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Abstract

Compositional Zero-Shot Learning (CZSL) aims to rec-
ognize unseen compositions formed from seen state and ob-
ject during training. Since the same state may be various
in the visual appearance while entangled with different ob-
jects, CZSL is still a challenging task. Some methods recog-
nize state and object with two trained classifiers, ignoring
the impact of the interaction between object and state; the
other methods try to learn the joint representation of the
state-object compositions, leading to the domain gap be-
tween seen and unseen composition sets. In this paper, we
propose a novel Siamese Contrastive Embedding Network
(SCEN)1 for unseen composition recognition. Considering
the entanglement between state and object, we embed the
visual feature into a Siamese Contrastive Space to capture
prototypes of them separately, alleviating the interaction
between state and object. In addition, we design a State
Transition Module (STM) to increase the diversity of train-
ing compositions, improving the robustness of the recogni-
tion model. Extensive experiments indicate that our method
significantly outperforms the state-of-the-art approaches on
three challenging benchmark datasets, including the recent
proposed C-QGA dataset.

1. Introduction

Humans possess the ability to compose their knowledge
of known entities to generalize to novel concepts inherently.
Given words, such as green horse, people can combine the
known state green with the known object horse immedi-
ately, although they have never seen the inexistent stuff.
To equip an AI system the similar ability, Compositional
Zero-Shot Learning (CZSL) [20] is proposed, which aims
to recognize unseen compositions composed of a set of seen
states and objects. In CZSL setting, each composition com-
prises two components, namely, state and object, where the
compositions of train and test sets are disjoint.

*Corresponding author.
1Code: https://github.com/XDUxyLi/SCEN-master
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Figure 1. The overall concept of our method. We aim to separately
extract discriminative prototypes of state and object based on es-
tablishing state and object specific databases, which can generalize
to represent corresponding properties.

In order to infer unknown concepts such as green horse,
CZSL aims to understand the meaning of state green and
object horse after trained on other compositional concepts
that separately contain green or horse, e.g., green grasses
and young horse. The challenge of the task lies in the in-
teraction degree between state and object that we cannot
quantify, which gives rise to varying contextuality within
different state-object combinations. For instance, we can
not equate the state old in old car and that in old tiger,
since they are fundamentally distinct in visual presenta-
tions, which greatly hinders the recognition of novel com-
positions.

Existing mainstream methods [17, 20, 26] focus on con-
verting such problem into a general supervised recognition
task by training two classifiers for state and object, respec-
tively. They aim to directly predict state and object from the
original visual features, ignoring their entanglement. Based
on this problem, classifiers cannot capture discriminative
state and object features, which potentially limits the recog-
nition accuracy. In addition, other methods [23, 24] aim to
learn a common embedding space where the compositions
as well as visual features can be projected to narrow the
distance between them, such as Euclidean distance. How-
ever, these methods, only regarding compositions as enti-
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ties, neglect the domain gap between training and testing
compositions, which can be simply confused by similar im-
ages from unseen compositions (e.g., young cat and young
tiger). Therefore, it is vital to excavate the discriminative
prototypes of state and object to separate the interaction be-
tween them and consider the domain transfer between train-
ing and testing samples.

To address the problem mentioned above, we propose a
Siamese Contrastive Embedding Network (SCEN) for rec-
ognizing novel compositions in this paper, aiming to exca-
vate discriminative prototypes of state and object, respec-
tively, as shown in Fig. 1. To be specific, we first project the
visual features into state/object-based contrastive spaces to
gain the prototypes of state and object. Then, to excavate
the discriminative prototypes by contrastive constraints, we
set up specific databases named State-constant and Object-
constant databases as positive samples. Besides, a shared
irrelevant database is built up as a negative sample set,
which is embedded into two contrastive spaces. Benefit-
ing from this learning paradigm, our proposed model can
successfully excavate discriminative prototypes to represent
the corresponding component. In addition, considering that
the distribution between seen and unseen compositions is
discrepant, we present a State Transition Module (STM),
which generates the virtual but reasonable samples to aug-
ment the diversity of training data. In this way, the domain
gap between seen and unseen composition sets can be miti-
gated effectively.

To sum up, our main contributions are as follows:

• We propose a novel Siamese Contrastive Embedding
Network (SCEN) to excavate prototypes of state and
object for successfully recognizing both seen and un-
seen compositions.

• We present a State Transition Module (STM) to pro-
duce virtual samples and augment the diversity of
training compositions, guiding the model to general-
ize to those compositions not existing in the training
process, and alleviating the issue of model migration
performance.

• Comprehensive experimental results on three bench-
mark datasets demonstrate the effectiveness of our pro-
posed approach, which outperforms the state-of-the-art
CZSL methods.

2. Related Work
Compositional Zero-Shot Learning. The goal of Com-

positional Zero-Shot Learning [7, 17, 19, 20, 23, 26, 30]
is to learn the compositionality of objects and their states
from the training data and is tasked with the generalization
to an unseen combination of these primitives. Compared

with typical Zero-Shot Learning [15,16,29] that utilizes in-
herent semantic descriptions or attributed vectors to recog-
nize unseen instances, CZSL exploits transferable knowl-
edge by two compositional parts as image labels: objects
and states. There are two mainstream methods in this direc-
tion. The first mainstream approach is inspired by [2, 11],
which learns a single classifier for recognition and a trans-
formation module [20]. In addition, [23] models each state
as a linear transformation of objects. [32] aims to learn dis-
entangled and compositional primitives hierarchically. [17]
models objects to be symmetric under attribute transforma-
tions. Other methods try to learn the joint representation of
the state-object compositions [1, 26, 28]. They aim to learn
a modular network to rewire the new compositions condi-
tioned on each composition [26,28]. Recently, GCN [22] is
proposed to utilize a causal graph to establish the relation-
ship between state and object reasonably. However,these
methods ignore the interaction between state and objects
that brings a negative influence for compositions recogni-
tion.

As for [1], the author argues to tackle the CZSL prob-
lems through a causal graph where the latent features of
primitives are independent from each other. However, it
also neglects the discriminant analysis of state and object,
which cannot excavate discriminative primitives for classi-
fication. In addition, there still exists a domain gap between
seen and unseen compositions, although they are made up
of the same states and objects, which potentially limits the
performance of the model.

Contrastive Learning. Inspired by noise contrastive es-
timation [8, 21, 34], contrastive learning has attracted much
attention which leads to major advances in self-supervised
representation learning. An efficient way to get better
contrastive learning is to employ large numbers of neg-
ative examples and design more semantically meaningful
augmentations to create different view of images. Sim-
CLR [4] implements two data augmentation paths and a
learnable non-linear transformation to train an encoder with
a large batch by pulling the features embedding from the
same images. Momentum Contrast (MoCo) [9] is presented
which enables building a large and consistent dictionary
on-the-fly and transfers well to downstream tasks. Aiming
at improving generalization in real domains, a contrastive
synthetic-to-real generalization model [5] is proposed to
prevent overfitting to the synthetic domain by leveraging
the pre-trained ImageNet knowledge. More recently, su-
pervised contrastive learning [13] is proposed to extend the
self-supervised batch contrastive approach to the fully su-
pervised setting which can effectively leverage label infor-
mation.

Based on the effectiveness of Contrastive Learning, the
differences between this study and existing works are given
below. First, we propose a Siamese Contrastive Embedding

9327



Object-constant sample

irrelevant sample

Input

State-constant sample

��

�o

ℒ���

ℒ���re

ℒ���re

��

��

��

���

State Contrastive 
Space

��

�o

ℎ�
��

ℎ�
��

ℎ�
��

ℎ�
��

ℎs

ℎo

Object Contrastive 
Space

��

�o

ℒ���

ℒ���

Figure 2. The framework of our SCEN method. The proposed method consists of State-Specific Encoder Es, Object-Specific Encoder
Eo, and a State Transition Module (STM). The prototypes of state hs and object ho are separately encoded from Specific Encoders.
Prototypes are trained conditioned on two different contrastive embedding spaces, where the anchor and negative samples are shared. In
addition, STM aims to generate virtual samples with the help of the adversarial loss function, which diversifies and rationalizes the states of
objects effectively. Along with the increasing of the realistic samples, Specific Encoders gradually gain the ability to extract discriminative
prototypes that can be generalized to novel compositions.

Network (SCEN) to excavate the discriminative prototypes
of state and object, respectively. Besides, we present a State
Transition Module (STM) to produce a virtual composition
in training to improve the generalization of the proposed
model. Second, we construct two contrastive spaces and
utilize contrastive constraints to enforce the prototypes of
state and object to be discriminative and generalized.

3. Approach
The goal of CZSL is to recognize the novel composi-

tional samples whose labels are composed of a state (e.g.,
old) and an object (e.g., tiger). This is particularly chal-
lenging since various states significantly change the visual
appearance of an object, which hinders the performance of
the classifiers.

We propose a novel formulation to tackle the problem,
namely Siamese Contrastive Embedding Network (SCEN),
which constructs two independent embedding spaces and
utilizes contrastive losses to guide corresponding feature
extractors to excavate discriminative prototypes of state and
object separately. The overview of our approach is shown
in Fig. 3.

3.1. Problem Definition

In CZSL setting, each image consists of two primitive
concepts. i.e., a state and an object. Given A and O as two
sets of states and objects, we can compose a set of state-
object pairs, i.e., C = A × O = {(a, o) | a ∈ A, o ∈ O}.
Besides, we denote training set as Dtr = {(i, c) | i ∈
Is, c ∈ Cs}, where Is is the image set known in train-
ing, and Cs is a subset of C containing the corresponding

labels. In the traditional Zero-Shot Learning setting, train-
ing and testing label are disjoint, i.e., Cs ∩ Cu = ∅, where
Cs, Cu are two subsets of C seen/unseen in training. In
this case, the model only needs to predict the compositions
drawn from Cu in testing [20]. In this paper, we follow
the setting of Generalized ZSL [31] where testing samples
can be drawn from either seen or unseen compositions, i.e.,
Cs∪Cu, which is more challenging on account of the larger
prediction space and the dominant bias to seen composi-
tions [26]. To sum up, CZSL aims to learn a mapping func-
tion I → Cs ∪ Cu that is trained on {Is, Cs}, in which C is
composed of two primitive concepts drawn from A and O.

3.2. Siamese Contrastive Embedding Network

Due to the entanglement between state and object into
an image that influences the final classification, we design
a Siamese Contrastive Embedding Network (SCEN) to bet-
ter materialize the discriminative prototypes of state and ob-
ject, which can effectively improve the accuracy of recogni-
tion models. The overall architecture is illustrated in Fig. 2.
The SCEN is composed of a feature extractor FC, a State-
Specific Encoder Es, a Object-Specific Encoder Eo, and a
State Transition Module (STM).

Specific database. Let us consider a training sample,
such as sliced apple in Fig. 1. As we all know, from our
training set, that object apple comes in various states such
as caramelized and state sliced also does not just modify a
single object, e.g., sliced banana. Therefore, these sample
points with overlapping information might have potential
relationships. Based on this idea, we set up three specific
databases Ds, Do, and Dir to excavate discriminative state

9328



Input

irrelevant samples

��

�o

�

��

�o

� ℒ���

ℒ�����

ℒ�����

ℎo

 ℎ�1 , ℎ�2 , …, ℎ�� 

 �1, �2, …, �3 

��

���

ℎo

 ℎ�1 , ℎ�2 , …, ℎ�� 

Figure 3. The framework of our State Transition Module (STM). The proposed module aims to improve the generalization of State-Specific
EncoderEs and Object-Specific EncoderEo. To be specific, the GeneratorG takes the state hs and object ho vectors as input and generates
virtual samples, which is the input of Discriminator D. Although we do not gain the label for generated samples, we can utilize Es and Eo

to re-encode them and set classification losses as constraints.

and object factors, respectively. Ds is the set of composi-
tions consisting of constant state and various objects, named
State-constant database, while the Object-constant database
Do is defined as the set of compositions made up of var-
ious states and a constant object. In addition, Dir is the
set of compositions formed from various states and objects,
which are both different from the state and object of input
instances. For instance, given an image as input which con-
sists of a state â and an object ô, i.e., x = (â, ô) ∈ Is, the
Do is denoted as:

Do = {(a, o) | o = ô, (a, o) ∈ Cs}. (1)

Analogously, the State-specific database Ds is denoted as:

Ds = {(a, o) | a = â, (a, o) ∈ Cs}. (2)

And the irrelevant database Dir is denoted as:

Dir = {(a, o) | a 6= â, o 6= ô, (a, o) ∈ Cs}. (3)

Siamese Contrastive Space. Based on sets of specific
databases being set up, the visual feature x, extracted by
the feature extractor FC, are separately projected into two
independent contrastive embedding spaces to extract proto-
types of state hs and object ho:

hs = Es(x),

ho = Eo(x).
(4)

We hope that hs and ho contain information that is sep-
arately sensitive to classifiers for compositions recognition.
Therefore, we aim to utilize contrastive learning as a con-
straint condition to extract discriminative prototypes of state
and object. However, a general contrastive loss simultane-
ously cannot extract their discriminative representations due
to their interaction. Based on this problem, we define state-
based contrastive lossLscl and object-based contrastive loss

Locl as constraints to enforce the model to extract discrimi-
native primitives.

To be specific, we set hs as an anchor in the state-based
contrastive space. Meanwhile, hsss selected from Ds is set
as a positive point while k negative samples selected from
the Dir are denoted as {hirs1 , ..., h

ir
sk
}. We aim to decrease

the distance between the anchor hs and the positive instance
hsss , increasing the distance between hs and each negative
point hirsi to extract discriminative prototype of state. There-
fore, the state-specific loss function Lscl in the state-based
contrastive space can be calculated as follows:

Lscl = − log
exp((hs)

>hsss /τs)

exp((hs)>hsss /τs) +
K∑
i=1

exp((hs)>hirsi/τs)

,

(5)
where τs > 0 is the temperature parameter for the con-
trastive embedding and K is the number of negative sam-
ples. It is obvious that the larger K we set, the longer time
the training process cost. The larger number of negative
samples encourages State-Specific Encoders Es to excavate
a more representative state prototype, which can be gener-
alized to novel compositions.

As a Siamese Contrastive Embedding space, similar to
the state-based contrastive space, we denote ho embedded
from the same input visual features as an anchor in the
object-based contrastive space, and {hiro1 , ..., h

ir
ok
} as nega-

tive points embedded from irrelevant database Dir. There-
fore, the object-specific loss function Locl can be defined in
the object contrastive space as:

Locl = − log
exp((ho)

>hoso /τo)

exp((ho)>hoso /τo) +
K∑
j=1

exp((ho)>hiroj/τo)

,

(6)
where τo > 0 is the temperature parameter for the con-
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trastive embedding and K is the number of negative sam-
ples.

Considering that the prototypes of state and object
should be optimized in the same direction, we share irrel-
evant samples for two contrastive spaces {hiro1 , ..., h

ir
ok
} as

negative points, which effectively avoids the problem of un-
balanced optimization between Es and Eo.

Finally, we introduce classification losses to guide clas-
sifiers to recognize prototypes of state and object, respec-
tively, which is formulated as:

Lcls = Ca(hs, a) + Co(ho, o), (7)

where Ca and Co are both fully connected layers with the
cross-entropy loss trained to classify state and object re-
spectively. The prototypes of state and object can be fur-
ther preserved in the composition with the supervision of
classification losses.

Thus, the total loss function in Siamese Contrastive
Space Lcts can be formulated as:

Lcts = Lscl + Locl + Lcls. (8)

State Transition Module. In order to enforce the SCEN
to be generalized to novel samples that do not appear in the
training stage, we aim to produce virtual samples to aug-
ment the diversity of training compositions, alleviating the
domain gap between training and testing data. Therefore,
we propose a State Transition Module (STM), which con-
sists of a State-Specific encoder Es, a Object-Specific en-
coder Eo, a Generator G and a Discriminator D [6]. The
architecture is shown in Fig. 3.

Let us consider two objects, namely apple and banana.
As is known to all, from our training set, that apple can
be ripe while banana can be caramelized since there ap-
pears at least one image in training. However, there ex-
ists caramelized apple and ripe banana compositions in the
testing set while the training set does not. Therefore, we can
conclude that the object has the possibility of forming a new
combination with various states. Based on this discovery,
we aim to utilize the Generator G to produce virtual com-
positions with the input of various states and a given object.
However, such generation with the random combination can
produce many irrational compositions, which will actually
widen the domain gap between seen and unseen data. For
instance, cored banana and squished apple do not appear
in the testing set or even exist in reality. Thus, we design
a Discriminator D to distinguish whether a composition is
composed by the generator G.

In particular, the Generator G takes as input the proto-
type of an object ho and another state h̃s to generate virtual
compositions that never appear in training. Then, the Dis-
criminator D takes the real samples xa,o as input and deter-
mines which are produced by the Generator G. G and D

can be optimized by the following adversarial objective:

max
D

min
G,Es,Eo

V (G,D) =Es,o(logD(xa,o))+

Ehs̃,ho(log(1−D(G(hs̃, ho)))),
(9)

where G(hs̃, ho) = x̂s̃,o. G tries to minimize V (G,D)
while D tries to maximize it.

The goal of improving the Es and Eo performance is
to be generalized to novel compositions in testing, but the
generated samples do not have labels as supervision. Thus,
we re-encode the generated samples to extract prototypes of
state and object again, and design a re-classification loss to
constrain them, which is formulated as follows:

Lclsre = Ca(Es(G(hs̃, ho)), ã) + Co(Eo(G(hs̃, ho)), o).
(10)

The total loss function of State Transition Module Lstm

is formulated as follows:

Lstm = max
D

min
G,Es,Eo

V (G,D) + Lclsre . (11)

Eventually, the final loss of our proposed framework is
formulated as:

Ltotal = αLcts + βLstm, (12)

where α and β are the weighting coefficients to balance the
influence of each loss function, respectively.

3.3. Inference

In the training stage, the model is trained to estimate the
likelihood p(I = i | A = a,O = o) for image i conditioned
on state s and object o. The inference takes place in both Cs
and Cu. In the inference, model embeds an image as x and
extract prototypes of state and object, i.e., ha and hs with
trained Es and Eo, respectively. Then the state and object
of the most similar prototypes are taken as the prediction.
The inference rule can be parameterized as:

ct = (at, ot) = argmax
(a,o)∈C

p(i | Es(x), Eo(x)). (13)

4. Experiment
In this section, all datasets and evaluation protocols are

introduced concretely. Then, we present the implementa-
tion details and the comparison of experimental results with
other state-of-the-art methods. Eventually, ablation studies
prove the effectiveness of the method we proposed.

4.1. Experimental Setup

Datasets. Our proposed method is evaluated on three
CZSL benchmark datasets, i.e., MIT-States [12], UT-
Zappos [33], and C-GQA [22].
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MIT-States contains 53753 images, e.g., young cat and
rusty bike, with 115 states and 245 objects in total. MIT-
States has 1962 available compositions where 1262 state-
object pairs are seen in the training stage, leaving 700 pairs
unseen. UT-Zappos contains 50025 images of shoes, e.g.,
Cotton Sandals and Suede Slippers, with 16 states and 12
objects. In UT-Zappos, there are 116 state-object pairs, 83
pairs of which are used for training, while the other 33 pairs
are unseen in training. As for C-GQA dataset, it contains
over 9500 compositions that make it most extensive dataset
for CZSL. The detailed information of each dataset is sum-
marized in Tab. 1.

Evaluation Metrics. We evaluate the performance ac-
cording to prediction accuracy for recognizing seen and un-
seen compositions. Following the setting of [26], we com-
pute the accuracy in two situations: 1) Seen, testing only
on seen compositions; 2) Unseen, testing only on unseen
compositions. Based on these, we can compute Harmonic
Mean HM of the two metrics, which balances the perfor-
mance between seen and unseen accuracies. Eventually, we
compute 4) Area Under the Curve (AUC) to quantify the
overall performance of both seen and unseen accuracy at
different operating points with respect to the bias. Follow-
ing [3,26], we utilize a calibration bias to trade off between
the prediction scores of seen and unseen pairs. As the cal-
ibration bias varies, we can draw a seen-unseen accuracy
curve where the AUC metric can be computed.

Implementation Details. For each image, we extract
a 1024 dimensional visual feature vector using ResNet-
18 [10] pre-trained on the ImageNet dataset [27]. We sep-
arately extract a 300-dimensional feature vectors for both
states and objects with Es and Eo, which is implemented
with two fully-connected layers and ReLU activation. Our
model is implemented with PyTorch [25] and optimized by
ADAM optimizer [14] on an NVIDIA GTX 1080Ti GPU.
In addition, we set the learning rate as 0.00004, batch size
as 128, and the number of negative samples K as 10. For
the MIT-States dataset, the training time is approximately 3
hours for 800 epochs. For the UT-Zappos dataset, it takes
around 1 hour for 500 epochs in training. As for C-GQA, it
spends around 4 hours for 1000 epochs in training.

4.2. Comparison with State-of-the-Arts

We compare our experiments with the state-of-the-art
in Tab. 2 and show that our Siamese Contrastive Embed-
ding Network (SCEN) outperforms all previous methods in
three benchmark datasets, which includes recent proposed
C-GQA dataset [22]. Our detailed observations are as fol-
lows.

Generalized CZSL performance. For the CZSL task,
our SCEN achieves a test AUC of 5.3%, which achieves
the best result on MIT-States. In addition, our method sig-
nificantly boosts the state-of-the-art harmonic mean, i.e.,

17.2% to 18.4%. When it refers to state and object predic-
tion accuracy, we can observe an improvement from 27.9%
to 28.2 % for states and 31.8% to 32.2% for objects.

Similar observations are confirmed on UT-Zappos, in
which we can achieve a superior improvement on state-of-
the-arts with an AUC of 32.0% compared to 28.7% from
Compcos. In addition, our proposed model performs the
best harmonic mean 47.8% and improves around 4.5% com-
pared with the Compcos.

Finally, on the recent proposed splits of the C-GQA
dataset, which is shown in Tab. 3, we also achieve the best
test AUC of 5.5%. Since C-GQA is a large number of com-
positions (over 9.3k concepts), which is more complex than
MIT-States and UT-Zappos for recognition. The state and
the object accuracies of our method are 28.1% and 32.8%,
which are both higher than state-of-the-arts. In addition, our
best seen and unseen accuracies (28.9% and 25.4%) also
achieve the best results on this new dataset.

According to the signficant improvement on three chal-
lenging datasets, we can conclude that our proposed
Siamese Contrastive Embedding Network (SCEN) can not
only effectively extract discriminative prototypes of state
and object, but also improve the robust of the model for
unseen compositions recognition.

4.3. Ablation Study

We now make an ablation study to evaluate the effec-
tiveness of the Siamese Contrastive Embedding Network.
We take a single classification model as a base model,
which trains two classifiers to recognize states and objects
separately. Meanwhile, we train three variants by adding
Siamese Contrastive space, adding State Transition Mod-
ule (STM), or adding both of them, which is denoted as
base model, base model + Lcts, and base model + Lcts

+ Lstm, respectively. According to the showing exper-
iment of each setting as shown in Tab. 4, every variant
tends to be more superior performance than the base model.
The combination of two variants we proposed achieves the
best improvement, which demonstrates that different com-
ponents promote each other and work together to improve
the performance of SCEN significantly. In addition, the re-
sult of the base model with Lcts proves that our proposed
model successfully excavates discriminative prototypes of
states and objects, which is better for compositions recogni-
tion. Meanwhile, the significant improvement after adding
Lstm indicates the necessity of the proposed State Tran-
sition Module, which can effectively alleviate the domain
gap between training and testing data. Finally, the result
of the base model with adding Lcts and Lstm achieves the
best, which shows that they improve the performance of the
model together, not affected by each other.
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Training Validation Test
Dataset s o cs i cs cu i cs cu i

MIT-States [12] 115 245 1262 30k 300 300 10k 400 400 13k
UT-Zappos [33] 16 12 83 23k 15 15 3k 18 18 3000

C-GQA [22] 453 870 6963 26k 1173 1368 7k 1022 1047 5k

Table 1. Datasets used in our experiments and their statistics. We use three datasets to benchmark our method against the baseline states.
states s, objects o, seen compositions cs, unseen compositions cu, images i.

MIT-States UT-Zappos

Method AUC Best AUC Best
Val Test HM Seen Unseen s o Val Test HM Seen Unseen s o

AttOp [23] 2.5 1.6 9.9 14.3 17.4 21.1 23.6 21.5 25.9 40.8 59.8 54.2 38.9 69.6
LE+ [20] 3.0 2.0 10.7 15.0 20.1 23.5 26.3 26.4 25.7 41.0 53.0 61.9 41.2 69.2
TMN [26] 3.5 2.9 13.0 20.2 20.1 23.3 26.5 36.8 29.3 45.0 58.7 60.0 40.8 69.9

SymNet [17] 4.3 3.0 16.1 24.4 25.2 26.3 28.3 25.9 23.9 39.2 53.3 57.9 40.5 71.2
CGE [22] 6.8 5.1 17.2 28.7 25.3 27.9 32.0 38.7 26.4 41.2 56.8 63.6 45.0 73.9

CompCos [18] 5.9 4.5 16.4 25.3 24.6 27.9 31.8 38.6 28.7 43.1 59.8 62.5 44.7 73.5
Ours 7.2 5.3 18.4 29.9 25.2 28.2 32.2 40.2 32.0 47.8 63.5 63.1 47.3 75.6

Table 2. The state-of-the-art comparisons on UT-Zappos and MIT-States. U and S are the accuracies tested on unseen classes and seen
classes in CZSL, respectively. H is the harmonic mean value of U and S. The best results are marked in bold.

C-GQA

Method AUC Best
Val Test HM Seen Unseen s o

AttOp [23] 2.5 1.6 9.9 14.3 17.4 21.1 23.6
LE+ [20] 3.0 2.0 10.7 15.0 20.1 23.5 26.3
TMN [26] 3.5 2.9 13.0 20.2 20.1 23.3 26.5

SymNet [17] 4.3 3.0 16.1 24.4 25.2 26.3 28.3
CGE [22] 6.8 5.1 17.2 28.7 25.3 27.9 32.0

CompCos [18] 5.9 4.5 16.4 25.3 24.6 27.9 31.8
Ours 6.9 5.5 17.5 28.9 25.4 28.1 32.8

Table 3. The state-of-the-art comparisons on recent proposed C-
GQA dataset.

4.4. Qualitative Results

We show some qualitative results for the novel com-
positions with top-3 predictions in Fig. 4. The first three
columns present some examples where the top prediction
matches the label. For MIT-States and UT-Zappos datasets,
we notice that the remaining two answers of the model can
fundamentally capture at least one factor, which proves that
the superior performance of our method. As for more com-
plex C-GQA dataset, our model can give the correct answer
in top-3 predictions, which shows the robustness of our pro-
posed framework.

Meanwhile, the model can predict more combinations of
unseen compositions, rather than being limited to that of
seen compositions, which effectively alleviate the domain
gap between seen and unseen samples.

In addition, the last two columns show the wrong pre-
diction. For instance, in column 4 and row 2, the image of

the Slippers is misclassified as Sandals or Boost. This is be-
cause there exists a large number of training compositions
so that the negative sample dataset may not contain the en-
tire negative samples, such as Sandals and Boost, thus the
model does not pay more attention to these pairs that are
not included in Dir. Besides, limited by the compositional
class accuracy dependent on the number of groups associ-
ated with an object in the label space, the model may only
focus on the state of the object in a certain aspect and ig-
nore the state of the object labeled by the tag. For example,
in column 4, row 1 the image of the cat consists of texture
and age both present in the label space of the dataset and the
output of the model. However the label for this image only
contains its age.

4.5. Hyper-Parameter Analysis.

We perform an experiment to demonstrate the effect of
the weighting co-efficients α and β for the loss functions
Lcts and Lstm in our proposed model. As is shown in Fig. 5
and Fig. 6. With the different α and β setting, the Harmonic
Mean HM and AUC have a certain degree of change, which
indicates that Lcts and Lstm dominate the performance of
the entire model. Based on this situation, we set and fix α =
0.1, changing the value of β to observe the performance on
different datasets. Finally, on MIT-States, UT-Zappos, and
C-GQA datasets, we set β = 0.5, β = 0.1, and β = 0.1,
which can achieve the best results, respectively.
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MIT-States UT-Zappos

Method AUC Best AUC Best
Val Test HM Seen Unseen s o Val Test HM Seen Useen s o

Base 2.5 1.6 9.9 14.3 17.4 21.1 23.6 21.5 25.9 40.8 59.8 54.2 38.9 69.6
+Lcts 5.8 4.3 16.5 25.3 24.7 27.9 31.6 32.6 26.4 44.2 60.0 61.2 42.5 71.3
+Lstm 4.8 3.9 13.3 22.5 21.9 27.6 30.2 34.6 28.5 43.9 59.8 61.1 46.9 72.1
Lcts+Lstm 7.2 5.3 18.4 29.2 25.2 28.2 32.2 39.0 29.7 47.8 63.3 62.5 47.3 74.4

Table 4. Ablation studies for Compositional Zero-Shot Learning on MIT-States and UT-Zappos datasets.
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Figure 4. Qualitative results. We show the top-3 predictions of our proposed model for some instances. From the first three columns, we
can observe that all predictions of the model indicate it can categorize accurately. However, the model is only incentivized when it matches
the label. The task of CZSL is a multi-label one, and future datasets need to account for this. The last two columns show some examples
of suboptimal labels and wrong predictions.
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Figure 5. The influence of the weighting coefficient β for H value.
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Figure 6. The influence of the weighting coefficient β for AUC.

5. Conclusion
In this paper, we propose a novel Siamese Contrastive

Embedding Network (SCEN) to excavate discriminative
prototypes of state and object for the CZSL task. We firstly
project the visual feature into two contrastive spaces, where

we set up state-constant and object-constant databases.
Meanwhile, we design state-specific and object-specific
loss functions as constraints, forcing them to contain dis-
criminative corresponding information. In addition, we de-
sign a State Transition Module (STM) to produce virtual but
rational compositions that never appear in training, which
effectively augment the diversity of training data. The
proposed module can provide a robust model that can ex-
cavate prototypes for seen samples and be generalized to
novel compositions, where linear softmax classifiers can be
trained to recognize compositions from both seen and un-
seen instances. The comparison and ablation study experi-
ments demonstrate that our proposed CZSL framework has
achieved state-of-the-arts on three challenging datasets.
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