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Figure 1: Illustration of three types of noisy annotations in SGG datasets (take VG as an example). (a) Common-prone: For some triplets,

the annotators tend to select less informative coarse-grained predicates (red) instead of fine-grained ones (green). The subject and object

for each triplet are denoted by blue and pink boxes, respectively. (b) Synonym-random: For some triplets, annotators usually randomly

choose one predicate from the several synonyms (e.g., has and with are synonyms for 〈man/woman-shirt〉). Original: The t-SNE

visualization of original triplets 〈man-has/with-shirt〉 features. For brevity, we randomly sample part of triplets for each type. New:

The t-SNE visualization of same triplets after NICE. (c) Negative: Some negative triplets may not be background (green dash arrows).

Abstract

Unbiased SGG has achieved significant progress over
recent years. However, almost all existing SGG models have
overlooked the ground-truth annotation qualities of prevail-
ing SGG datasets, i.e., they always assume: 1) all the man-
ually annotated positive samples are equally correct; 2)
all the un-annotated negative samples are absolutely back-
ground. In this paper, we argue that both assumptions are
inapplicable to SGG: there are numerous “noisy” ground-
truth predicate labels that break these two assumptions,
and these noisy samples actually harm the training of unbi-
ased SGG models. To this end, we propose a novel model-
agnostic NoIsy label CorrEction strategy for SGG: NICE.
NICE can not only detect noisy samples but also reassign
more high-quality predicate labels to them. After the NICE
training, we can obtain a cleaner version of SGG dataset for

† Corresponding author. This work started when Long Chen at ZJU.

Codes available at: https://github.com/muktilin/NICE.

model training. Specifically, NICE consists of three compo-
nents: negative Noisy Sample Detection (Neg-NSD), posi-
tive NSD (Pos-NSD), and Noisy Sample Correction (NSC).
Firstly, in Neg-NSD, we formulate this task as an out-of-
distribution detection problem, and assign pseudo labels to
all detected noisy negative samples. Then, in Pos-NSD, we
use a clustering-based algorithm to divide all positive sam-
ples into multiple sets, and treat the samples in the noisiest
set as noisy positive samples. Lastly, in NSC, we use a sim-
ple but effective weighted KNN to reassign new predicate
labels to noisy positive samples. Extensive results on differ-
ent backbones and tasks have attested to the effectiveness
and generalization abilities of each component of NICE.

1. Introduction

Scene Graph Generation (SGG), i.e., detecting all object

instances and their pairwise visual relations, is a crucial step

18869



towards comprehensive visual scene understanding. In gen-

eral, each scene graph is a visually-grounded graph, where

each node and edge refer to an object and visual relation, re-

spectively. Recently, with the release of several large-scale

SGG benchmarks (e.g., Visual Genome (VG) [15]) and ad-

vanced object detectors [28, 1, 35], SGG has received un-

precedented attention [7]. However, due to the composi-

tional nature of pairwise visual relations, the number distri-

butions of different triplets in SGG datasets are much more

imbalanced (i.e., long-tailed) than other recognition tasks.

Accordingly, the performance of many state-of-the-art SGG

models [42, 2, 32, 23] degrades significantly on the tail cat-

egories1 compared to the head categories counterparts.

Currently, the mainstream solutions to mitigate the long-

tailed problem in SGG can be coarsely categorized into two

types: 1) Re-balancing strategy: It utilizes class-aware sam-

ple re-sampling or loss re-weighting to balance the propor-

tions of different predicate categories in the network train-

ing. The former attempts to balance the number of training

samples in instance-level2 or image-level [17], and the latter

leverages prior commonsense knowledge (e.g., frequency

of predicates [22], predicate correlations [39], or rule-based

predicate priority [23, 14]) to re-weight the contributions of

different categories in loss calculations. 2) Biased-model-
based strategy: It inferences debiased predictions from pre-

trained biased SGG models. For instance, using counterfac-

tual causality to disentangle frequency biases [31], deriving

more balanced loss weights for different predicates [41], or

adjusting the probabilities of predicate predictions [4].

Although these methods have dominated performance on

debiasing metrics (e.g., mean Recall@K), it is worth noting

that almost all existing models have taken two plausible as-

sumptions about the ground-truth annotations for granted:

Assumption 1: All the manually annotated positive sam-
ples are equally correct.

Assumption 2: All the un-annotated negative samples
are absolutely background.

For the first assumption, by “equally”, we mean that the

confidence (or quality) of annotated ground-truth predicate

label for each positive sample2 is the same as others, i.e., all

positive predicate labels are of high quality. Unfortunately,

unlike other close-set classification tasks where each sample

has only a unique ground-truth label, a subject-object pair

in SGG sometimes has multiple reasonable predicates. This

phenomenon has led to two inevitable annotation charac-

teristics in SGG datasets: 1) Common-prone: When these

reasonable relations are in different semantic granularities,

1For brevity, we directly use “tail”, “body”, and “head” categories to

represent the predicate categories in the tail, body, and head parts of the

number distributions of different predicates in SGG datasets, respectively.
2We use “instance” to denote an instance of visual relation triplet, and

we also use “sample” to represent the triplet instance interchangeably.

the annotators tend to select the most common predicate (or

coarse-grained) as ground-truth. As shown in Figure 1(a),

both riding and on are “reasonable” for man and bike,

but the annotated ground-truth predicate is less informative

on instead of more convincing riding. And this charac-

teristic is very common in SGG datasets (more examples in

Figure 1(a)). 2) Synonym-random: When these reasonable

relations are synonymous for the subject-object pair, the an-

notators usually randomly choose one predicate as ground-

truth, i.e., the annotations for some similar visual patterns

are inconsistent. For example, in Figure 1(b), both has and

with denote “be dressed in” for man/woman and shirt,

but the ground-truth annotations are inconsistent even in the

same image. We further visualize thousands of sampled in-

stances of 〈man-has / with-shirt〉 in VG, and these in-

stances are all randomly distributed in the feature space (cf.

Figure 1(b)). Thus, we argue that all the positive samples
are NOT equally correct, i.e., a part of positive samples are
not high-quality — their labels can be more fine-grained (cf.
common-prone) or more consistent (cf. synonym-random).

For the second assumption, although all SGG works have

agreed that visual relations in existing datasets are always

sparsely identified and annotated [25] (Figure 1(c)), almost

all of them still train their models by regarding all the un-

annotated pairs as background, i.e., there is no visual re-

lation between the subject and object. In contrast, we argue
that all negative samples are NOT absolutely background,
i.e., a part of negative samples are not high-quality — they
are actually foreground with missing annotations.

In this paper, we try to get rid of these two questionable

assumptions, and reformulate SGG as a noisy label learning

problem. To the best of our knowledge, we are the first work

to take a deep dive into the ground-truth annotation qualities

of both positive and negative samples in SGG. Specifically,

we propose a novel model-agnostic NoIsy label CorrEction

strategy, dubbed as NICE. NICE can not only detect numer-

ous noisy samples, but also reassign more high-quality pred-

icate labels to them. By “noisy”, we mean that these sam-

ples break these two assumptions. After the NICE training,

we can obtain a cleaner version of dataset for SGG training.

Particularly, we can: 1) increase the number of fine-grained

predicates (common-prone); 2) decrease annotation incon-

sistency among similar visual patterns (synonym-random);

3) increase the number of positive samples (assumption 2).

NICE consists of three components: negative noisy sam-

ple detection (Neg-NSD), positive noisy sample detection

(Pos-NSD), and noisy sample correction (NSC). Firstly, in

Neg-NSD, we reformulate the negative NSD as an out-of-

distribution (OOD) detection problem, i.e., regarding all the

positive samples as in-distribution (ID) training data, and all

the un-annotated negative samples as OOD test data. In this

way, we can detect the missing annotated (ID) samples with

pseudo labels. Then, in Pos-NSD, we use a clustering-based
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algorithm to divide all positive samples (including the out-

puts of Neg-NSD) into multiple sets, and regard samples in

the noisiest set as noisy positive samples. The clustering re-

sults are based on the local density of each sample. Lastly,

in NSC, we use a simple but effective weighted KNN to

reassign new predicate labels to all noisy positive samples.

We evaluate NICE on the most prevalent SGG bench-

mark: VG [15]. Since NICE only focuses on refining noisy

annotations of the dataset, it can be seamlessly incorporated

into any SGG architecture to boost their performance. Ex-

tensive ablations have attested to the effectiveness and gen-

eralization abilities of each component of NICE.

In summary, we make three contributions in this paper:
1. We are the first to reformulate SGG as a noisy label learn-

ing problem, and point out the two plausible assumptions

are not applicable for SGG, i.e., the devil is in the labels.
2. We propose a novel model-agnostic strategy NICE. Ex-

tensive ablations on several baselines, tasks, and metrics

have demonstrated its excellent generalization abilities.
3. Each part of NICE can serve as an independent plug-and-

play module to improve SGG annotation qualities3.

2. Related Work
Scene Graph Generation. SGG aims to transform visual

data into semantic graph structures. Early methods [25, 43]

always ignore the visual context, i.e., they regard each ob-

ject as an individual and predict pairwise relations directly.

Subsequent SGG works start to utilize the overlooked vi-

sual context by resorting to different advanced techniques,

e.g., message passing [37, 18, 42, 3, 2], or tree/graph struc-

ture modelling [40, 32]. Recently, unbiased SGG has drawn

unprecedented attention, i.e., they focus on the performance

gaps in different predicate categories. As above mentioned,

existing unbiased SGG models can be categorized into: re-

balancing strategy [17, 22, 39, 23, 14] and biased-model-

based strategy [31, 41, 4, 10]. Different from existing SGG

works, we are the first to explicitly refine the original noisy

ground-truth annotations on SGG datasets. Although some

previous works also have discussed the issue of sparse anno-

tations [34, 4] or semantic imbalance [10], they still heavily

rely on these original noisy annotations in model training.

Learning with Noisy Labels. Existing noisy label learn-

ing methods can be roughly divided into two categories: 1)

Utilizing an explicit or implicit noise model to estimate the

distribution of noisy and clean labels, and then deleting or

correcting the noise samples. These models can be: neural

networks [8, 13, 16, 27], conditional random field [33] or

knowledge graphs [20]. However, they always need abun-

dant clean samples for training, which is always inapplica-

ble for many noisy label learning datasets. 2) Constructing a

3For example, the Pos-NSD can help models gain good results with

much fewer training samples, and the Neg-NSD can generate plentiful un-

seen reasonable visual triplets. More details are left in Sec. 4 and appendix.

more balanced loss function to reduce the influence of noisy

samples [26, 44, 36, 38]. In this paper, we are the first to for-

mulate SGG as a noisy label learning problem, and propose

a novel noisy sample detection and correction strategy.

3. Approach
Given an image dataset I , SGG task aims to convert each

image Ii ∈ I into a graph Gi = {Ni, Ei}, where Ni and Ei
denote the node set (i.e., objects) and edge set (i.e., visual

relations) of image Ii, respectively. In general, each graph

Gi can also be viewed as a set of visual relation triplets (i.e.,

〈subject-predicate-object〉), denoted as Ti. For

each triplet set Ti, we can further divide it into two subsets:

T +
i and T −

i , where T +
i denotes all the annotated positive

triplets (or samples) in image Ii, and T −
i denotes all the

un-annotated negative triplets in image Ii. Analogously, we

use T + = {T +
i } and T − = {T −

i } to represent all positive

and negative triplets in the whole dataset I .

The whole pipeline of NICE is illustrated in Figure 24. In

this section, we sequentially introduce each part of NICE,

including negative noisy sample detection (Neg-NSD), pos-

itive NSD (Pos-NSD), and noisy sample correction (NSC).

Specifically, given an image and its corresponding ground-

truth triplet annotations (i.e., T +
⋃ T −)5, we first use the

Neg-NSD to detect all possible noisy negative samples, i.e.,

missing annotated foreground triplets. The T − can be di-

vided into T −
clean and T −

noisy. Meanwhile, Neg-NSD will as-

sign pseudo positive predicate labels for all samples in T −
noisy

(e.g., painted on for 〈letter-window〉 in Figure 2).

The T −
noisy with pseudo positive labels and original T + com-

pose a new positive set T̃ +. Then, we use the Pos-NSD to

detect all possible noisy positive samples in T̃ +, i.e., the

positive samples which suffer from either common-prone

or synonym-random characteristics (e.g., at for 〈women-

laptop〉 in Figure 2). Similarly, T̃ + can be divided into

T̃ +
clean and T̃ +

noisy. Next, we use NSC to reassign more high-

quality predicate labels to all samples in T̃ +
noisy, denote as

T̃ +
noisy→clean. Lastly, after processing the ground-truth triplet

annotations of all images, we can obtain a cleaner version of

dataset (T̃ +

clean

⋃
T̃ +

noisy→clean

⋃
T −

clean) for SGG training.

3.1. Negative Noisy Sample Detection (Neg-NSD)

In this module, we aim to discover all possible noisy neg-

ative samples, i.e., missing annotated visual relation triplets.

Meanwhile, Neg-NSD also assigns a pseudo positive pred-

icate label for each detected noisy negative sample. Due to

the nature of missing annotations in existing negative sam-

ples, it is difficult to directly train and evaluate a binary clas-

4In Figure 2, we use a single image as input for a clear illustration. In

real experiments, we directly process the whole dataset in each module.
5For brevity, we omit the subscripts i for image Ii.
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Figure 2: The pipeline of NICE (take an image from VG as an example). (a) Neg-NSD: Given all negative triplets (blue dash arrows), the

OOD detection model detects missing annotated triplets (T −
noisy) and assigns pseudo labels to them (green predicates). (b) Pos-NSD: Given

the new composed positive triplet set (˜T +), Pos-NSD detects all noisy positive samples (˜T +
noisy). (c) NSC: NSC reassigns more high-quality

predicate labels to all noisy positive samples (red predicates). Finally, we obtain a new cleaner version of ground-truth annotations.

sifier based on these noisy samples. To this end, we propose

to formulate the negative noisy sample detection as an out-

of-distribution (OOD) detection problem [12]. Specifically,

we regard all annotated positive samples as in-distribution

(ID) training data, and all un-annotated negative samples as

OOD test data. The Neg-NSD is built on top of a plain SGG

model (denoted as Fnsgg), but it is trained with only the an-

notated positive samples T +. In the inference stage, Neg-

NSD will predict a score of being foreground and a pseudo

positive predicate category for each triplet t−i ∈ T −.

Following existing OOD detection methods [6], we also

utilize a confidence-based model, i.e., Neg-NSD consists of

two network output branches: 1) a classification branch to

predict a probability distribution p over all positive predi-

cate categories, and 2) a confidence branch to predict a con-

fidence score c ∈ [0, 1], which indicates the confidence of

being an ID category (foreground). In the inference stage,

for each sample t−i , if its confidence score ci is larger than a

threshold θ, we then regard this negative sample as a noisy

negative sample, i.e., the detection function g(·) is as:

g(t−i ) =
{

1, ci ≥ θ
0, ci < θ.

(1)

When g(t−i ) = 1, the pseudo label of t−i is directly derived

from the classification branch, i.e., argmax(pi). Since the

predicted average confidence scores vary considerably for

different predicate categories, we set different thresholds for

head, body, and tail categories. (More details are in Sec. 4.)

Training of Neg-NSD. To train the classification branch

and confidence branch, we combine predicted probabilities

pi and corresponding target probability distribution yi, i.e.,

p′
i = ci · pi + (1− ci) · yi, (2)

Figure 3: Left: Multidimensional scaling visualization of features

of randomly sampled triplets with predicate in. Right: Detected

clean samples and noisy samples by Pos-NSD.

where p′
i is the adjusted probabilities by confidence ci. The

motivation of Eq. (2) is that if the model is given a chance

to ask for a hint of the ground-truth probability with some

penalty, the model will definitely choose to ask for the hint

if it is not confident about its output (i.e., ci is small). And

the training objective for Neg-NSD consists of a weighted

cross-entropy loss and a regularization penalty loss:

L = −∑
j=1wj log(p

′
ij)yij − λ log(ci), (3)

where p′ij and yij are the j-th element of p′
i and yi, respec-

tively. wj is the reciprocal of the frequency of the j-th pred-

icate category, which mitigates the impact of the long-tail

issues on confidence. The penalty loss is utilized to prevent

the network from always choosing c = 0 and using ground-

truth probability distribution to minimize task loss.

3.2. Positive Noisy Sample Detection (Pos-NSD)

As shown in Figure 24, the original positive set T + and

outputs of the Neg-NSD (i.e., T −
noisy) compose a new posi-

tive sample set T̃ +
. The Pos-NSD module aims to detect all

18872



plant vase

pot cabinet drawer desk

food pot bed room

banana handin

in

in in

in

in man shirt

skier jacket boy shirt

woman jean player pant

person coatin

in

in in

in

in

Subset 1
Subset 2

Subset 3

noisy

clean

Subset 4
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features of randomly sampled triplets with predicate in with cut-
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triplet categories of the randomly sampled visual relation triplets

from the corresponding red circle and green circle.

noisy samples in T̃ +
. In general, we use a clustering-based

solution to divide all these positive samples into multiple

subsets with different degrees of noise, and treat all samples

in the noisiest subset as noisy positive samples. Intuitively,

if a predicate label is consistent with other visually-similar

samples of the same predicate category (i.e., visual features

of these samples are close to each other), this predicate is

more likely to be a clean sample, because these annotations

are consistent with each others. Otherwise, it is likely to be

a noisy sample. As shown in Figure 3, the two clean triplets

〈window-in-room〉 have more visually-similar neighbors

than the noisy triplets (e.g., 〈plant-in-window〉).
Based on these observations, we propose a local density

based solution for positive noisy sample detection. Specifi-

cally, we utilize an off-the-shelf pretrained SGG model (de-

noted as F
p
sgg) to extract all visual relation triplet features,

and use hk
i to represent the visual feature of i-th sample of

predicate category k (this sample is denoted as tki ). Then,

we utilize a distance matrix Dk = (dkij)N×N ∈ R
N×N to

measure the similarity between all positive samples of the

same predicate k, and dkij is calculated by:

dkij =
∥∥hk

i − hk
j

∥∥2 , (4)

where ‖ · ‖ is the Euclidean distance. Thus, a smaller dis-

tance dkij means a relatively higher similarity between sam-

ple tki and sample tkj . Then following [29], we define the

local density ρki of each sample tki as the number of sam-

ples (within the same predicate category) whose similarity

distance to sample tki are closer than a threshold dkc , i.e.,

ρki =
∑

j 1((d
k
c − dkij) > 0), (5)

where 1(·) is the indicator function and dkc is the cutoff

distance for predicate k, which is ranked at α% of sorted

N×N distances in DK from small to large. Thus, a sample

with higher local density ρ means that this sample is more

Figure 5: The illustration of NSC. Dashed lines indicate the dis-

tances between the noisy sample and other samples in clean subset

with girl-chair. wKNN replaces noisy in to sitting on.

similar to the samples of the same predicate category. Anal-

ogously, samples with low local density ρ are considered as

noisy samples. Finally, we use an unsupervised K-means

algorithm [11] to divide all data samples into multiple sub-

sets with respect to different ρ values, i.e., different degrees

of noise [9]. And all samples in the subset with the lowest ρ

are regarded as noisy positive samples (i.e., T̃ +

noisy), and fed

into the following NSC module for label correction.

Influence of the Cutoff Distance dkc . From Eq. (5), we

can observe that the distribution of local density ρ is directly

decided by the selection of the cutoff distance dc (or the hy-

perparameter α%). As shown in Figure 4, when the cutoff

distance ranked at 50% and 1%, local densities of samples

diffuse outwards from large to small with one and two cen-

ters, respectively, i.e., a smaller cutoff distance (e.g., 1% for

α%) may divide the whole feature space into more clusters.

Meanwhile, different predicate categories may contain vari-

able types of semantic meanings. For example, in Figure 4,

predicate in of samples inside the red circle represents “in-

side” (e.g., 〈plant-in-vase〉), while predicate in of the

samples inside the green circle represents “wearing” (e.g.,

〈man-in-shirt〉). Thus, we set different cutoff distances

to different categories. More details are in Sec. 4.

In addition, more detailed discussions about the influ-

ence of dkc on the clustering results are left in the appendix.

3.3. Noisy Sample Correction (NSC)

Given all the detected noisy positive samples from Pos-

NSD, the NSC module aims to correct these noisy positive

predicate labels. The motivation of our NSC is that the

predicate label of a sample should be consistent with other

visually-similar samples, especially for those samples with

the same subject and object categories. For exam-

ple, in Figure 5, for the noisy sample 〈girl-in-chair〉,
we can retrieval all other samples with the same 〈girl-

chair〉, and find most of the visually-similar samples are

annotated as 〈girl-sitting on-chair〉. Thus, we
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use the simple but effective weighted K-Nearest Neighbor

(wKNN) algorithm to derive the most possible labels for

noisy positive samples. The wKNN assigns larger weights

to the closest samples and smaller weights to the ones that

are far away. Specifically, let N(i) be the set of K neigh-

bors of sample ti, then the new assigned label for ti is:

r
′
i = argmax

v

∑
tj∈N(i)

wij · 1(v = rj), (6)

where v is a predicate category, rj is predicate label of tj ,

and 1(·) is an indicator function. The weight wij is assigned

to each neighbor, defined as a · exp(− (dij−b)2

2c2 ). The dij is

the Euclidean distance between hi and hj (cf. Eq. (4)), and

a, b, c are hyperparameters. It is worth noting that since we

only consider the samples with the same subject-object cat-

egories, we can solve NSC with fast inference speed. If the

new label is the same as the old, no label will be assigned.

4. Experiments

4.1. Experimental Settings and Details

Dataset. We conducted all experiments on the Challeng-

ing VG dataset [15]. It contains 108,073 images in total. In

this paper, we followed widely-used splits [37], which keep

the 150 most frequent object categories and the 50 most fre-

quent predicate categories. Specifically, 70% of images are

training set and 30% of images are test set. Following [42],

we sampled 5,000 images from the training set as the val set.

Besides, we followed [24] to divide all predicate categories

into three parts based on the number of samples in training

set: head (>10k), body (0.5k∼10k), and tail (<0.5k).

Tasks. We evaluated NICE on three SGG tasks [37]: 1)

Predicate Classification (PredCls): Given the ground-truth

objects with labels, we need to only predict pairwise pred-

icate categories. 2) Scene Graph Classification (SGCls):

Given the ground-truth object bounding boxes, we need to

predict both the object categories and predicate categories.

3) Scene Graph Generation (SGGen): Given an image, we

need to detect all object bounding boxes, and predict both

the object categories and predicate categories.

Metrics. We evaluated all results on three metrics: 1)

Recall@K (R@K): It calculates the proportion of top-K

confident predicted relation triplets that are in the ground-

truth. Following prior works, we used K = {50, 100}. 2)

mean Recall@K (mR@K): It calculates the recall for each

predicate category separately, and then averages R@K over

all predicates, i.e., it puts relatively more emphasis on the

tail categories. 3) Mean: It is the mean of all mR@K and

R@K scores. R@K favors head predicates, while mR@K

favors tail ones. Thus, it is a comprehensive metric that can

better reflect model performance on different predicates.

Implementation Details. It is described in the appendix.

4.2. Comparisons with State-of-the-Arts

Settings. Since NICE is a model-agnostic strategy, it can

be seamlessly incorporated into any advanced SGG model.

In this section, we equipped NICE into two baselines: Mo-
tifs [42] and VCTree [32], and compared them with the

state-of-the-art SGG methods. According to the generaliza-

tion of these methods, we group them into two categories:

1) TDE [31], PCPL [39], CogTree [41], DLFE [4], and

BPL-SA [10]. These methods are all model-agnostic SGG

debiasing strategies. For fair comparisons, we also reported

their performance on the Motifs and VCTree baselines. 2)

KERN [3], G-RCNN [40], MSDN [19], BGNN [17], and

DT2-ACBS [5]. These methods are specifically designed

SGG models. All results are reported in Table 1.

Results. From the results in Table 1, we have the follow-

ing observations: 1) Compared to the two strong baselines

(i.e., Motifs and VCTree), our NICE can consistently im-

prove model performance on metric mR@K over all three

tasks (e.g., 6.7% ∼ 14.5% and 4.7% ∼ 14.6% absolute gains

on metric mR@100 over Motifs and VCTree, respectively).

2) Compared to other state-of-the-art model-agnostic debi-

asing strategies, NICE can not only always achieve top per-

formance on mR@K metrics, but also keep relatively high

performance on R@K metrics, i.e., NICE can improve the

tail categories performance significantly, and maintain good

performance on head categories. Thus, NICE can realize a

better trade-off between accuracy among different predicate

categories, and always achieve the best mean scores.

4.3. Ablation Studies

4.3.1 Ablation Studies on Neg-NSD

Hyperparameter Settings of Neg-NSD. The hyperparam-

eter in Neg-NSD is the threshold θ for the confidence score

(cf. Eq. (1)). Particularly, when the threshold θ for one cate-

gory is set to 100%, which means we never assign this cate-

gory as pseudo labels. Without loss of generality, we choose

three representative hyperparameter settings, i.e., we mine

missing annotated triplets on 1) all predicate categories, or

2) only body and tail categories, or 3) only tail categories.

The thresholds θ for corresponding head, body, and tail cat-

egories were set as 95%, 90%, and 60%, respectively. To

disentangle the influence of the other two modules (i.e.,

Pos-NSD and NSC), we directly use the outputs of Neg-

NSD and pristine positive samples for SGG training.

Results. From the results in Table 3(a), we can observe:

1) Different threshold settings have a slight influence on the

mR@K metrics, but relatively more influence on the R@K

metrics. 2) When only mining the missing tail predicates in

Neg-NSD, the model gains the best performance.

Effectiveness of Neg-NSD. We evaluated the effectiveness

of the Neg-NSD by using the same refined samples by Neg-

NSD and pristine positive samples for SGG training.
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B Models
PredCls SGCls SGGen

mR@50/100 R@50/100 Mean mR@50/100 R@50/100 Mean mR@50/100 R@50/100 Mean

V
G

G
-1

6 Motif [42] CVPR’18 14.0 / 15.3 65.2 / 67.1 40.4 7.7 / 8.2 35.8 / 36.5 22.1 5.7 / 6.6 27.2 / 30.3 17.5

VCTree [32]CVPR’19 17.9 / 19.4 66.4 / 68.1 43.0 10.1 / 10.8 38.1 / 38.8 24.5 6.9 / 8.0 27.9 / 31.3 18.5

KERN [3]CVPR’19 17.7 / 19.2 65.8 / 67.6 42.6 9.4 / 10.0 36.7 / 37.4 23.4 6.4 / 7.3 29.8 / 27.1 17.7

PCPL [39]MM’20 35.2 / 37.8 50.8 / 52.6 44.1 18.6 / 19.6 27.6 / 28.4 23.6 9.5 / 11.7 14.6 / 18.6 13.6

X
-1

0
1
-F

P
N

MSDN [19]ICCV’17 15.9 / 17.5 64.6 / 66.6 41.2 9.3 / 9.7 38.4 / 39.8 24.3 6.1 / 7.2 31.9 / 36.6 20.5

G-RCNN [40]ECCV’18 16.4 / 17.2 64.8 / 66.7 41.3 9.0 / 9.5 38.5 / 37.0 23.5 5.8 / 6.6 29.7 / 32.8 18.7

BGNN [17]CVPR’21 30.4 / 32.9 59.2 / 61.3 45.9 14.3 / 16.5 37.4 / 38.5 26.7 10.7 / 12.6 31.0 / 35.8 22.5

DT2-ACBS [5]ICCV’21 35.9 / 39.7 23.3 / 25.6 31.1 24.8 / 27.5 16.2 / 17.6 21.5 22.0 / 24.4 15.0 / 16.3 19.4

Motifs [42]CVPR’18 16.5 / 17.8 65.5 / 67.2 41.8 8.7 / 9.3 39.0 / 39.7 24.2 5.5 / 6.8 32.1 / 36.9 20.3
+TDE [31]CVPR’20 24.2 / 27.9 45.0 / 50.6 36.9 13.1 / 14.9 27.1 / 29.5 21.2 9.2 / 11.1 17.3 / 20.8 14.6

+PCPL [39]MM’20 24.3 / 26.1 54.7 / 56.5 40.4 12.0 / 12.7 35.3 / 36.1 24.0 10.7 / 12.6 27.8 / 31.7 20.7

+CogTree [41]IJCAI’21 26.4 / 29.0 35.6 / 36.8 32.0 14.9 / 16.1 21.6 / 22.2 18.7 10.4 / 11.8 20.0 / 22.1 16.1

+DLFE [4]MM’21 26.9 / 28.8 52.5 / 54.2 40.6 15.2 / 15.9 32.3 / 33.1 24.1 11.7 / 13.8 25.4 / 29.4 20.1

+BPL-SA [10]ICCV’21 29.7 / 31.7 50.7 / 52.5 41.2 16.5 / 17.5 30.1 / 31.0 23.8 13.5 / 15.6 23.0 / 26.9 19.8

+NICE (ours) 29.9 / 32.3 55.1 / 57.2 43.6 16.6 / 17.9 33.1 / 34.0 25.4 12.2 / 14.4 27.8 / 31.8 21.6
VCTree [32]CVPR’19 17.1 / 18.4 65.9 / 67.5 42.2 10.8 / 11.5 45.6 / 46.5 28.6 7.2 / 8.4 32.0 / 36.2 20.9
+TDE [31]CVPR’20 26.2 / 29.6 44.8 / 49.2 37.5 15.2 / 17.5 28.8 / 32.0 23.4 9.5 / 11.4 17.3 / 20.9 14.8

+PCPL [39]MM’20 22.8 / 24.5 56.9 / 58.7 40.7 15.2 / 16.1 40.6 / 41.7 28.4 10.8 / 12.6 26.6 / 30.3 20.1

+CogTree [41]IJCAI’21 27.6 / 29.7 44.0 / 45.4 36.7 18.8 / 19.9 30.9 / 31.7 25.3 10.4 / 12.1 18.2 / 20.4 15.3

+DLFE [4]MM’21 25.3 / 27.1 51.8 / 53.5 39.4 18.9 / 20.0 33.5 / 34.6 26.8 11.8 / 13.8 22.7 / 26.3 18.7

+BPL-SA [10]ICCV’21 30.6 / 32.6 50.0 / 51.8 41.3 20.1 / 21.2 34.0 / 35.0 27.6 13.5 / 15.7 21.7 / 25.5 19.1

+NICE (ours) 30.7 / 33.0 55.0 / 56.9 43.9 19.9 / 21.3 37.8 / 39.0 29.5 11.9 / 14.1 27.0 / 30.8 21.0

Table 1: Performance (%) of state-of-the art SGG models on three SGG tasks. “B” denotes the backbone of object detector (Faster R-

CNN [28]) in each SGG model: i.e., VGG-16 [30] and ResNeXt-101-FPN [21]. “Mean” is the average of mR@50/100 and R@50/100.

The best and second best methods under each setting are marked according to formats.

Components PredCls

# N-NSD P-NSD NSC mR@50/100 R@50/100 Mean

1 � � � 16.5 / 17.8 65.5 / 67.2 41.8

2 � � � 23.3 / 25.2 62.3 / 64.5 43.8

3 � � � 20.3 / 22.0 57.6 / 59.2 39.8

4 � � � 20.4 / 23.4 56.7 / 61.4 40.5

5 � � � 23.3 / 25.2 59.6 / 61.3 42.4

6 � � � 29.9 / 32.3 55.1 / 57.2 43.6

Table 2: Ablation studies on each component of NICE. “#” is the

line number. The baseline model (# 1) is Motifs [42].

Results. All results are reported in Table 2. Compared

to the baseline model (# 1), the Neg-PSD module (# 2) can

significantly improve model performance on mR@K met-

rics (e.g., 25.2% vs. 17.8% in mR@100), which proves that

these harvested “positive” samples (noisy negative samples

with pseudo labels) are indeed beneficial for SGG training.

4.3.2 Ablation Studies on Pos-NSD

Hyperparameter Settings of Pos-NSD. The hyperparam-

eter in Pos-NSD is the cutoff distance dc ranked at α% for

different categories (cf. Eq. (5)). As mentioned in Sec. 3.2,

different dc directly influence the clustering results of each

predicate category, and smaller dc is more suitable for pred-

icates with multiple semantic meanings. Thus, without loss

of generality, we choose five typical settings for different

categories, including (L,L,L), (M,M,M), and so on.

The L, M, S denote the dc are large, medium, and small. In

our experiments, their corresponding α% were set to 50.0%,

25.0% and 12.5%. Similarly, we disentangle the influence

of Neg-NSD, and use pristine negative samples and refined

positive samples (outputs of NSC) for SGG training.

Results. When the cutoff distance dc for all predicate

categories are set to large or small or from large to small,

the model achieves relatively worse results. These results

are also consistent with our expectation, i.e., for the predi-

cate categories with multiple semantic meanings (head cat-

egories), small dc is better for noisy sample detection. In-

stead, for predicate categories with unique semantic mean-

ing (tail categories), larger dc is better. Thus, we utilize the

(S,M,L) setting for all experiments.

Effectiveness of Pos-NSD. We evaluated the effectiveness

of Pos-NSD by just using clean positive samples detected

from T + with pristine negative samples or from the new

positive samples set T̃ +
for SGG training.

Results. As shown in Table 2 (# 3), the single Pos-NSD

component can still improve mR@K metrics by using much

fewer positive training samples. Besides, baseline can also
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Categories PredCls

head body tail mR@50/100 R@50/100 Mean

� � � 22.2 / 25.8 58.5 / 62.5 42.3

� � � 23.7 / 26.2 59.5 / 62.3 42.9

� � � 23.3 / 25.2 62.3 / 64.5 43.8

(a) The ablation studies on mining missing annotated triplets

in head, body and tail categories in Neg-NSD, respectively.

Size of dc PredCls

head body tail mR@50/100 R@50/100 Mean

L L L 19.9 / 21.5 64.0 / 65.7 42.8

M M M 21.0 / 22.8 62.2 / 64.0 42.5

S S S 21.6 / 23.4 61.1 / 62.8 42.2

S M L 23.3 / 25.2 59.6 / 61.3 42.4

L M S 18.6 / 20.1 64.4 / 66.1 42.3

(b) The ablation studies on different cutoff distance dc in Pos-

NSD for head, body and tail predicates respectively.

K
PredCls

mR@50/100 R@50/100 Mean

K = 1 23.3 / 25.0 59.3 / 60.9 42.1

K = 3 23.3 / 25.2 59.6 / 61.3 42.4

K = 5 22.9 / 24.7 59.8 / 61.5 42.2

(c) The ablation studies on different K in wKNN.

Table 3: Ablation studies on the influence of different hy-

perparameters of each component of NICE. Motifs [42] is

the baseline model which are used in all experiments.

Before NSC After NSC Before NSC After NSC

<man - ? - arm><man - ? - skateboard>
Figure 6: The t-SNE visualization of randomly sampled instances of differ-

ent triplet categories on the feature space before and after NSC.
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Figure 7: Scene graphs generated by Motifs (left) and Motifs+NICE (right)

on PredCls. Green predicates are correct (i.e., GT), and brown predicates

are more coarse-grained (not in GT). Red dashed arrows are the relations

that are not detected. Only detected boxes overlapped with GT are shown.

be exceeded on mR@K (# 4) after Neg-NSD and Pos-NSD

alone with fewer training samples. It proves that the clean

subset divided by Pos-NSD is better for SGG training, and

numerous noisy positive samples actually hurt performance.

4.3.3 Ablation Studies on NSC

Hyperparameter of NSC. The hyperparameter of NSC is

the K in wKNN. We investigated K = {1, 3, 5}. All results

are reported in Table 3(c). From the results, we can observe

that the SGG performance is robust to different K. To better

trade-off different metrics, we set K to 3.

Effectiveness of NSC. Based on Pos-NSD, NSC replaces

the original labels of the noisy positive samples with cleaner

labels. As shown in Table 2, NSC markedly improves SGG

performance on both mR@K and R@K (# 5 vs. # 3), i.e.,

NSC always reassigns better labels to noisy samples.

T-SNE Visualizations. We visualized the t-SNE distribu-

tions of features of 〈man-on/riding-skateboard〉 as

well as 〈man-has/with-arm〉 on the feature space before

and after the NSC in Figure 6. And the features are from the

previous layer of classification, like P-NSD. The former is a

pair of predicates of different granularity (common-prone),

and the latter is a pair of predicates of the same granularity

(synonym-random). As shown in Figure 6, NSC can help

to alleviate the inconsistency of ground-truths, i.e., simi-

lar visual patterns always have more consistent ground-truth

predicate annotations, which is beneficial for SGG training.

4.3.4 Qualitative Results

Figure 7 demonstrates some qualitative results generated by

Motifs and Motifs+NICE. From Figure 7, we can observe

that NICE can not only help to detect more missing false

positive predicates (e.g., covering), but also more fine-

grained and informative predicates (e.g., growing on vs.

on, and covering vs. above).

5. Conclusions and Limitations

In this paper, we argued that two plausible assumptions

about the ground-truth annotations are inapplicable for ex-

isting SGG datasets. To this end, we reformulated SGG as a

noisy label learning problem and proposed a novel model-

agnostic noisy label correction strategy: NICE. NICE can

not only detect noisy samples, but also reassign better pred-

icate labels to them. We have validated the effectiveness of

each part of NICE through extensive experiments.

Limitations. Although NICE can mine some potential

unseen triplets in Neg-NSD, there is no guarantee that the

harvested triplets must be reasonable. Meanwhile, some hy-

perparameters have different impacts on each predicate cat-

egory, which makes it difficult to achieve the best trade-off

between different metrics (cf. mR@K & R@K in Table 3).
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