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Abstract

We present a colorization network that generates flat-
color icons according to given sketches and semantic col-
orization styles. Our network contains a style-structure dis-
entangled colorization module and a normalizing flow. The
colorization module transforms a paired sketch image and
style image into a flat-color icon. To enhance network gen-
eralization and the quality of icons, we present a pixel-wise
decoder, a global style code, and a contour loss to reduce
color gradients at flat regions and increase color disconti-
nuity at boundaries. The normalizing flow maps Gaussian
vectors to diverse style codes conditioned on the given se-
mantic colorization label. This conditional sampling en-
ables users to control attributes and obtain diverse col-
orization results. Compared to previous methods built upon
conditional generative adversarial networks, our approach
enjoys the advantages of both high image quality and di-
versity. To evaluate its effectiveness, we compared the flat-
color icons generated by our approach and recent coloriza-
tion and image-to-image translation methods on various
conditions. Experiment results verify that our method out-
performs state-of-the-arts qualitatively and quantitatively.

1. Introduction
Image colorization aims to generate color images based

on grayscale references, such as monochrome photos
and line arts. Most methods developed for colorizing
monochrome photos are fully automatic because pixels with
various intensities contain fruitful semantics. The networks
can recognize objects and assign proper colors when col-
orizing images. Line arts, however, contain little semantics
due to sparse structure lines. Moreover, colors in a line art
may not have ground truths, and in some cases, they are not
necessarily meaningful. Accordingly, previous line arts col-
orization methods require users to provide reference images
or color hits to guide the generated results.

Icons and comics are two types of graphic designs that
are widely used in communication. A step of creating them
is colorization. To save designers’ workload, methods take
sketch images as inputs, which contain only black and white
pixels for representing objects and backgrounds, and deter-
mine the color of each pixel. The methods strive to en-
hance color harmony and vividness and prevent colors from
spreading the boundaries of adjacent objects. Although the
colorization of icons and comics share several similarities,
they are two different designs – structure lines are present
in comics, but they are absent in icons. The structure of an
icon appears because of color discontinuity. Hence, coloriz-
ing icons is challenging because methods have to consider
where and what colors to assign and whether the change of
colors exhibits clear and correct structure lines.

Training a conditional generative adversarial network (c-
GAN) is a way to generate flat-color icons. Sun et al. [35]
trained a c-GAN with two discriminators, which evaluate
the structure and style of icons created by the generator.
Although their generated results are visually appealing, the
images frequently contain gradient colors and fail to present
small features. In addition, it is known that c-GANs suffer
from the diversity problem because the generator often de-
generates into a deterministic function.

Inspired by StyleFlow [1], where specifying attributes to
control a generator would degrade image qualities, we dis-
card the framework of c-GAN. Instead, we train an encoder-
decoder network to map paired sketch images and style im-
ages to flat-color icons using supervised learning. A pixel-
wise decoder, a global style code, and a contour loss were
introduced to help the network disentangle style and struc-
ture features, reduce color gradients at flat regions, and in-
crease color discontinuities at boundaries. We also train a
continuous normalizing flow [10] to sample diverse style
codes conditioned on the given semantic style label [20].
Figure 2 shows the styles that users can choose when using
our system. We concatenate the sampled style codes to the
structure embedding and generate colorization results.

We apply our network to generate flat-color icons con-
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ditioned on a variety of black-and-white sketch images and
semantic colorization styles. Figures 5, 6, and 7, and our
accompanying video show the results. To evaluate its ef-
fectiveness, we compare the flat-color icons generated by
our approach and recent colorization and image-to-image
translation methods. Experiment results demonstrate that
our network outperforms current state-of-the-arts both qual-
itatively and quantitatively.

2. Related Work
Normalizing flows [29] is a class of generative models

focusing on mapping a complex probability distribution to
a simple distribution such as a Gaussian. The advantages of
flow-based models are easy to sample, stable training, and
accurate probability density estimation. Several studies in
this field have proved that mapping complex image distri-
butions to a Gaussian is practical [6, 7, 12, 18]. Compared
to flow-based models, GANs [9] suffer from the problem
of mode collapse, and the convergence criteria are unclear;
autoregressive models [36] are slow during sampling; and
variational autoencoders [19] make a strong assumption that
the priors of data distributions are a Gaussian. Despite of
the advantages, flow-based models are less expressive due
to the requirement of invertibility and tractability. The layer
designs [6, 7] in discrete flow-based models for fast com-
putation of inverse Jacobian matrix worse the problem fur-
ther. Recently, normalizing flows based on continuous time
transforms [4, 10] were presented to ease the layer restric-
tion and enjoy constant memory usage during training, al-
though the expressiveness problem still remains.

Flow-based models are capable of controlling attributes
by concatenating parameters to embeddings. Lugmayr et al.
proposed SRFlow [27] to generates diverse high-resolution
images conditioned on low-resolution ones. Abdal et al. [1]
sampled latent vectors based on given attributes and fed the
vectors to the StyleGAN [15] generator to synthesize high-
quality images. Since flow-based models are less expressive
than feedforward networks, in this study, we map random
variables to style codes rather than images for colorization.

Image-to-Image Translation aims to map images from
one domain to another. Most of the previous methods in this
field are based on conditional generative adversarial net-
works (c-GANs) [28]. Isola et al. [14] trained the network
on paired images in two domains to achieve image-to-image
translation. While the paired images in certain applications
could be difficult to obtain, follow-up methods adopt the
share-latent space assumption [26] or the cycle consistency
loss [17, 43] to lifted the restriction. There are also meth-
ods presented to disentangle structure and texture features
when generating images [30, 37]. Since generators in c-
GANs often degenerate into deterministic functions, meth-
ods such as BicycleGAN [42], MUNIT [13], DRIT [22],
and DRIT++ [23] were introduced to overcome the diversity

problem. In addition to full automation, several methods
allowed users to additionally provide labels [21, 38], style
images [25], or sentences [3] to control domain translation.

Line Art Colorization transforms images containing
only structure lines to full-color images. While structure
lines are not as expressive as gray-scale images, and char-
acters in manga are highly stylized, methods in this field
often require users to provide color hints [5, 32, 34, 41], la-
bels [16], or reference images [2, 8, 24, 35, 40] for the net-
work to consider. Due to the lack of texture information, the
works of [16, 32] applied two-step training methods to im-
prove color vividness and properly colorize small features.
Recently, Zhang et al. [41] presented a framework to col-
orize line arts with flat colors by computing the influence
area of each scribble to avoid color leakage/contamination
problems. Lee et al. [24] distorted the style image paired
with the contour image and prevented the network from uti-
lizing structure information in style images.

Colorizing an icon and a line art are different because
the structure of an icon is represented by color discontinuity
rather than solid lines. Sun et al. [35] presented the first icon
colorization system. They trained a c-GAN with dual dis-
criminators, which evaluate whether the generated flat-color
icons fulfill structure and style constraints. Han et al. [11]
followed the similar idea and used the given masks to pre-
vent the network from mis-colorizing background regions.
Since the above-mentioned methods are built upon c-GAN,
they inherit its shortcomings in terms of quality and diver-
sity. In this work, we train an encoder-decoder network to
colorize icons. The style codes required by the colorization
are sampled using conditional normalizing flows. This col-
orization strategy achieves both high-quality and diversity.

3. Background
Normalizing flows allow a bi-directional transformation

of samples between two distributions. Let p∗s|c(s|c) be an
unknown conditional data distribution, and pu(u) be a dis-
tribution that is easy for sampling and density estimation. A
conditional normalizing flow aims to express the relation-
ship of u and s|c as:

u = fθ(s; c), s = f−1
θ (u; c), (1)

where u ∼ pu(u), s ∼ p∗s|c(s|c), fθ is an invertible neural
network parameterized by θ. In practice, pu(u) can be a
standard normal distribution N (0, I).

Conditional Discrete Normalizing Flows (c-DNFs).
The idea of DNFs is that the probability density of s can
be explicitly computed using the change-of-variable rule:

ps(s; c, θ) = pu (fθ(s; c)) |det Jθ(s; c)| , (2)

where ps|c(s; c, θ) is the approximation of a real distribu-
tion p∗s|c(s|c), Jθ(s; c) = ∂fθ

∂s (s; c), and |det Jθ(s; c)| is
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Figure 1. Our system contains a colorization network (green) and a continuous normalizing flow (blue). The former maps the paired sketch
image and style image to a flat-color icon. The latter generates diverse style vectors conditioned on the given style for colorization.

the volume change caused by the transformation. Since f is
trained to transform p∗s|c(s|c) to pu(u), θ can be computed
by minimizing the negative log likelihood (NLL):

L(θ; s, c) = − log ps|c(s; c, θ)

= − log pu(fθ(s; c))− log |det Jθ(s; c)| .
(3)

To achieve a tractable expression, methods in DNFs decom-
pose a neural network f into invertible layers fi : Rd →
Rd, where i is the layer index. Let f contain k layers, the
transformations between s and u can be formulated as u =
fk−1(...f1(f0(s; c))) and s = f−1

0 (f−1
1 (...f−1

k−1(u; c))).
Also let θi be the parameter of layer i, and hi+1 = fi(hi),
where h0 = s and hk = u. By applying the chain rule, the
NLL objective in Equation 3 can be derived as

L(θ; s, c) = − log pu(fθ(s; c))−
k−1∑
i=0

log |det Jθi(s; c)| ,

where Jθi(s; c) =
∂fθi
∂hi

(hi; c) (4)

Conditional Continuous Normalizing Flows (c-
CNFs). While c-DNFs transform data between u and s
through discrete layers, c-CNFs parameterize the dynamics
of data transformation over time, which can be expressed as
an ordinary differential equation (ODE) [4]:

dut

dt
= gθ(t, c,ut). (5)

where ut is the state at time t, ut0 ∼ N (0, I), and c is
a given condition. The uniform Lipschitz continuity of gθ
in ut ensures the invertibility [4, 10]. In other words, the
state ut0 (= u) evolves to ut1 (= s) over time with the
dynamics parameterized by gθ. We thus compute s from u
by integrating gθ across time:

s = ut0 +

∫ t1

t0

gθ(t, c,ut) dt. (6)

Similarly, to approximate the complex data distribution,
c-CNFs are trained to minimize the NLL loss

L(θ; s, c) = − log ps|c(s; c, θ)

= − log pu(ut0) +

∫ t1

t0

tr

(
∂gθ
∂ut

)
dt. (7)

The forward and backward propagations of CNFs over time
can be solved by an ODE solver. In our implementation, we
use the adjoint method [31] to compute gradients.

Note that both CNF and DNF can map a normal distribu-
tion to approximate a data distribution. They are different in
theory and network structures but can be controlled by both
discrete and continuous attributes. We choose CNF because
it can better approximate the distribution of style vectors.

4. Conditional Icon Colorization Network
4.1. System Overview

Let Ic be a sketch image and s be a style vector. The goal
of our colorization network F is to generate a flat-color icon

Iy = F (Ic, s). (8)

The style vector s can be encoded from a style image Ir or
sampled from a CNF conditioned on the given colorization
style c. In this study, c = (x, y) is a coordinate defined
in the color image scale [20], as illustrated in Figure 2. It
deserves noting that s and c in Equations 6, 7, and 8 are
equivalent since we use a CNF to sample style vectors.

Figure 1 shows the framework of our system. It contains
a colorization network that maps a sketch image Ic and a
style image Ir to a flat-color icon Iy . The network is trained
by minimizing the reconstruction error and the contour loss.
The other part of the framework is a c-CNF for sampling
diverse style vectors conditioned on the given semantic style
for colorization. We describe the details as follows.
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Figure 2. The color image scale [20] contains 85 semantic col-
orization styles. Each style is composed of three dominant colors.
The x- and y- axes of this color image scale represent color tem-
perature and hardness, respectively.
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Figure 3. Pixel-wise decoder decodes each pixel embedding inde-
pendently. Each 1× 1 convolution layer, except for the last one, is
followed by a pixel normalization and a ReLU.

4.2. Style-Structure Disentangled Colorization

Our colorization network contains a structure encoder
Ec, a style encoder Es, and a pixel-wise decoder D. The
structure encoder Ec is an U-Net [33] that transforms an
icon sketch Ic to an embedding Mc. The style encoder Es

extracts a style vector s from the referenced style image Ir.
The two features are concatenated and then decoded to flat-
color icons. We train the colorization network using the
reconstruction loss. Specifically,

Lrec(Ic, Ir) = ∥F (Ic, Ir)− Ir∥2F , (9)

where Ic and Ir are paired images.
We introduce two training strategies to improve the gen-

eralization of our colorization network. The main idea is to
disentangle the structure encoder Ec and the style encoder
Es. To keep Ec focused only on structures, we augment the
style image Ir by color shift. That is, we convert an image
to the HSV color space and then randomly rotate the hue to
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Figure 4. At the front of the contour extractor network is our pre-
sented NormConv layer, in which the sum of the parameters is
zero. This constraint forces the network to determine the color
gradient of every local region. The map containing gradient mag-
nitudes is then fed into a U-Net to estimate the image contour.

generate its variants. Since an icon sketch Ic corresponds
to many style images Ir in this case, the network can only
obtain color information from Ir when colorizing Ic. To
prevent Es from containing structure information, we con-
strain the style vector to be 1× 1× 48. Afterward, the style
vector s is expanded to the resolution of W × H × 48 for
concatenating with the embedding Mc. In addition, we ap-
ply the 1×1 convolution to decode the concatenated feature
to a flat-color icon, as illustrated in Figure 3. Since each
pixel in the embedding Mc is processed individually with-
out considering its neighbors, it forces the structure encoder
to take over the works related to structures, such as identi-
fying closed or nearly-closed regions in a sketch image.

Remember that the structure of a flat-color icon is
formed by color discontinuities. It indicates that neighbor-
ing pixels in the same region and in different regions should
have identical and distinct colors, respectively. Because the
intensity of a structure line is unknown and it depends on the
styles used to colorize an icon, using a heuristic loss func-
tion, i.e., maximizing the color discontinuity at boundaries,
to guide the colorization network is inapplicable. There-
fore, we apply a contour extractor network Ex to evaluate
whether the generated flat-color icons Iy fulfill the require-
ment. Specifically, we append Ex at the back of the col-
orization network to extract the sketch of Iy , denoted as
I′c = Ex(Iy), and expect the extracted I′c possibly close
to the input sketch Ic. We formulate the loss function as:

Lcon(Ic, Iy) = ∥I′c − Ic∥
2
F . (10)

Figure 4 shows the network architecture of our contour
extractor Ex. The front part of Ex is our presented Norm-
Conv layer, where the sum of the parameters in each kernel
is zero. We apply this zero-sum constraint to force the layer
to estimate a variety of color gradients at every local region.
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We also treat RGB channels separately due to non-linear hu-
man visual perception. Afterward, the gradient magnitudes
are fused and fed into a U-Net for contour estimation. Note
that the contour extractor Ex is trained on real data. We
freeze Ex when training the colorization network to prevent
Ex from being corrupted by the generated results.

4.3. Super Resolution of Flat-Color Icons

Most computer vision methods demand to generate high-
resolution images. So does our icon colorization. An intu-
itive idea to achieve the aim is to enlarge a network and in-
puts’ and outputs’ resolutions. Although with a higher com-
putation cost and memory consumption, in practice, this
strategy seldom succeeds due to training instability and con-
vergence to local minimums. In this study, we achieve high-
resolution flat-color icons by upsampling the low-resolution
ones. It solves the problem neatly because it is unnecessary
to synthesize unexisting fine details when upsampling flat-
color icons. The only task that a network has to accomplish
is retaining sharp boundaries. Therefore, we append an up-
sampling network SR at the back of output Iy to increase its
resolution by 2× and 4×, respectively. The network SR ad-
ditionally takes a high-resolution sketch image, which can
be easily obtained when designers are sketching an icon, to
upsample the result. In our implementation, SR is a resid-
ual network. It first upsamples a low-resolution image by
linear interpolation and then fine-tunes the pixel colors to
minimize the reconstruction loss.

4.4. Conditional Style Sampling using Flows

The semantic style labels c are based on three dominant
colors. However, it does not limit designers to use only
three colors when colorization. The combination of dom-
inant and non-dominant colors are complex and should be
learned from icons that are well-designed. As a result, we
model the distribution of style vectors using a c-CNF.

We determine the semantic style label c of each icon by
considering its colors. To achieve this, we follow Sun et
al.’s method [35] by transforming each icon image i into a
8 × 8 × 8 color histogram Hi without considering back-
ground white pixels. We also generate a set of histograms
Hs for each semantic style by setting the ratios of the three
dominant colors to 1:1:1, 2:1:1, 1:2:1, 1:1:2, 1:2:2, 2:1:2,
and 2:2:1. Then, we compute the distance between Hi

and each of Hs, and label the icon style if the shortest dis-
tance is smaller than a threshold δ. In our implementation,
δ = 0.06, and an icon can be assigned to multiple styles
under this measurement. Because the numbers of icons in
styles are imbalanced, we also synthesize fake icons to en-
sure that each style contains at least 1000 samples for train-
ing. To implement this idea, we randomly draw primitives,
such as squares, circles, and triangles, on a canvas using the
dominant colors of a style. The size, position, and the corre-

sponding color of each primitive are randomly determined.
We let the primitives overlap with each other to keep the
diversity of synthesis.

We train the c-CNF by minimizing the NLL loss defined
in Equation 7. The network of our c-CNF is composed of
a moving batch normalization layer [39], then four con-
catsquash layers [10, 39], and again a batch normalization
layer. Specifically, the concatsquash layer is defined as

CCS(t, c,u) = tanh((Wuu+ bu)× gate+ bias),

where gate = σ(Wttt + Wtcc + bt), bias = (Wbtt +
Wbcc + bbt), Wu,Wtt,Wtc,Wbt,Wbc, bu, bt, bb are learn-
able parameters, and σ is a sigmoid activation function.

4.5. Implementation Details

We trained the colorization network and the c-CNF se-
quentially because we consider generating icons that can
exhibit clear structures and contain flat-colors is more im-
portant than sampling style vectors. Specifically, we trained
the colorization network using the reconstruction error and
the contour loss for 600K iterations. The Adam optimizer
was used to update the network parameters. The batch size,
learning rate, and β1 and β2 used in the Adam were set
to 64, 10−4, 0.9, and 0.999, respectively. In addition, the
width and height of Ic, Ir, and Iy were set to W=H=128.
Regarding the c-CNF, we updated the network parameters
by minimizing the NLL for 100k iterations. Similarly, the
batch size, learning rate, β1 and β2 used in the Adam, and
the tolerance used in the ODE solver were set to 64, 10−3,
0.9, 0.999, and 10−5, respectively.

5. Results and Discussions
We trained the presented network to colorize icons con-

ditioned on a variety of styles. The style vectors were sam-
pled using the c-CNF from N (0, τ · I), where τ is a scalar
known as temperature. We set τ = 0.4 to sample style vec-
tors. Figure 5 shows that our generated flat-color icons con-
tain small features and sharp boundaries. In addition, given
a pre-defined color style, our system can generate diverse
flat-color icons that fulfill the requirement.

The supplemental video demonstrates that our system
colorizes icons whenever the canvas is updated, and open
boundaries frequently appear when sketching. Since artists
seldom draw lines carefully at the early design stage, fill-
ing colors in closed regions extracted from structure lines is
insufficient to colorize an icon. In addition, closed regions
of an icon may belong to the background and should not be
colorized. Results in Figure 6 (columns 1, 2, and 12) show
that our system can generally prevent such a problem.

5.1. Comparison to State-of-the-Arts

We compared the results generated by our system and
several baselines for evaluation. The baselines included
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Figure 5. Our system generates flat-color icons based on the given sketch image and the colorization style. The resolution of these icons is
128× 128. Note that the results are diverse under the condition of an identical style label.

Anime [40], Comi [8], MUNIT [13], ASCFT [24], and Ad-
vIcon [35]. The implementations of these baselines were
obtained from the authors’ websites. We trained all of
the methods on the dataset released by Sun et al. [35],
which contains 12,575 images. In the experiment, 90% of
the samples were randomly selected for training, and the
remaining 10% were for testing. Since all of the base-
lines are reference-based colorization methods, we apply
our style encoder Es to obtain style vectors for coloring
icons. We also resize all generated results to the resolution
of 128× 128 for comparison.

The results in Figure 6 show that all of the baselines pro-
duced noticeable gradient colors when colorization. The ar-
tifacts frequently appear at small and thin areas. They break
the icon structures and in certain cases make the colorized
icons unrecognizable. In contrast, the icons generated by
our method are flat-color and exhibit clear structure lines.

In addition to visual comparison, we quantitatively eval-
uated the generated results using the following measures.

Structure distance. Since Iy is conditioned on the input
sketch Ic, we expect that Iy and Ic have similar structures.
To estimate the structure distance, we first apply the Canny
edge detection to extract contour images Ic′ from the gen-
erated icons Iy . Then, for each edge pixel in Ic′ , we search
for the closest edge pixel in Ic and accumulate the deviation
of these two pixels to obtain the structure distance Dc′→c.
Considering that the generated icons Iy may miss certain

features, we also compute the distance Dc→c′ . The final
structure distance of Iy and Ic is defined as Dc′→c+Dc→c′ .

Color distance. Similar to the structure distance, we ex-
pect that the dominant colors of Iy and Is are alike. Specifi-
cally, we first converted each generated icon to the Lab color
space and then computed the corresponding 8× 8× 8 color
histogram. The value of each bin indicates the frequency
of a color. Background white pixels were not considered
when computing the histogram. Therefore, given two im-
ages Iy and Is, we computed the Jensen-Shannon diver-
gence of their histograms and obtained the color distance.

Flatness. We expect each closed region to be in an iden-
tical color. To measure whether the generated icons ful-
fill this requirement, we detect closed regions in each icon
sketch Ic and estimate the color variation of pixels in each
region. A simple method can achieve detection because
open boundaries do not exist in the collected icons. Specif-
ically, we compute

1

N

M∑
m=1

Nm∑
n=1

∥pn
m − p̄m∥1 , (11)

where M is the number of the closed regions, Nm is the
number of pixels in region m, N =

∑M
m=1 Nm, p indicates

the pixel color, and p̄m is the the mean color of region m.
Fréchet Inception Distance (FID). FID has widely

been used to measure the similarity of visual features be-
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Figure 6. We compared the icons colorized by using our method and the baselines. Experiment results indicate that our method outper-
formed the baselines because of clear structures and unnoticeable color gradients at flat regions.

Method Structure Color Flatness FID
Anime 0.53 ± 0.41 0.39 ± 0.12 1.78 ± 1.54 52.57
Comi 1.12 ± 0.65 0.37 ± 0.10 2.10 ± 1.75 93.03

MUNIT 1.96 ± 1.07 0.23 ± 0.09 2.67 ± 2.00 58.42
ASCFT 0.39 ± 0.27 0.42 ± 0.11 1.49 ± 1.24 63.02
AdvIcon 0.30 ± 0.40 0.37 ± 0.11 1.52 ± 1.53 40.86

Ours 0.12 ± 0.20 0.22 ± 0.07 0.62 ± 0.73 27.96

Table 1. We evaluate the quality of the generated icons by measur-
ing the structure distance, color distance, flatness, and FID scores.
The means and standard deviations are listed. The lower values
indicate the better results. The best results are in bold face.

tween real and generated images. We applied this measure
to evaluate whether the generated icons were realistic.

The numbers in Table 1 indicate that our method outper-
formed all of the baselines in terms of structure distance,
color distance, flatness, and FID. This is not surprising be-
cause our method can effectively reduce color gradients at
flat regions and enhance color discontinuity at boundary.

5.2. Ablation Studies

We conducted an ablation study to demonstrate the ef-
fectiveness of our pixel-wise decoder, contour extractor, and
NormConv layer. The results in Figure 7 show that the CNN
decoder memorized structure information in the style im-

Anime Comi MUNIT ASCFT AdvIcon Ours
94 ± 4.1 155 ± 9.4 151 ± 8.1 141 ± 6.0 192 ± 9.8 905 ± 17.2

Table 2. The user study result obtained from 126 participants.
We show the mean and standard deviations of the points of each
method over 13 questions. The higher it is, the better. The results
of each question can be obtained from our supplemental material.

ages and failed to generate icons fulfilling the sketch con-
dition. The results also indicate that our contour extractor
and NormConv layer can considerably reduce color gradi-
ents and enhance object structures when colorization.

5.3. Style Interpolation

Users may want to interpolate styles when colorizing
icons. There are two ways to achieve style interpolation.
The first is to interpolate coordinates defined in the color
image scale (Figure 2), and the second is to interpolate style
vectors learned from real data. Figure 8 compares the re-
sults interpolated in these two coordinate systems. An iden-
tical Gaussian vector was used to generate the results. We
refer readers to our supplemental material for more results.

5.4. User Study

We have conducted a user study for subjective evalua-
tion. Specifically, we chose the icons colorized using base-
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(d)(c)(b)(a)Style Sketch

Figure 7. Ablation study. (a) A CNN decoder identical to the work
of [35] was used to colorize icons. (b) Our network was trained
without using the contour extractor Ex. (c) The NormConv layer
was removed from the contour extractor. (d) Our results.

dressy refined safe

Coordinate

Style

Figure 8. The refined style appears when coordinates in the color
image scale are interpolated since it is in between the dressy and
the safe styles. The refined style would disappear if style vectors
are interpolated.

lines and our method shown in Figure 6 and created a web
page for participants to select their most preferred result.
The page starts with a brief tutorial and then 13 questions.
Each question shows a sketch, a referenced style image, and
the icons colorized using different methods. Each method
would get one point if its colorized icon was preferred the
most. The orders of the questions and the icons were ran-
domly determined. We posted the page on a social media
for participants to answer. Table 2 shows the study results.

5.5. Limitations

Although our generated flat-color icons are visually ap-
pealing, there is still space for improvement. Specifically,
the network may (1) fill gradient colors in large regions,
(2) mis-colorize foreground and background regions if the
sketch is semantically ambiguous, and (3) use perceptu-
ally less distinguishable colors in nearby regions. Figure
9 shows several failure cases. In addition, since we apply

Figure 9. Failure results generated by our network. (Top) Nearby
regions are in perceptually less distinguishable colors. (Bottom)
Gradient colors and mis-colored areas appear.

a normalizing flow to sample style vectors, it requires users
to specify a temperature when using our system. The high
temperature enables the normalizing flow to sample diverse
style vectors with the price of deviating from the given style
condition. The low temperature is in the opposite situation.
In the future, we will explore the strategy to achieve both
high diversity while faithfully fulfilling the style condition.

6. Conclusions

We have presented an icon colorization system that is
composed of an encoder-decoder network and a conditional
normalizing flow. We design novel network architectures,
including a pixel decoder, a NormConv layer, and a con-
tour extractor, to generate flat-color icons that exhibit clear
structures. The conditional normalizing flow enables the
colorization network to generate diverse results conditioned
on the given style. Experiment results and objective evalua-
tions demonstrate the effectiveness of our system. We point
out that this icon colorization system is beneficial to design-
ers because they can focus on only sketching shapes and
structures when creating icons. Our approach is in charge of
the colorization task and provides users with diverse results,
which may further inspire designers and lead to a virtuous
cycle. In addition, the presented network architectures and
training strategies can be beneficial to manga colorization.
We will also extend our network to colorize cartoon and re-
tain temporal coherence among frames in the future.
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