, yield-
ing the domain gap with the real-world scene (Cityscapes).
This dataset covers 10,000 images of the annotated bound-
ing boxes in the car category. We perform domain adapta-
tion between synthesized and real-world images and report

3Source Only (SO) indicates training with labeled source images and
testing on the target data, which is the same as “w/o adapt”.
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the performance on car category as the common setting.
KITTI→Cityscapes. KITTI [9] is a real-world traf-
fic scene dataset collected from vehicle-mounted cameras,
which yields the cross-camera domain gap with Cityscapes
(on-board cameras). This dataset covers annotated cars in
7,481 images with cross-camera domain gap for adaptation.

5.2. Implementation Details

We adopt both VGG-16 [29] and ResNet-50 [11] fea-
ture extractors, which are implemented with Pytorch [22].
Our model is trained with the Stochastic Gradient Descent
(SGD) optimizer with a 0.0025 learning rate, 4 batch-size,
momentum of 0.9, and weight decay of 5×10−4. We sam-
ple at most 100 graph nodes for each feature map in each
domain. Considering the graph matching may fail if no
nodes appear in the target domain, we follow [12] to pre-
train the framework as a warm-up stage before introducing
the BGM adaptor. The adaption-unrelated settings about the
object detector strictly follow related works [12, 21, 32].

5.3. Comparison with State-of-the-arts

Cityscapes→Foggy Cityscapes. We present the compar-
ison with VGG-16 and ResNet-50 backbones in Table 1.
SIGMA achieves 43.5% and 44.2% mAP, respectively, out-
performing existing works by a large margin. Compared
with category-level adaptation approaches, e.g., CFFA [42]
(38.6%), RPNPA [41] (40.5%), MeGA-CDA [34] (41.8%),
KTNet [32] (40.9%), and GPA [37] (39.5%), SIGMA
achieves 4.9%, 3.0%, 1.7%, 2.6%, and 4.7% mAP im-
provements respectively, showing our advantages over ex-
isting prototype-based works. Besides, SIGMA surpasses
EPM [12], KTNet [32], and SSAL [21] with 7.5%, 2.6%,
and 3.9% mAP using the same FCOS [33] object detector.
Sim10k→Cityscapes. The experimental comparison is
recorded in the left part of Table 2. SIGMA achieves a
53.7% mAP with the best adaptation gain (13.9% AP), out-
performing existing works significantly. Compared with
the approaches using the same FCOS [33] object detector,
e.g., EPM [12] (49.0% mAP), KTNet [32] (50.7% mAP),
SSAL [21] (51.8% mAP), SIGMA gives 4.7%, 3.0%, and
1.9% mAP improvements, verifying our effectiveness.
KITTI→Cityscapes. The comparison results are shown
in the right part of Table 2. SIGMA outperforms existing
works with a 45.8% mAP and achieves a comparable adap-
tation gain (11.4% mAP) compared with state-of-the-arts.
Compared with EPM [12], KTNet [32] and SSAL [21], our
method shows the advantage in terms of adaptation.

5.4. Ablation Studies

We report detailed ablation studies (Table 3) conducted
on Cityscapes→Foggy Cityscapes with VGG-16 backbone.
Graph-embedded Semantic Completion. As shown in
Table 3, adopting the GSC module can achieve 41.8% mAP

Method w/o prsn rider car truc bus train moto bike mAP

GA [12] - 40.3 41.5 54.2 26.7 42.1 15.4 27.1 35.1 35.3

+GSC

DNC 45.2 46.2 57.2 29.1 46.5 31.2 29.2 38.7 40.4
GMB 43.5 43.8 57.4 29.4 48.3 30.4 31.4 41.1 41.0
ND 44.1 45.2 56.7 28.0 45.9 23.9 32.8 38.7 39.4

- 45.8 47.6 58.9 27.3 48.6 33.8 32.7 39.3 41.8

CGI 44.4 48.0 58.8 28.4 50.3 40.5 31.7 40.8 42.8
+GSC SNA 46.0 46.9 58.8 28.6 48.2 40.4 33.1 39.5 42.6
+BGM SML 46.1 49.9 59.1 26.2 52.5 27.1 34.6 41.3 42.2

- 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5

Table 3. Ablation studies on Cityscapes→Foggy Cityscapes (%).

N f
s N f

t prsn rider car truc bus train moto bike mAP

200 0 41.2 45.1 55.2 26.9 44.2 16.3 28.9 37.0 36.8
0 200 42.4 41.8 55.3 27.7 44.0 21.8 29.2 36.6 37.3

20 20 42.4 44.0 56.5 27.3 45.8 26.6 30.9 38.6 39.0
50 50 44.2 43.4 56.9 32.2 45.7 38.6 29.6 37.5 41.0

100 100 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
200 200 44.3 48.8 59.0 28.9 51.7 45.1 34.2 39.9 43.9

500 500 44.4 47.1 58.0 24.4 52.5 40.3 31.2 40.1 42.6

Table 4. Results on Cityscapes→Foggy Cityscapes (%) with dif-
ferent node combinations. N f

s/t represent the maximum sampled
nodes from source and target domains in each feature map.

Strategy Loss mAP0.5:0.95 mAP0.5 mAP0.75

Single +TE 22.0 42.1 20.3

matching +TE+FS 23.8 43.2 23.0
+TE+FS+QC 24.0 43.5 23.5

Multiple +BCE 23.2 42.9 22.8
matching +MSE 23.7 43.1 23.0

Table 5. Results on Cityscapes→Foggy Cityscapes (%) with dif-
ferent matching strategies and loss functions. mAP0.5:0.95 is the
averaged mAP from 0.5 to 0.95 IoU with 0.05 intervals. BCE is
Binary Cross Entropy and MSE is Mean Squared Error.

with 6.5% mAP gains compared with the GA baseline [12].
We then gradually remove each sub-component to verify its
effectiveness. Removing Domain-guided Node Completion
(DNC) limits the model optimization under mismatched
semantic knowledge (40.4% mAP). Replacing the Graph-
guided Memory Bank (GMB) with a common buffer gives
0.8% mAP drops (41.0% mAP) due to the impact of un-
avoidable noisy samples, and removing Node Discrimina-
tor (ND) gives a significant drop (39.4%) due to the severe
domain gap in the graphical space.
Bipartite Graph Matching. Introducing the BGM adaptor
achieves consistent improvements with a remarkable 43.5%
mAP, outperforming the baseline model with 8.2% mAP.
Removing Cross Graph Interaction (CGI) gives a 0.7%
mAP performance drop (42.8 % mAP) due to the limited
interaction between two domains. Replacing the Semantic-
aware Node Affinity (SNA) with the simplified strategy
in [8] leads to 0.9% mAP drops (42.6% mAP), and remov-
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Figure 3. Result comparison on the Cityscapes→Foggy Cityscapes adaptation scenario among (a) the source only model, (b) EPM [12],
(c) the proposed SIGMA, and (d) Ground-truth. (Zooming in for best view.)

Figure 4. Feature comparison via T-SNE between the baseline
model and our method. For each category, we randomly sample
object features (marked as squares) inside bounding boxes in the
source domain and target domain equally.

ing the Structure-aware Matching Loss (SML) reduces the
performance (42.1% mAP). Hence, each sub-component is
necessary for SIGMA to achieve state-of-the-art results.

5.5. Sensitivity Analysis

To better understand our method, we investigate the node
selection (Table 4) and matching design (Table 5).
Evaluation on the number of nodes. As shown in Table 4,
we compare different node combinations (N f

s/t represents
the maximum number of nodes sampled from each feature
map). Only utilizing source and target nodes (1st and 2nd

lines) severely affects the adaptation performance (36.8%
and 37.3% mAP) due to deterioration of domain gap in the
graphical space. Besides, we find consistent performance
improvements from 39.0% to 43.9% (3rd row to 6th row)
with the increase of the node number from 20 to 200, be-
cause more nodes improve graph matching guided adapta-
tion with better graphical space. However, using too many
nodes (e.g., 500) will lead to the difficulty of graph match-
ing optimization with a worse result (42.6% mAP).
Evaluation on matching strategies. We compare different
settings between single-matching (each node is matched to
the best counterpart) and multiple-matching (each node is
matched to all counterparts in the same category) in Table 5.
We find single-matching (43.5% mAP0.5) performs rela-
tively better than multiple-matching (43.1% mAP0.5) be-
cause singe-matching aligns primary node pairs and relives
noisy adaptation on ambiguous nodes. Besides, each com-

ponent (TE, FS, QC) of the proposed matching loss con-
tributes to the matching-based domain adaptation, yielding
consistent mAP0.5 improvements from 42.1% to 43.5%.

5.6. Qualitative Results

Result comparison. We present the comparison among
(a) source only, (b) EPM [12], (c) the proposed SIGMA
and (d) ground-truth in Figure 3. SIGMA can reduce miss-
ing errors, such as the truck in 1st and 2nd lines compared
with the category-agnostic method EPM [12]. Besides, our
approach also eliminates some classification errors (false-
positive cases), such as the rider in 2nd row, showing the
advantage in category-level adaptation with well-aligned
class-conditional distributions.
Feature comparison. For each category, we randomly
sample an equal number of pixels on ResNet-50-based fea-
tures for each domain (200 pixels/ domain&category) and
present the T-SNE comparison with the GA baseline [12] in
Figure 4. It can be observed that those similar categories
(person, rider, and bike) can be separated clearly on fea-
tures by our method, which benefits the followed detection
head in terms of object recognition significantly.

6. Conclusion

In this paper, we propose a novel framework for DAOD,
coined SIGMA. It represents domain information through
semantic-complete graphs and model domain adaptation
as a graph matching problem, which break the barrier
of existing category-level approaches in terms of seman-
tic mismatching and sub-optimal prototype alignment. It
adopts a Graph-embedded Semantic Completion module
(GSM) to complete mismatched semantics and model class-
conditional distributions with graphs. Then, it leverages a
Bipartite Graph Matching adaptor (BGM) to achieve fine-
grained alignment with a node-to-node matching. Extensive
experiments on three benchmarks show that the proposed
method outperforms existing approaches significantly.
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