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Abstract

Accurate facial landmarks are essential prerequisites for
many tasks related to human faces. In this paper, an accu-
rate facial landmark detector is proposed based on cascad-
ed transformers. We formulate facial landmark detection
as a coordinate regression task such that the model can be
trained end-to-end. With self-attention in transformers, our
model can inherently exploit the structured relationships be-
tween landmarks, which would benefit landmark detection
under challenging conditions such as large pose and oc-
clusion. During cascaded refinement, our model is able to
extract the most relevant image features around the target
landmark for coordinate prediction, based on deformable
attention mechanism, thus bringing more accurate align-
ment. In addition, we propose a novel decoder that re-
fines image features and landmark positions simultaneous-
ly. With few parameter increasing, the detection perfor-
mance improves further. Our model achieves new state-of-
the-art performance on several standard facial landmark
detection benchmarks, and shows good generalization abil-
ity in cross-dataset evaluation.

1. Introduction
Facial landmark detection aims to automatically localize

fiducial facial landmark points on human faces. It serves

as an essential step for several facial analysis tasks, such as

face recognition, facial expression analysis, face frontaliza-

tion and 3D face reconstruction [29].

Facial landmark detection has received significant im-

provement in recent years. Existing approaches mainly fall

into two categories, i.e., coordinate regression-based meth-

ods and heatmap-based methods. Coordinate regression-

based methods [7, 31] map the input image to landmark

coordinates via fully connected prediction layers. To im-

prove accuracy, coordinate regression is usually cascad-

ed as a coarse-to-fine manner [4, 15] or integrated with

∗The first two authors equally contributed to this work. H.Li is the

corresponding author.

backbone

Initial Query
1st decoder 

layer
2nd decoder 

layer

···

···

Figure 1. Illustration of our entire framework. The initial query

and landmark locations are generated based on the image features,

and are continuously updated along with the decoding process.

heatmap regression module [17, 28]. Heatmap-based meth-

ods [23, 27, 34] usually predict heatmaps by fully convo-

lutional networks and then obtain the landmarks according

to the peak probability locations on the heatmaps. Since

heatmap-based models can preserve the spatial structure of

image features, they have better performance than coordi-

nate regression-based models generally.

Although heatmap-based methods have relatively high-

er detection accuracy, they suffer from three major issues.

1) The required post-processing step is non-differentiable,

which disables the end-to-end training. 2) Considering the

computational complexity, the resolution of heatmaps is

usually lower than that of the input images, resulting in a

quantization error inevitably and limiting the performance.

3) They concern more on local texture information and ne-

glect global sensing on face shape, making them vulnerable

to large appearance variation such as occlusions.

In contrast, coordinate regression based methods can by-

pass the aforementioned drawbacks and enable end-to-end

model training. However, the fully connected layers destroy

the spatial structure of local image features, which deterio-

rates the localization performance greatly [10].

In this work, we propose a coordinate regression-

based model, Deformable Transformer Landmark Detector

(DTLD), for accurate facial landmark detection. On one

hand, our model avoids the aforementioned shortcomings

of heatmap-based methods, and can be well-trained end-
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to-end, without heuristical post-processing. On the other

hand, the model is capable of extracting the most relevan-

t features from multi-level feature maps around the target

landmark for coordinate prediction, which preserves the lo-

cal spatial structure and improves the localization accuracy

to a large extent. Moreover, our method helps to exploit the

underlying relationship among landmarks and incorporate

rich structure knowledge, which enables a robust model to

tackle various scenarios such as expression or occlusion.

Inspired by the great success of DEtection TRansformer

(DETR) in object detection [2, 33], we formulate the land-

mark detection as a gradually refined N-coordinate pre-

diction task, where N is the number of facial landmark-

s. Self-attention block is adopted to learn potential struc-

tural dependencies. Then multi-scale image feature based

deformable attention [33] is employed, where landmark re-

lated information is used as the guidance to adaptively ex-

tract the most relevant features and refine the coordinates.

Different from [2, 33] that define redundant object queries

(significantly larger than the typical number of objects in

an image) and use bipartite matching to classify object-

s, here we set the number of queries to be the number

of landmarks exactly, which simplifies the training process

largely. Instead of using randomly initialized query embed-

ding, we design a more meaningful image-related query-

initialization method, which provides coarse landmark lo-

cations rather than a fiducial landmark template. Moreover,

we explore a parallel decoder where both image features

and landmark coordinates are refined simultaneously in the

decoding process. It improves the detection performance

further. The entire framework is illustrated in Figure 1.

The main contributions can be summarized as follows.

1) We propose a coordinate regression-based facial land-

mark detector DTLD by cascaded deformable transformers,

based on Deformable DETR [33]. DTLD could iteratively

capture structural relationships among landmarks and the

most relevant visual contextual information to achieve effi-

cient and effective detection.

2) A parallel decoder is further explored to enhance the

detection accuracy, with few model parameter increasing.

3) We conduct extensive experiments to analyze the ef-

fectiveness of the proposed method, by both quantitative e-

valuations and qualitative visualizations. Our model con-

tributes to tackle landmark detection under various scenar-

ios. It achieves new state-of-the-art (SOTA) accuracy on

several landmark detection benchmarks, and shows good

generalization ability in cross-dataset evaluation.

2. Related work

2.1. Facial Landmark Detection

As stated above, the existing approaches on facial land-

mark detection can be roughly divided into two categories.

Heatmap-based methods usually use high-resolution fea-

ture maps for precise localization and achieve encourag-

ing performance. Stacked hourglass network [19] and U-

Net [21] are two typical architectures that perform well in

heatmap-based methods [3, 5, 24, 27, 34]. Specifically, H-

SLE [34] proposes to hierarchically depict holistic and local

structures obtained by stacked hourglass network for accu-

rate alignment. LUVLi [13] investigates U-Net for joint-

ly predicting landmark locations, associated uncertainties

of these predicted locations and landmark visibilities. HR-

Net [23] also shows promising results by connecting and ex-

changing information via fusing multi-scale image features

across multiple branches to obtain high-resolution maps.

More recently, PIPNet [10] conducts heatmap and offset

predictions simultaneously on low-resolution feature maps,

which largely reduces inference time and achieves compet-

itive accuracy.

Coordinate regression-based models are mostly fast, but

not accurate enough [10]. In order to improve the ac-

curacy, most algorithms are designed to make prediction-

s in a coarse-to-fine manner through a cascaded struc-

ture [4,7,18,32]. For instance, Dapogny et al. [4] proposed

DeCaFA that uses fully convolutional U-net to preserve

the full spatial resolution throughout the cascaded regres-

sion for accurate face alignment. LAB [28] was proposed

by predicting facial boundary as a geometric constraint via

heatmap regression to help landmark coordinate prediction.

Most recently, Li et al. [15] adopt a cascaded Graph Convo-

lutional Network to dynamically leverage global and local

features for precise prediction. Although this method shows

superior performance, it relies more on high-resolution fea-

ture maps which is computationally expensive.

2.2. Transformers in Vision Tasks

Attention mechanism in transformer [25] is able to en-

code distant dependencies or heterogeneous interactions,

and has shown outstanding performance on lots of comput-

er vision tasks [2, 6, 26, 33]. VIT [6] is the first that em-

ploys pure transformer for image classification. PVT [26]

integrates pyramid feature maps and spatial property into

the model design. DETR [2] and Deformable DETR [33]

view object detection as a direct set prediction task and for-

mulate object detection to be trained end-to-end. Yang et
al. [30] introduced transformer for human pose estimation,

and employed attention layers to capture long-range spa-

tial dependencies between human body parts. The model

is still heatmap-based. Li et al. [14] proposed pose recog-

nition transformer based on DETR. However, it still needs

to perform keypoint detection by finding a match between

numerous predictions and the ground-truth. In contrast, our

work performs exact coordinate regression solely. With a

small amount of parameters and computation, our model

achieves the highest accuracy on facial landmark detection.
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Figure 2. The architecture of our proposed DTLD. Q0 is obtained

from F4, the last layer of backbone features, through a linear pro-

jection on spatial dimension, and is further transformed into initial

landmark coordinates Y0, which are adjusted by T decoder layers

to get the final positions YT .

3. Method
The architecture of the proposed DTLD is presented in

Figure 2. It is composed of a backbone network for image

feature extraction, a query initialization module, and a de-

coder module for landmark prediction. We adopt a cascaded

regression framework where the coordinate offsets are pre-

dicted by each decoder layer. The landmark coordinates are

refined iteratively during the decoding process. We intro-

duce each part in detail in the following.

3.1. Backbone

The backbone contains an ImageNet [12] pre-trained

ResNet-18 [9]. Pyramid features are output, which are

denoted as F1, F2, F3, F4, with down-sampling ratios of

4, 8, 16, 32 relative to the input image. A 1 × 1 convolu-

tion is followed to project the features into the same number

of channels. These features are then flattened and concate-

nated together, and will be used as the memory feature for

decoder, denoted as M ∈ RM×C , where M is the length of

the flattened features.

3.2. Query Initialization

A learnable query matrix Q is defined in [2, 33], which

is randomly initialized and updated to represent object re-

lated information. In our model, the query matrix Q is de-

fined to have the size of N × C, where N is the number

of landmarks and C is the feature dimension. Rather than

random initialization, we extract N features from F4 by a

linear projection on spatial dimension, and use them as the

initial query features, i.e.

Q0 = FC(FT
4 )

T, (1)

We reuse F4 to denote the flattened feature, Q0 ∈ RN×C .

The obtained initial query features are expected to be

landmark-related. A landmark predictor (another linear pro-

jection layer followed by Sigmoid in this paper) is em-

ployed to transform them into N landmark coordinates, i.e.,

Y0 = σ(FC(Q0)), (2)
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Figure 3. Detailed illustration of the basic decoder. Memory fea-

ture M and the previous Q jointly participate in updating the land-

mark positions on the basis of previous coordinates R. For the first

decoder layer, R1 is the initial landmark location Y0.

where Y0 ∈ RN×2 are the initial landmark coordinates,

which will be used as the initial reference points for feature

sampling in decoding process as well.

3.3. Decoder Module

The decoder module is composed of T decoder layer-

s. Each layer takes as inputs a query matrix Q, a memory

feature M and reference points R, and outputs landmark co-

ordinate offsets in regards to R. Based on whether updating

the memory feature, two types of decoders are explored,

i.e., a basic one and a parallel one. They work indepen-

dently. The former is simple and efficient, setting a strong

baseline for landmark detection, while the latter presents a

slightly higher detection accuracy.

Basic Decoder. The configuration of the basic decoder lay-

er is illustrated in Figure 3. It mainly consists of a self-

attention layer, a deformable attention layer, and an offset

predictor.

Specifically, the self-attention layer only adopts the

query matrix Q as input. It learns the structure depen-

dency among landmarks by dense interactions. This infor-

mation is image-independent intrinsically, where facial at-

tributes like pose and expression will be captured and these

attributes have been proven to be important for landmark

localization [15]. The self-attention layer takes QP ,QP ,Q
as query, key and value separately, and QP = Q+P, where

P is a learnable position embedding. The output from self-

attention layer is denoted as QS = [qS
1 , . . . ,qS

N ], where

qS
i =

N∑

j=1

αij(Wvqj), i = 1, . . . , N, (3)

and αij are self-attention weights calculated by query and

key that exploit the connectivity among landmarks. A resid-

ual addition and layer normalization are used as those in

normal transformer block. The output is renamed as QS .

The deformable attention layer takes QS as query and

the memory feature M as value. Instead of calculating

the relationship between each element of QS and M, the
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deformable attention [33] only attends to a small set of

features, obtained by sampling M according to sampling

points. The calculation is formulated as

qD
i =

K∑

k=1

βik(Wxik), i = 1, . . . , N, (4)

where xik are image features sampled from M. K is the

entire sampling number. The sampling locations for qD
i ,

denoted as pik ∈ R2, are calculated by pik = ri + δpik,

where ri denotes the reference point, which is the i-th land-

mark coordinate calculated from the previous decoder layer,

and δpik are sampling offsets, obtained via linear projec-

tion over the query feature qS
i . βik denotes the attention

weights over the sampling features, which are calculated by

another linear projection over qS
i , and a softmax operation.

The sampling process extracts more related landmark fea-

tures from multi-level feature maps, which reduces the fea-

ture searching area to a large extent and accelerates mod-

el convergence. A residual addition, layer normalization

and feed-forward network are followed, and the output is

re-denoted as QD = [qD
1 , . . . ,qD

N ].
The final projection is computed by offset predictor (a 3-

layer perceptron in this paper). It takes QD as input and pre-

dicts the coordinate offsets Yo with regard to the reference

points R. The landmark coordinates are then calculated by,

Yt = σ(Yo
t + σ−1(Rt)), (5)

where t means for the tth decoder layer, t = 1, ..., T . Yo
t ∈

RN×2 are the predicted coordinate offsets, Rt ∈ RN×2 are

coordinates of reference points and Rt = Yt−1.

Note that the input query matrix Q is also updated by

each decoder layer. Q = Q0 for the first decoder layer, and

Q = QD
t−1 for others. QD

t−1 is the output from previous

deformable attention layer.

Parallel Decoder. DETR and deformable DETR [2, 33]

employ several layers of encoder to learn more discrimina-

tive image features. DTLD removes the encoder module to

save parameters and computational costs. However, exper-

iments show that the encoder is indeed beneficial to detec-

tion performance. Instead of inheriting the serial encoder-

decoder architecture, we propose a parallel decoder, where

the memory feature is updated coherently during the decod-

ing process, along with landmark coordinates refinement.

The simple variation improves landmark detection accura-

cy furthermore.

As shown in Figure 4, given the memory feature M, we

first add both level embedding and pixel position embed-

ding, denoted together as P′, to indicate which level the

feature comes from and the spatial location of the feature

in feature maps. The embedding added features, denoted as

MP , are used as the query for updating image feature, i.e.,

fj =
K∑

k=1

γjk(Wxjk), j = 1, . . . ,M. (6)
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Figure 4. Detailed structure of the proposed parallel decoder. The

feature memory M is also updated in the process, sharing the pa-

rameters and operations of cross attention and FFN with query Q.

fj are updated image features, xjk are sampled features

from M according to sampling location pjk = rMj + δpjk.

Similarly, δpjk and γjk, which denote the sampling offset-

s and attention weights, are computed by linear projection

over MP . The reference points rMj ∈ [0, 1]2 are normalized

coordinates of memory feature on each feature map.

In the parallel decoder, we concatenate MP and QS as

the overall query features, concatenate rMj , j = 1, . . . ,M
and ri, i = 1, . . . , N as the reference points, and update

both image features and landmark query features simulta-

neously according to Eq 6 and Eq 4. The layer parameters

are shared except that we use separate layer normalizations

for image and landmark query. It results in only 1.2K more

parameters compared to the basic decoder counterpart. The

updated image features will be used as the memory feature

next, and the updated landmark query features will be used

to calculate the offsets Yo.

3.4. Training Target

We simply use L1 loss between the predicted landmark

coordinates and the ground-truth to train the model, i.e.,

L =

T∑

t=0

∥∥∥Yt − Ŷ
∥∥∥ , (7)

where Y0 is computed by Eq 2, and Yt, t = 1, . . . , T are

from Eq 5. Ŷ denotes the ground-truth coordinates.

4. Experiments
In this section, we perform extensive experiments to ver-

ify the effectiveness of the proposed method. All the experi-

ments are conducted on an NVIDIA v100 GPU. The models

are implemented by PyTorch.

4.1. Datasets

We conduct experiments on a number of popular 2D

face landmark detection datasets, including 300W, WFLW,

COFW and AFLW. 300W [22] is collected from five facial

4179



Method Year Backbone
Pre-

Trained

300W (NME) COFW

(NME)

AFLW

(NME)

WFLW-Full

Full Common Challenge (NME) (FR10%)

LAB [28] 2018 Hourglass - 3.49 2.98 5.19 5.58 1.85 5.27 7.56
Wing [7] 2018 ResNet-50 Y − − − 5.07 1.47 4.99 6.00
ODN [31] 2019 ResNet-18 Y 4.17 3.56 6.67 5.30 1.63 − −
HGs [17] 2019 Hourglass - 4.02 3.45 6.38 − 1.60 − −
DeCaFa [4] 2019 Cascaded U-Net - 3.39 2.93 5.26 − − 4.62 4.84
DAG [15] 2020 HRNet-W18 Y 3.04 2.62 4.77 − − 4.21 3.04
HRNet [23] 2019 HRNet-W18 Y 3.32 2.87 5.15 3.45 1.57 4.60 4.64
AWing [27] 2019 Hourglass N 3.07 2.72 4.52 − 1.53 4.36 2.84
AVS [20] 2019 ITN-CPM N 3.86 3.21 6.46 − − 4.39 4.08
ADA [3] 2020 Hourglass - 3.50 2.41 5.68 − − − −
LUVLi [13] 2020 DU-Net N 3.23 2.76 5.16 − 1.39 4.37 3.12
PIPNet-18 [10] 2020 ResNet-18 Y 3.36 2.91 5.18 3.31 1.48 4.57 −
PIPNet-101 [10] 2020 ResNet-101 Y 3.19 2.78 4.89 3.08 1.42 4.31 −
DTLD-s 2021 ResNet-18 N 3.04 2.67 4.56 3.18 1.39 4.14 3.44
DTLD 2021 ResNet-18 Y 2.96 2.59 4.50 3.04 1.38 4.08 2.76
DTLD+ 2021 ResNet-18 Y 2.96 2.60 4.48 3.02 1.37 4.05 2.68

Table 1. Comparison with SOTA methods on landmark detection accuracy. We report NME (%) on 300W, COFW and AFLW. On WFLW,

both NME (%) and FR (%) at the threshold of 10% are reported. Our method achieved the best accuracy on most datasets by simply

using ResNet-18 as the backbone, and the second best on 300W-Common subset. DTLD uses the basic decoder, while DTLD+ adopts the

parallel decoder. DTLD-s has all parameters trained from scratch. The top methods are coordinate regression-based while the middle ones

are heatmap-based.

datasets, consisting of 3148 training images and 689 test

images. The test dataset is further divided into 2 subsets,

i.e., common set with 554 images and challenging set with

135 images. Each image is annotated with 68 landmarks.

WFLW [28] is collected from WIDER Face, which in-

cludes large variations in pose, expression and occlusion.

Each face is originally annotated by 98 landmarks, and re-

annotated by 68 landmarks in [10]. There are 7, 500 images

for training and 2, 500 for test. The test set is further divided

into 6 subsets for different scenarios.

COFW [1] contains 1345 training images and 507 test

images under different occlusion conditions. Each image is

annotated by 29 landmarks, and we also use 68 landmarks

re-annotated by [8] for the cross-domain setting.

AFLW [11] contains 20000 images for training and 4386
images for test, providing 19 landmarks for each face.

CelebA [16] is a large-scale attributes dataset with

202,599 face images in the wild. We only use the images

without annotation for training in Section 4.6.

4.2. Implementation Details

For all datasets, the faces are cropped according to

the provided bounding boxes firstly, and then resized to

256× 256. In order to retain more context information, the

bounding boxes on 300W and WFLW are enlarged by 10%
and 20%, respectively, following previous work [10]. Da-

ta augmentation is adopted involving translation, horizontal

flipping, rotation, occlusion and blurring. The whole mod-

el is trained end-to-end by Adam optimizer for 120 epochs

in total. The learning rate is set to 1e-4 initially and then

reduced to 1e-5 at 100th epoch, where the learning rate for

backbone is 10 times smaller than the above. By default,

we use 3 decoder layers, with a feature dimension of 256

and 8 heads. For each query, we sample 4 features for each

head from each level of the feature maps. The configuration

will be analyzed in ablation study. We train the model on 1

v100 GPU with a batch size of 16. The reported results are

averaged over three runs.

4.3. Evaluation Metric

we adopt the most widely used metric, normalized mean

error (NME), to evaluate our model for fair comparison with

previous work. It is calculated by,

NME(Y, Ŷ) =
1

N

N∑

i=1

‖yi − ŷi‖2
D

. (8)

We employ the prediction from last decoder layer for e-

valuation. D is a normalization distance, and we use inter-

ocular distance for 300W, WFLW, COFW, and image size

for AFLW, following common practice. Failure rate (FR) is

also reported which refers to the percentage of failed exam-

ples whose NMEs are larger than a certain threshold.

4.4. Comparison with the SOTA

As presented in Table 1, we firstly compare our model

with SOTA methods on landmark detection accuracy using

the four benchmarks. DTLD is the model with basic de-

coder, while DTLD-s has all model parameters trained from

scratch. DTLD+ is equipped with the parallel decoder. The

models are trained and tested separately, with the default

configuration.
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Figure 5. Visualization of typical landmark detection results. Red denotes the ground truth, and cyan represents our predictions. Our model

is able to detect landmarks accurately in various scenarios, such as blur, makeup, expression, occlusion, or even with big pose.

Method Year Backbone NME(%) Param.(M) GFLOPs FPS(GPU)

HRNet [23] 2019 HRNet-W18 4.60 9.7 4.8 11.7
AWing [27] 2019 Hourglass 4.36 25.1 26.7 24.2
DeCaFa [4] 2019 Cascaded U-Net 4.62 10 − 32
LUVLi [13] 2020 DU-Net 4.37 − − 58.8
PIPNet-18 [10] 2020 ResNet-18 4.57 12.0 2.4 200
PIPNet-101 [10] 2020 ResNet-101 4.31 45.7 10.5 56
DTLD 2021 ResNet-18 4.08 13.3 2.5 100
DTLD+ 2021 ResNet-18 4.05 13.3 2.5 78

Table 2. Comparison with other methods on Parameter size, GFLOPs and FPS. Our method achieves the highest accuracy with a small

amount of GFLOPs and parameters. The FPS is lower than PIPNet-18, which leaves for future improving.

The results show that our models consistently outperfor-

m all the other methods on all test datasets with a simple

backbone. To be specific, our DTLD achieves the NME

of 2.96%, 3.04% and 1.38% on 300W-Full, COFW and

AFLW respectively. In addition, with the NME threshold

of 8%, the failure rates are 0.29%, 0.20% and 0.25% sepa-

rately. On WFLW-Full which contains various scenarios,

DTLD obtains NME of 4.08%, leading to a relative de-

crease of 3.09% compared to the second best (4.21% N-

ME), and 10.7% relative to PIPNet-18 (4.57% NME), the

previous best method using the same backbone. The failure

rates are 2.76% at the threshold of 10% and 6.44% at the

threshold of 8%. Comprehensive results on each WFLW

subset are shown in supplementary.

Our model also benefits from the ImageNet pre-trained

backbone. Without pre-training (referring to DTLD-s), N-

MEs increase a lot, but are still smaller than SOTA models

with similar model size. The use of the parallel decoder

(DTLD+) improves the detection accuracy further, leading

to NME of 4.05% on WFLW and 3.02% on COFW, aver-

agely 0.02% lower than that obtained by DTLD.

Next, we compare the model size and running speed of

our models with others. As presented in Table 2, DTLD

has 13.3M parameters and only 2.5 GFLOPs, but achieves

very competitive accuracy. The running speed is lower than

PIPNet-18 because of the multiple refining process, but is

still faster than others. DTLD+ achieves relatively higher

accuracy at the sacrifice of running speed.

Some landmark detection results by DTLD are visual-

ized in Figure 5. Our model can accurately predict land-

Figure 6. Visualization of the effect of our proposed query ini-

tialization. Fiducial landmark positions are produced by random-

ly initialized Q0 (left), while our proposed query initialization

method sets up good starting points (right).

marks in the tough scenes for faces with blur, large posture

changes, rich expressions, and partial occlusion.

4.5. Ablation Studies on DTLD

We conduct a series of ablation studies to analyze each

part of the proposed model. The ablation experiments are

performed on WFLW-Full as it includes comprehensive s-

cenarios.

Effect of Q0. In DTLD, we use a well-calculated Q0 as

the initial query features and calculate the initial reference

points based on Q0. Here, we perform experiments with a

randomly initialized learnt positional encodings as Q0, as

that used in [2, 33]. Experimental result in Table 3 shows a

performance drop of 0.11%NME on WFLW. We also visu-

alize the effect in Figure 6. As can be seen, our Q0 will lead

to image related initial reference points, instead of a fiducial

landmark template.

Effect of self-attention. Self-attention is employed in de-

coder layer so as to exploit the structural knowledge among

landmark positions. Without self-attention, NME of DTLD
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Figure 7. Visualizations of deformable attention on pyramid back-

bone features. The red cross denotes the ground-truth, while others

dots show the sampling points with attention weights expressed by

colors. The brighter the point, the greater the weight. We combine

the sampling points from all heads for each feature map. Sampling

points with attention weights lower than 0.5 are omitted.

Backbone Q0 Self-Attn NME(%)

R18 FC � 4.08

R18 Random Init. � 4.19

R18 FC � 4.17

R50 FC � 4.07

R101 FC � 4.07

Table 3. Ablation study on DTLD, with backbone, Q initial strate-

gy and self-attention analyzed. R18 / 50 / 101 represent ResNet-18

/ 50 / 101 backbone pre-trained by ImageNet . FC is our initial-

ization compared with randomly initialized Random Init.

reduces 0.09% (4.08% to 4.17%) as indicated in Table 3.

Effect of backbone. We experiment with different back-

bones as shown in Table 3. However, the performance

gain is not obvious (only 0.01%NME improve) when using

deeper backbone like ResNet-50 and ResNet-101, which

means DTLD is not sensitive to much deeper backbone.

Effect of deformable attention. We also visualize the

multi-scale deformable attention as presented in Figure 7.

The visualization shows that the deformable module can ex-

tract most related image features around the landmark point

for coordinate prediction. Moreover, the first decoder layer

attends more on the rear feature maps like F3 and F4 that

tend to high level global information, while the last decoder

layer attends more on the frontal feature maps like F1 and

F2 that are apt to capture low level local features for coor-

dinate fine tuning.

Effect of model hyper-parameters. Here we conduct ex-

periments with different model hyper-parameters on DTLD,

including the feature dimension C used in decoder layers,

the number of sampling points K used in deformable atten-

tion, and the head number used in all attention layers. As

shown in Table 4, the higher the feature dimension, the bet-

ter the performance, but 256 seems to be enough for feature

encoding. In our default configuration, for each query fea-

# Feature

Dimension

# Sampling

Points

# Attention

Head
NME (%)

256 4 8 4.08
64 4 8 4.47
128 4 8 4.29
512 4 8 4.07
256 2 8 4.11
256 6 8 4.09
256 4 4 4.16
256 4 16 4.07

Table 4. Ablation on DTLD model hyper-parameters including

feature dimension, sampling points, and attention heads. The ef-

fect of sampling points is tiny, while that of the others is large.

ture, we sample 4 points from each feature level for each

head. We then test other numbers such as 2, 6. However,

the change has little impact on the final accuracy, indicat-

ing that our model can adaptively decouple the most critical

information from redundant features. We also run models

with different head number in both self and deformable at-

tention. More heads benefit final performance. We visualize

the deformable attention for each head in Supplementary. It

illustrates intuitively that different heads will pay attention

to different directions of image features.

Effect of decoder. Encoder layers are commonly adopted

to further encode the image features, e.g., [2, 14, 33]. Here

we also conduct experiments by adding encoder in DTLD as

in deformable DETR [33] and varying the number of layers

in both encoder and decoder. Experimental results in Ta-

ble 5 show that the added encoder or decoder layers indeed

contribute to reduce NME furthermore, even achieving N-

ME smaller than 4% on WFLW. Results also show that the

adding of decoder layers has relatively larger effect on accu-

racy than that of encoder layers. However, the added layer

brings more parameters (0.5M for one encoder layer and

0.6M for one decoder layer) and degrades the speed.

To improve the accuracy without increasing model size,

we propose the parallel decoder, where the image features

are encoded along with the decoding process. By sharing

the deformable attention layers, the model size is almost the

same as that without encoder layers (the little parameter in-

crease comes from separate layer normalization), but NME

further decreases. When using similar number of param-

eters, DTLD+ always obtains higher accuracy than DTLD

counterparts. When using decoder layers ≥ 3, DTLD+ gets

a higher accuracy compared to DTLD at similar speed. It

should be noted that when we use 1 parallel decoder layer,

the model exactly becomes DTLD with 1 decoder layer and

0 encoder. The lower speed is caused by image feature up-

dating which is not used anymore. However, it may provide

a chance of inferring occluded face part based on the fea-

tures so as to improve model performance further. We leave

it as a future work.

Moreover, we attempt to remove the backbone and com-
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DTLD

# Encoder

Layer

# Decoder Layer

1 2 3 4 5 6

0 4.417 / 12.1 / 165 4.187 / 12.7 / 123 4.076 / 13.3 / 100 4.068 / 14.0 / 82 4.044 / 14.6 / 69 4.064 / 15.3 / 60

1 4.369 / 12.6 / 105 4.178 / 13.2 / 86 4.066 / 13.9 / 71 4.026 / 14.5 / 64 4.050 / 15.1 / 56 4.051 / 15.7 / 51

2 4.327 / 13.1 / 81 4.133 / 13.7 / 69 4.047 / 14.4 / 61 4.015 / 15.0 / 54 4.012 / 15.6 / 45 4.000 / 16.2 / 43

3 4.244 / 13.6 / 62 4.114 / 14.2 / 54 4.028 / 14.8 / 52 4.006 / 15.5 / 42 3.980 / 16.1 / 35 3.978 / 16.7 / 33

4 4.235 / 14.1 / 53 4.079 / 14.7 / 46 3.999 / 15.3 / 42 3.968 / 16.0 / 34 3.972 / 16.6 / 25 3.974 / 17.2 / 22

DTLD+ 0 4.417 / 12.1 / 115 4.185 / 12.7 / 94 4.054 / 13.3 / 78 4.022 / 14.0 / 69 4.016 / 14.6 / 63 3.996 / 15.3 / 55

Table 5. Experimental results on WFLW by using varying encoder and decoder layers. More encoder or decoder layer contributes to higher

performance. The last line shows the effect of our proposed parallel decoder. With similar parameters, DTLD+ achieves slightly higher

accuracies. The results are demonstrated by NME(%) / Model Parameter Size (M) / FPS (on V100 GPU).

Methods
Test Data

300W COFW68 WFLW68

LAB [28] 3.49 4.62 −
ODN [31] 4.17 5.30 −
AVS w/SAN [20] 3.86 4.43 −
DAG [15] 3.04 4.22 −
PIPNet(ST) [10] 3.36 4.55 8.09

PIPNet(UDA) [10] 3.35(-0.3%) 4.34(-4.6%) 7.45(-7.9%)

DTLD (ST) 3.07 4.42 7.23

DTLD (UDA) 3.03(-1.3%) 4.14(-6.3%) 6.39(-11.6%)

Table 6. Cross-dataset evaluation and comparison with others. ST
means supervised training only on 300W training data, but test on

others. UDA means unsupervised domain adaption by utilizing

COFW and WFLW training images without annotation used.

Methods Unlabeled Data 300W WFLW

PIPNet [10]
- 3.36 −
CelebA 3.27 (-2.7%) −

DTLD
- 3.07 4.08

CelebA 2.94 (-4.2%) 3.89 (-4.7%)

Table 7. Boost our model by using unlabeled images from other

domain. Our model shows better scalability, which can be im-

proved more by using unlabeled images. Note that it is the en-

larged bounding boxes used in 300W that cause NME of 3.07%,

larger than 2.96% presented in Table 1.

pute the pyramid features simply by image dividing and

patch embedding as performed in [26]. The pyramid em-

beddings are fed into DTLD+ directly for feature encoding

and landmark prediction. With 6 layers and only 6M pa-

rameters, our model achieves NME of 4.27% on WFLW.

4.6. Cross-dataset Evaluation

To verify the robustness and generalization ability of our

model, we conduct cross-dataset evaluation on COFW and

WFLW testsets, using DTLD trained on 300W training da-

ta. To maintain distribution consistency between different

datasets, we follow the practice in [10], enlarging the pro-

vided bounding boxes of 300W, COFW68, and WFLW68

by 30%, 30% and 20% respectively. Experimental results in

Table 6 indicate the robustness of our model cross datasets.

In addition, to analyze the model scalability, we perfor-

m an unsupervised domain adaption (UDA). More precise-

ly, we apply the classic self-training strategy and re-train

the model using COFW and WFLW training images, with-

out landmark annotation employed. The model trained on

300W is used as a teacher model to reason the pseudo-labels

for unlabeled data. They are then combined with the orig-

inal labeled data and re-train the model. After 3 times of

re-training, we achieve NME of 4.14% on COFW68 and

6.39% on WFLW68, new SOTA accuracies on both testsets.

Compared to PIPNet, the UDA improvement is more obvi-

ous, which demonstrates the good scalability of our method.

Motivated by the good scalability, we attempt to promote

the model additionally by leveraging the numerous unla-

beled face images from CelebA. With the same self-training

paradigm, it is found that the detection accuracy can be fur-

ther improved on 300W and WFLW-Full testsets. As indi-

cated in Table 7, although the unlabeled images are from a

different domain compared with the test datasets, our mod-

el can still learn from them and leads to even more accurate

landmark prediction. It finally achieves NME of 2.94% on

300W and 3.89% on WFLW.

5. Conclusion

In this paper, we propose an effective and efficient fa-

cial landmark detection network DTLD based on cascaded

transformer. It directly regresses landmark coordinates and

thus can be trained end-to-end. The use of self-attention and

deformable attention in DTLD enables structure relation-

ship exploring and more related image feature extracting.

The simple query initialization sets up a better start point for

the following refinement. Moreover, we propose a parallel

decoder that refines image features and landmark positions

simultaneously, improving the detection performance with

few parameter increasing. Our model achieves new SOTA

performance on several standard landmark detection bench-

marks, surpassing the other advanced approaches. The run-

ning speed is a limitation of current work. Knowledge Dis-

tillation based methods may be exploited in the future so

as to reduce the cascaded refinement steps and accelerate

detection process.
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