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Abstract

Semi-Supervised object detection (SSOD) aims to im-
prove the generalization ability of object detectors with
large-scale unlabeled images. Current pseudo-labeling-
based SSOD methods individually learn from labeled data
and unlabeled data, without considering the relation be-
tween them. To make full use of labeled data, we pro-
pose a Multi-instance Alignment model which enhances
the prediction consistency based on Global Class Proto-
types (MA-GCP). Specifically, we impose the consistency
between pseudo ground-truths and their high-IoU candi-
dates by minimizing the cross-entropy loss of their class
distributions computed based on global class prototypes.
These global class prototypes are estimated with the whole
labeled dataset via the exponential moving average algo-
rithm. To evaluate the proposed MA-GCP model, we inte-
grate it into the state-of-the-art SSOD framework and ex-
periments on two benchmark datasets demonstrate the ef-
fectiveness of our MA-GCP approach.

1. Introduction

With a large amount of labeled data available, deep
learning has shown superior performance when solving ob-
ject detection task. However, it is very costly to collect suf-
ficient labeled data for each object category. Fortunately,
there are large amount of unlabeled data available which
can be collected from social media and websites. Semi-
supervised object detection (SSOD) is proposed to improve
the generalization ability of object detectors with large-
scale unlabeled images [8, 18, 23, 28, 31]. In SSOD, we are
given a labeled dataset and an unlabeled dataset. SSOD
aims to learn a object detector with good generalization
ability by using these labeled and unlabeled images.

To achieve this goal, existing SSOD approaches usu-
ally adopt two strategies: consistency-based SSOD [12,
13, 30] and pseudo-labeling-based SSOD [18, 22, 26–29,
31]. Consistency-based approaches train the target detec-

tor by minimizing inconsistency between prediction results
of unlabeled data with different perturbations. Their per-
formance highly depends on the design of perturbations
and the measurement of consistency. Recently, pseudo-
labeling-based approaches become popular. As shown in
the yellow box of Figure 1, they adopt a teacher-student
learning framework. Specifically, the pseudo labels of un-
labeled images are first estimated by using a teacher de-
tector followed by a label refinement module. Then, they
jointly train a student detector with both labeled and unla-
beled images. The detection losses of labeled and unlabeled
images are used to optimize the parameters of student de-
tector. Teacher detector’s parameters are updated with the
parameters of student detector via Exponential Moving Av-
erage (EMA) algorithm or pretrained with all labeled im-
ages. However, these models individually train the student
detector with labeled data and unlabeled data. That is, their
detection losses of labeled and unlabeled data update the
student detector individually, without considering the rela-
tion between them.

This work fully leverages the labeled images to improve
SSOD by developing a Multi-instance Alignment model
with Global Class Prototypes (MA-GCP). Our key insight
is to better estimate prediction consistency of unlabeled im-
ages by using the reliable information learned from all la-
beled images. By enforcing the consistency regularization
in the pseudo-labeling-based framework, our approach can
improve its detection performance.

Specifically, we assume each class is represented by a
prototype in the feature space. As shown in the green box
of Figure 1, each prototype is progressed with region fea-
tures of the corresponding category via EMA algorithm.
Since each prototype is updated with all labeled instances
during the whole training process, we call it global class
prototype. Then, we compute the class distributions of un-
labeled images’ proposals based on its visual similarity with
each global class prototype. After that, we impose consis-
tency between each pseudo ground-truth proposal and its
candidate proposals with high Intersection-of-Union (IoU)
scores by minimizing the cross-entropy loss of their class
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Figure 1. Illustration of the proposed approach. Our approach is implemented based on a pseudo-labeling-based SSOD framework, as
shown in the yellow box. It estimates the pseudo labels for unlabeled images using a teacher detector followed by a label refinement
module and then jointly trains a student detector with both labeled and unlabeled images. As shown in the green box, to make full use of
labeled images, we propose a multi-instance alignment model based on global class prototypes which are learned with all labeled images
via EMA algorithm. The detection loss of labeled images Ls

det and unlabeled images Lu
det and multi-instance alignment loss Lu

aln are used
to train the student detector, and teacher detector’s parameters are updated with student detector’s parameters via EMA algorithm.

distributions. Different from previous consistency-based
SSOD [2, 12, 13] which use batch-wise prototypes as ref-
erences or directly compute prediction results without ref-
erences, our model leverages these global class prototypes
to produce more reliable consistency regularization and thus
improves the detection accuracy of SSOD.

To evaluate the performance of our MA-GCP approach,
we integrate it into the state-of-the-art pseudo-labeling-
based framework. Experimental results on the PASCAL
VOC and MSCOCO datasets demonstrate that our approach
outperforms the competing models, and thus obtains the
state-of-the-art results.

In summary, our main contributions are as follows:

• We propose a multi-instance alignment model with
global class prototypes to enhance prediction consis-
tency of pseudo-labeling-based SSOD approaches.

• We propose to learn global class prototypes with all la-
beled images via the EMA algorithm and then employ
them to estimate prediction consistency of unlabeled
images. These global class prototypes help to estimate
more reliable prediction consistency and thus benefit
SSOD.

• Extensive experiments demonstrate that our MA-GCP
approach has achieved a consistent improvement on
two benchmark datasets and obtains the state-of-the-
art results.

2. Related Work
Semi-supervised image classification (SSIC) aims to ex-

ploit a large amount of unlabeled data to improve classi-

fication accuracy [4, 11, 14, 19, 24]. Most of them adopt
consistency regularization which penalizes the inconsis-
tency of prediction results of an unlabeled image of dif-
ferent augmentation views [1, 9, 19, 24]. Recently, some
data-augmentation methods are designed to tackle semi-
supervised image classification and have shown superior
performance [3, 4, 25]. This work aims to tackle a more
challenging task – SSOD, where not only classification task
but location task needs to be dealt with.

Existing SSOD approaches are grouped into two
categories: consistency-based approaches [12, 13, 30]
and pseudo-labeling-based approaches [18, 22, 28, 29,
31]. Consistency-based approaches follow semi-supervised
classification and learn from unlabeled data by enforc-
ing the prediction consistency between unlabeled images
in different augmentation views. For example, Jeong et
al. imposed a prediction consistency between each un-
labeled image and its horizontally flipped variant [12].
They further developed an interpolation-based SSOD (ISD)
approach which produces reliable mix-up patches from
two input images and maximizes the consistency between
mix-up patches and original patches [13]. They combine
this ISD method with previous consistency-based approach
to promote the detection performance. These aforemen-
tioned approaches focus on the design of the augmenta-
tion method to improve sample diversity. Our approach not
only improve spatial diversity by introducing high-IoU can-
didates of pseudo ground-truth proposals, but also propose
to strengthen the consistency based on reliable global class
prototypes.

Recently, pseudo labeling (or self-training) strategy be-
comes popular in SSOD. Sohn et al. pre-trained a teacher
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detector using labeled images and generated pseudo-labels
of unlabeled images to fine-tune the target(student) detec-
tor [21]. Their pseudo-labels are generated only once and
are fixed through out the rest of training. Many follow-
up work propose to simultaneously update teacher detector
and student detector in an end-to-end manner. Liu et al.
employed EMA strategy to train a student detector and a
gradually progressing teacher in a mutually-beneficial man-
ner [18]. Tang et al. also utilized EMA to update teacher
detector and proposed a data ensemble method to produce
reliable pseudo labels for unlabeled images [22]. Xu et
al. developed an end-to-end soft teacher mechanism where
the classification loss of each unlabeled bounding box is
weighed by the classification score produced by the teacher
network [27]. However, these approaches individually learn
from labeled and unlabeled data. To make full use of la-
beled data, we propose a multi-instance alignment model
based on global class prototypes. By inserting the proposed
alignment model into a teacher-student training framework,
our approach can improve its detection accuracy.

3. Method
In this section, we first provide the formulation of

SSOD and a popular teacher-student framework. Then, an
overview briefly introduces the proposed model. After that,
we give technical details of two key components, i.e., global
class prototypes and multi-instance alignment. The overall
training objective is finally provided.

3.1. Preliminary: Teacher-Student Framework for
Semi-Supervised Object Detection

Before introducing SSOD approaches, we first provide
the definition of SSOD. In SSOD, we are given a set of la-
beled images Ds = {(xs

i ,y
s
i )}

Ns
i=1 and a set of unlabeled

images Du = {xu
j }

Nu
j=1, where Ns and Nu are the to-

tal number of labeled and unlabeled images, respectively.
Here, ys

i denotes the image annotation of image xs
i . The

goal of SSOD is to learn a good detector with Ds and Du.
Recent attempts [18, 22, 26, 27, 29, 31] exploit teacher-

student framework to address SSOD. Specifically, as shown
in the yellow box of Figure 1, given an unlabeled image
xu
i , we first feed it into a weak augmentation model Tw

and a strong augmentation module Ts to obtain the inputs
of teacher detector Mt and student detector Ms, respec-
tively. Then, we feed the weak augmented image Tw(x

u
i )

into the teacher detector Mt followed by a label refine-
ment post-processing module H to produce pseudo labels
for each unlabeled image. After that, the strong augmented
image Ts(x

u
i ) is fed into student model Ms to predict de-

tection results. A detection loss of unlabeled image Lu
det is

used to minimize the differences between prediction results
Ms(Ts(x

u
i )) and pseudo labels. Simultaneously, each la-

beled image xs
j is fed into student detector Ms to predict

detection result and a detection loss Ls
det is used to min-

imize the difference between its prediction result and its
ground-truth label. By combining the two losses together,
given an unlabeled image set Du and a labeled image set
Ds, we compute the total loss of the teacher-student frame-
work Lst

det, which is formulated in Equation (1).

Lst
det(Ds,Du) = Ls

det(Ds) + λuLu
det(Du). (1)

where λu is a hyper-parameter to balance the detection
losses of labeled and unlabeled images. During the training
stage, the total loss is used to optimize the parameters of
student detector and label refinement module. The teacher
detector and student detector share the same network archi-
tecture. The parameters of teacher detector are pretrained
by all labeled images and then fixed or slowly progressed
with student detector parameters via EMA algorithm. Dur-
ing the test stage, the student detector is used to predict de-
tection results of test images.

3.2. Overview

Although the teacher-student framework has achieved
promising results in SSOD, it didn’t consider the relations
between labeled and unlabeled images. To make full use
of labeled images, we propose a multi-instance alignment
model which enforces the proposal-level consistency based
on global class prototypes learned from all labeled images.
Our MA-GCP approach benefits from the reliable global
class prototypes and can learn more robust visual features
for object detection. We insert our MA-GCP model into
the SOTA SSOD model [27] and employ it as an additional
consistency regularization for performance improvement.

3.3. Global Class Prototype Learning

In our model, we represent each class with a global pro-
totype. These global class representations are initialized by
Gaussian noise and then updated with features of ground-
truth proposals via EMA algorithm. Specifically, during
each training iteration, given a labeled image xs

i , we first
compute its RoI feature set of ground-truth proposals by us-
ing the RoI head of student detector. The set of RoI features
is denoted by F gt

i = {(fgt
i,j ,y

gt
i,j)}, where fgt

i,j denotes the
RoI feature of j-th ground-truth proposal, ygt

i,j ∈ C de-
notes its class label and C denotes the set of all training
object categories. After that, we average these RoI features
by class and obtain a local prototype for each class:

vk=


∑

i,j f
gt
ij 1(y

gt
i,j = k)∑

i,j 1(y
gt
i,j = k)

,
∑
i

1(ygt
i,j = k) > 0,

0 ,
∑
i

1(ygt
i,j = k) = 0.

(2)

where vk denotes the local prototype of k-th class in C,
0 denotes a zero vector and 1 denotes an indicator opera-
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Figure 2. Illustration of the proposed multi-instance alignment model. The multi-instance alignment model takes as inputs the pseudo
ground-truth proposals obtained by teacher detector and candidate proposals obtained by the student detector, and enforces their consistency
by minimizing the cross-entropy loss between their class distributions based on global class prototypes.

tor. The global class prototypes are updated with local pro-
totypes via the EMA algorithm. The process of updating
global class prototypes is formulated in Equation (3).

gk = α · gk + (1− α) · vk. (3)

where gk denotes the global prototype of the k-th class in
C. α is momentum parameter and empirically set to be
0.99. By doing so, we obtain a set of global class pro-
totypes and will employ it as reference for multi-instance
alignment.

3.4. Multi-instance Alignment

With these global class prototypes, we propose a multi-
instance alignment model which minimizes the difference
between the class distributions of pseudo ground-truth pro-
posals and their high-IoU candidate proposals, as illus-
trated in Figure 2. These class distributions are computed
with global class prototypes as references. Specifically,
the alignment model takes as inputs the pseudo ground-
truth proposals obtained by the label refinement module,
RoI proposals obtained by the student detector and global
class prototypes. For each pseudo ground-truth proposal
rpgti,j of a given unlabeled image xu

i , RoI proposals with a
high intersection-of-union(IoU) score are selected to con-
struct its candidate proposal set, which is denoted by Rc

i,j =
{rci,j,z}. Then, we feed these pseudo ground-truth propos-
als and their candidate proposal sets into the RoI head of
student detector, and obtain their RoI features, which are
denoted by {fpgt

i,j } and F c
i,j = {f c

i,j,z}, respectively. Here,

j is the index of pseudo ground-truth proposals for unla-
beled image xu

i and z is the index of candidate proposals
of the j-th pseudo ground-truth proposals. After that, we
produce the class distribution of fpgt

i based on a softmax
over its similarities with the global class prototypes in the
feature space:

p(y = k|fpgt
i,j ) =

exp(sim(fpgt
i,j , gk))∑

k exp(sim(fpgt
i,j , gk))

. (4)

where sim denotes the similarity metric between RoI fea-
tures and global class prototypes. Here, we empirically use
cosine similarity and the diagnosis study of its form is pro-
vided in Section 4.4. In the same way, we can obtain the
class distribution of candidate proposals. For each pseudo
ground-truth proposal, we enforce its prediction consis-
tency with its candidate proposals by minimizing the cross-
entropy loss Lu

aln between their class distributions. The for-
mulation of Lu

aln and the outline of computing Lu
aln is given

in Algorithm 1.

Lu
aln=

∑
j

∑
z

∑
k∈C

−p(y = k|fpgt
i,j ) log p(y = k|f c

i,j,z).

(5)
Note that, the proposed multi-instance alignment model

is different from previous consistency-based SSOD ap-
proaches [2, 12, 13, 30] from two aspects: (1) We enforce
the consistency between pseudo ground-truth proposals and
their candidates with high IoU scores, rather the same can-
didate proposals cropped from images and their horizontal-
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Algorithm 1 Multi-instance Alignment Loss Computation

Require: labeled dataset Ds = {(xs
i ,y

s
i )}, unlabeled

dataset Du = {xu
i }, object category set C, student de-

tector Ms, teacher detector Mt, label refinement mod-
ule H.

Ensure: Multi-instance alignment loss Laln.
1: for each (xs

i ,y
s
i ) ∈ Ds do

2: Extract fgt
i,j of ground-truth proposals by using Ms;

3: for k ∈ C do
4: Compute local prototype vk according to Eq. (2);
5: Update global prototype gk according to Eq. (3);
6: end for
7: end for
8: for each xu

i ∈ Du do
9: Obtain pseudo ground-truth proposals rpgti,j by using

Mt followed by H;
10: Obtain candidate proposal set Rc

i,j = {rci,j,z} with
high IoU scores by using Ms;

11: Compute RoI features fpgt
i,j of rpgti,j by using Ms;

12: Compute RoI features f c
i,j,z of rci,j,z by using Ms;

13: for k ∈ C do
14: Compute class distributions p(y = k|fpgt

i,j ) and
p(y = k|f c

i,j,z) according to Eq. (4);
15: end for
16: Compute Lu

aln according to Eq. (5).
17: end for

flipped variants [12]. In this way, we increase the diver-
sity of input proposal pairs and thus benefits SSOD. (2)
The consistency is computed based on global class pro-
totypes learned from labeled images, while previous ap-
proaches either use batch-wise prototypes [2] or directly
compute consistency without any references of labeled im-
age [12,13,30], which are less reliable and suffer from class
imbalance issue.

3.5. The Overall Training Objective Function

The proposed multi-instance alignment model can be
flexibly incorporated with the teacher-student framework to
enhance its detection performance. By combining the de-
tection loss Lst

det of original detector with Laln, the overall
objective function is formulated in Equation (6).

Loveral = Lst
det + λaLu

aln. (6)

where λa denotes the weight of multi-instance alignment
loss Laln and a diagnosis study of λa is provided in Sec-
tion 4.4.

4. Experimental Results and Discussion
In this section, to evaluate the effectiveness of our ap-

proach, we conduct three groups of experiments: 1) Com-
parison with state-of-the-art SSOD approaches; 2) Ablation

study to test the effectiveness of key components and select
hyper-parameters; 3) Qualitative analysis.

4.1. Experimental Setup

We evaluate our approach on two benchmark datasets,
i.e., PASCAL VOC [7] and MSCOCO [17] datasets. PAS-
CAL VOC consists of 20 object categories. In SSOD, 5,011
labeled images from trainval set of VOC2007 and 11,540
unlabeled images from trainval set of VOC2012 dataset are
used for training, and 4,952 images from VOC2007 test
set for testing. As in [12, 13], the mean average preci-
sion (mAP) with IoU threshold 0.5 is used as the evalua-
tion metric. MSCOCO is more challenging dataset which
consists of 80 object categories. There are 118k, 5k, and
123k images in its training, validation and unlabeled sets,
respectively. Following [21,27], there are two data splits for
SSOD: partially-labeled split and fully-labeled split. The
partially-labeled split randomly selects 1%, 5% or 10%
labeled images from training set of MSCOCO as labeled
dataset and the remaining images in the training set are
used to construct the unlabeled dataset. The fully-labeled
split is more practical, which uses the whole training set
of MSCOCO as the labeled dataset and the whole unla-
beled set of MSCOCO as the unlabeled dataset. In both
data splits, the test set for evaluation is the validation set
of MSCOCO. The mean average precision with IoU thresh-
old ranging from 0.5 to 0.95 is used for evaluation metric
as in [27]. To avoid sampling randomness in the partially-
labeled split, we report averaged results over 5 data folds as
in recent SSOD approaches [18, 27].

4.2. Implementation Details

Our approach is implemented based on a recent pseudo-
labeling-based SSOD [27] which achieves the state-of-the-
art results on benchmark datasets. The baseline detection
framework is Faster RCNN [20] equipped with Pyramid
Feature Network [16]. The backbone is ResNet50 [20]. For
PASCAL VOC dataset, the model is trained for 60k iter-
ations on 8 GPUs with 5 image per GPU. For each train-
ing iteration, the ratio of the number of labeled and unla-
beled samples is 0.25. We train the whole model by using
SGD [15] with momentum. The learning rate is initialized
to 0.01 and is divided by 10 at 40k iteration and 50k itera-
tion. The weight decay and the momentum are set to 0.0001
and 0.9, respectively. For MSCOCO dataset, We train our
full model with the same learning scheme as in [27].

4.3. Comparison with State-of-the-Arts

PASCAL VOC. Table 1 provides comparative results on
the PASCAL VOC dataset. From this table, we can ob-
serve that our approach outperforms the SoftTeacher base-
line and achieves state-of-the-art results. Specifically, our
approach exceeds the SoftTeacher baseline over 1.40% ab-
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Settings Models Labeled dataset Unlabeled dataset mAP(%)

Fully-Supervised Faster RCNN+FPN VOC2007 None 76.30
Faster RCNN+FPN VOC2007+VOC2012 None 82.17

Semi-Supervised

CSD [12] VOC2007 VOC2012 74.70
STAC [21] VOC2007 VOC2012 77.45
ISD [13] VOC2007 VOC2012 74.40
ISMT [29] VOC2007 VOC2012 77.23
UGMP [26] VOC2007 VOC2012 78.60
UnbiasedTeacher [18] VOC2007 VOC2012 77.37
HumbleTeacher [22] VOC2007 VOC2012 80.94
Instant-Teaching [31] VOC2007 VOC2012 79.90
SoftTeacher* [27] VOC2007 VOC2012 80.32
MA-GCP(Ours) VOC2007 VOC2012 81.72

Table 1. Results on Pascal VOC, evaluated on the VOC07 test set. Soft Teacher* denotes the results obtained by the official implementation
of [27] with the same training scheme as ours. The mAP with IoU threshold 0.5 is used as the evaluation metric. Our approach not only
outperforms competing SSOD models and achieves comparable results with fully-supervised baseline trained with all samples from both
VOC2007 and VOC2012 datasets.

Model 1% labeled samples 5% labeled samples 10% labeled samples
STAC [21] 13.97± 0.35 24.38±0.12 28.64± 0.21
ISMT [29] 18.88±0.74 26.37±0.24 30.53±0.52
Unbiased Teacher [18] 20.75 ±0.12 28.27±0.11 31.50±0.10
HumbleTeacher [22] 16.96±0.38 27.70±0.15 31.61±0.28
Instant-Teaching [31] 18.05±0.15 26.75±0.05 30.40±0.05
SoftTeacher [27] 20.46±0.39 30.74±0.08 34.04±0.14
MA-GCP(Ours) 21.30±0.28 31.67±0.16 35.02±0.26

Table 2. Results on MSCOCO under the partially-labeled setting, evaluated on the MSCOCO’s validation set. The mAP(%) with IoU
threshold ranging from 0.5 to 0.95 is used as the evaluation metric. We report averaged results over 5 data folds as in most recent SSOD
approaches [21, 27]. Our approach consistently outperforms competing SSOD models under different ratios of labeled images.

Model AP0.5:0.95(%)
STAC [21] 39.20
ISMT [29] 39.64
UnbiasedTeacher [18] 41.30
HumbleTeacher [22] 42.37
Instant-Teaching [31] 40.20
SoftTeacher [27] 44.50
MA-GCP(Ours) 45.92

Table 3. Results on MSCOCO under the fully-labeled setting,
where the whole training set of MSCOCO is used as labeled
dataset and the whole unlabeled set of MSCOCO is used unla-
beled dataset. The evaluation metric is the same as that of Ta-
ble 2. Our approaches yields better results than competing SSOD
approaches.

solute points in terms of mAP and outperforms the super-
vised baseline over 5.43% absolute points. Furthermore,
our approach achieves comparable results with the super-

vised baseline trained with all labeled samples from both
VOC2007 and VOC2012 dataset. This demonstrates the ef-
fectiveness of our MA-GCP approach in SSOD.

MSCOCO. Tables 2&3 provide comparative results un-
der partially-labeled and fully-labeled settings on the
MSCOCO dataset, respectively. For more challenging
MSCOCO dataset, our approach still consistently outper-
forms competing SSOD models under both two settings.
Compared with the state-of-the-art SoftTeacher, our ap-
proach yields 0.84, 0.93, and 0.98 points improvement un-
der 1%, 5% and 10% labeled settings, respectively. Our
approach is shown to be more effective when the ratio of
labeled images are larger. It can be expected – more labeled
samples help to learn more reliable global class prototypes
and thus lead to more benefit to SSOD. For more prac-
tical fully-labeled setting, our MA-GCP model achieves
45.92% mAP, which outperforms SoftTeacher by 1.42 ab-
solute points, which is bigger than that of partial-labeled
setting. This indicates the benefit leaded by our MA-GCP
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Model mAP(%)
Baseline 80.32
Baseline+MA(Contrast) 80.53
Baseline+MA(Siamese) 80.79
Baseline+MA(GCP) 81.72

Table 4. Ablation study on contribution of key components of our
model on the PASCAL VOC dataset. The evaluation metric is
the same as that of Table 1. Notations: ‘Baseline’ –the state-of-
the-art SSOD model [27]; ‘MA(Costrastive)’ – the multi-instance
alignment model which aligns the RoI features of pseudo ground-
truth proposals and their high-IoU candidates by contrastive learn-
ing; ‘MA(Siamese)’ – the multi-instance alignment model which
aligns the RoI features of pseudo ground-truth proposals and their
high-IoU candidates by Siamese learning; ‘GCP’ – the global class
prototypes proposed in Section 3.3. The consistently improvement
over Baseline shows the effectiveness of the key components pro-
posed in our MA-GCP model.

model will not diminish when more labeled images are
available. That is, our approach is suitable for practical sce-
narios where both large-scale labeled and unlabeled dataset
are available.

4.4. Ablation Studies

Effect of Key Components. We first conduct ablation
studies to validate the effectiveness of key components
in our MA-GCP approach. Here, we compare our full
model with three stripe-down versions: The simplest ver-
sion is ‘Baseline’, i.e., the state-of-the-art SSOD [27]. The
other two strip-down versions align the RoI features of
pseudo ground-truth proposals and their high-IoU candi-
dates by visual similarity, rather than class distributions
over global class prototypes. Specifically, we follow the
recent self-supervised learning approaches and develop two
ways to measure their visual similarities. The first way is
based on contrastive learning [5, 10], which is denoted by
‘MA(Costrastive)’: we feed these RoI features into a pro-
jection head B and then add a contrastive loss on these pro-
jected RoI features. The alignment loss formulated in Equa-
tion (5) is reformulated as follows.

Lu
CtAln=−

∑
j

∑
z

log
exp(B(f c

i,j,z),B(fpgt
i,j ))∑

k ̸=j exp(B(f c
i,k,z),B(fpgt

i,j ))

(7)
The second way is based on Siamese learning [6], which

is denoted by ‘MA(Siamese)’: we first feed these RoI fea-
tures into a projection head B and then feed the projected
RoI features of candidate proposals into a predictor head S.
We optimize the model with a new alignment loss which
maximizes the cosine distance between projected RoI fea-
tures of pseudo ground-truth proposals and predicted RoI
features of their candidate proposals. The new alignment

Model mAP(%)
Negative L2-Distance 81.04
Cosine Similarity (ours) 81.72

Table 5. The diagnosis study of the different form of similarity
functions. The evaluation metric is exactly same as in Table 4.
Notations: ‘Negative L2-Distance’ – negative L2 norm of differ-
ences between two inputs, which is formulated in Equation (10);
‘Cosine(ours)’ – cosine similarity formulated in Equation (9).
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Figure 3. Diagnosis experiment over the hyper-parameter λa in
Equation (6). The evaluation metric is the same as in Table 4.

loss is defined in Equation (8).

Lu
SeAln = −

∑
j

∑
z

cos(S(B(f c
i,j,z)),B(fpgt

i,j )) (8)

In Equation (8), cos(·, ·) denotes the cosine distance be-
tween two inputs. As in [6], the projected RoI features
of pseudo ground-truth proposals B(fpgt

i,j ) doesn’t back-
propagate the gradients.

Table 4 provides the comparative results of these mod-
els on the PASCAL VOC dataset. From this table, we
can observe that: 1) Multi-instance alignment implemented
by three different ways can improve the detection accu-
racy of Baseline model. This indicates the proposed align-
ment model is effective for SSOD. 2) Our alignment based
on global class prototypes achieves much better results
then those based on contrastive learning or Siamese learn-
ing. These results demonstrate the superior of the proposed
global class prototypes, which is one of key contributions
of this work. This can be expected – the global class proto-
types learned from labeled images provide reliable guidance
to consistency regularization and thus lead to better detec-
tion performance.
The Form of Similarity Function. In our experiments,
we implement our similarity function as a cosine similar-
ity between two input feature vectors, which is formulated
in Equation (9).

sim(fpgt
i,j , gk) =

fpgt
i,j (gk)T

∥gk∥ · ∥fpgt
i,j ∥

. (9)
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Figure 4. Qualitative visualizations of the detected novel objects obtained by baseline models and our approach on the PASCAL VOC
dataset. We show our model achieves much better detection result than baseline model.

An alternative way is using the negative L2 norm of differ-
ences between two inputs as their similarity, which is for-
mulated as in Equation (10).

sim(fpgt
i,j , gk) = −∥fpgt

i,j − gk∥. (10)

Table. 5 provides the comparative results of the alterna-
tive methods and our solution on PASCAL VOC dataset.
We can observe that our method consistently outperforms
the negative L2 distance strategy. This demonstrate that our
cosine similarity solution is more suitable than the negative
L2-distance.
The Weight of Multi-instance Alignment Loss. We con-
duct a diagnosis experiment over the important hyperpa-
rameter λa in Equation (6). The results of different λa val-
ues are illustrated in Figure 3. We can observe that we ob-
tained the best performance when λa = 0.8. Thus, we set
λa to be 0.8 in our experiments.

4.5. Qualitative Results

We provide qualitative visualizations of the detected re-
sults on unlabeled set and test set of PASCAL VOC in Fig-
ure 4. We show our model achieves much better detec-

tion result than baseline model, thanks to the multi-instance
alignment model based on reliable global class prototypes.
Moreover, we also illustrate some failure cases of our ap-
proach and discuss these failure cases in the supplementary
material. We can observe that our approach struggles in de-
tecting objects in complex backgrounds or rare views. This
might be a future direction that needs to be investigated.
Please be careful to apply this model in the situation where
failures lead to serious adverse consequences.

5. Conclusion
In this paper, we propose to make full use of labeled

images in SSOD by developing a multi-instance alignment
model based on global class prototypes. The global class
prototypes learned by using all labeled training images are
shown to be the reliable guidance for improving SSOD.
With the reliable guidance, we can enhance the consistency
between prediction results of teacher detector and student
detector. By inserting our MA-GCP approach into the state-
of-the-art SSOD model, we obtain a strong solution for ob-
ject detection.
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