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Abstract

Optical flow, which captures motion information across
frames, is exploited in recent video inpainting methods
through propagating pixels along its trajectories. However,
the hand-crafted flow-based processes in these methods are
applied separately to form the whole inpainting pipeline.
Thus, these methods are less efficient and rely heavily on
the intermediate results from earlier stages. In this pa-
per, we propose an End-to-End framework for Flow-Guided
Video Inpainting (E2FGVI) through elaborately designed
three trainable modules, namely, flow completion, feature
propagation, and content hallucination modules. The three
modules correspond with the three stages of previous flow-
based methods but can be jointly optimized, leading to a
more efficient and effective inpainting process. Experimen-
tal results demonstrate that the proposed method outper-
forms state-of-the-art methods both qualitatively and quan-
titatively and shows promising efficiency. The code is avail-
able at https://github.com/MCG-NKU/E2FGVI.

1. Introduction
Video inpainting aims to fill up the “corrupted” regions

with plausible and coherent content throughout video clips.
It is widely applied to real-world applications such as ob-
ject removal [16], video restoration [28], and video com-
pletion [7,39]. Despite the significant progress made in im-
age inpainting [42, 59, 60], video inpainting remains full of
challenges due to the complex video scenarios and deteri-
orated video frames. Directly performing image inpainting
on each frame independently tends to generate temporally
inconsistent videos and results in severe artifacts. Both spa-
tial structure and temporal coherence are required to be con-
sidered in high-quality video inpainting. Recent progress in
deep learning motivates researchers to exploit more effec-
tive solutions [7, 8, 17, 23, 28, 33, 38, 49, 56, 62].

Among them, typical flow-based methods [17, 56] con-
sider video inpainting as a pixel propagation problem to
naturally preserve the temporal coherence. As shown in
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Figure 1. (a) The general pipelines of flow-based methods [17,56]
and ours. While previous flow-based methods conduct the three
stages separately, our corresponding modules work in an end-to-
end manner. (b) A qualitative comparison of our approach with a
state-of-the-art flow-based method FGVC [17]. Due to the error
accumulation and ignoring temporal information during content
hallucination, FGVC fails to generate faithful and temporally con-
sistent results compared with our method.

Fig. 1 (a), these methods can be decomposed into three
inter-related stages. (1) Flow completion: The estimated
optical flow needs to be completed first because the ab-
sence of flow fields in corrupted regions will influence the
latter processes. (2) Pixel propagation: They fill the holes
in corrupted videos by bidirectionally propagating pixels in
the visible areas with the guidance of the completed opti-
cal flow. (3) Content hallucination: After propagation, the
remaining missing regions can be hallucinated by a pre-
trained image inpainting network [59, 60].

Unfortunately, even though impressive results can be ob-
tained, the whole flow-based inpainting process must be
carried out separately as many hand-crafted operations (e.g.,
Poisson blending, solving sparse linear equations, and in-
dexing per-pixel flow trajectories) are involved in the first
two stages. The isolated processes raise two main problems.
One is that the errors that occur at earlier stages would be
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accumulated and amplified at subsequent stages, which fur-
ther influences the final performance significantly. Specif-
ically, the inaccurate flow estimation would mislead the
propagation of pixels and further confuse the stage of con-
tent hallucination, producing unfaithful inpainting results.
Second, these complex hand-designed operations only can
be processed without GPU acceleration. The whole proce-
dure of inferring video sequences, therefore, is very time-
consuming. Taking DFVI [56] as an example, completing
one video with the size of 432 × 240 from DAVIS [44],
which contains about 70 frames, needs about 4 minutes1,
which is unacceptable in most real-world applications. Be-
sides, except for the above-mentioned drawbacks, only us-
ing a pretrained image inpainting network at the content
hallucination stage ignores the content relationships across
temporal neighbors, leading to inconsistent generated con-
tent in videos (see Fig. 1 (b)).

To address these flaws, in this paper, we carefully design
three trainable modules, including (1) flow completion, (2)
feature propagation, and (3) content hallucination modules
which simulate corresponding stages in flow-based methods
and further constitute an End-to-End framework for Flow-
Guided Video Inpainting (E2FGVI). Such close collabora-
tion between the three modules alleviates the excessive de-
pendence of intermediate results in the previously indepen-
dently developed system [17, 23, 26, 56, 66] and works in a
more efficient manner.

To be specific, for the flow completion module, we di-
rectly employ it on the masked videos for one-step com-
pletion instead of multiple complex steps. For the feature
propagation module, in contrast to the pixel-level propaga-
tion, our flow-guided propagation process is conducted in
the feature space with the assistance of deformable convolu-
tion. With more learnable sampling offsets and feature-level
operations, the propagation module releases the pressure of
inaccurate flow estimation. For the content hallucination
module, we propose a temporal focal transformer to effec-
tively model long-range dependencies on both spatial and
temporal dimensions. Both local and non-local temporal
neighbors are considered in this module, leading to more
temporally coherent inpainting results.

Experimental results demonstrate that our framework en-
joys the following two strengthens:
• State-of-the-art accuracy: Taking comparisons with

previous state-of-the-art (SOTA) methods, the pro-
posed E2FGVI achieves significant improvements on
two common distortion-oriented metrics (i.e., PSNR
and SSIM [52]), one popular perception-oriented in-
dex (i.e., VFID [50]), and one temporal consistency
measurement (i.e., Ewarp [25]).
• High efficiency: Our method processes 432 × 240

1We test it on Intel(R) Core(TM) i7-6700K CPU with a single NVIDIA
Titan Xp GPU.

videos at 0.12 seconds per frame on a Titan Xp GPU,
which is nearly 15× faster than previous flow-based
methods. In contrast to methods that also can be end-
to-end deployed, our method shows comparable infer-
ence time. Besides, our method has the lowest com-
putational complexity (FLOPs) among all compared
SOTA methods.

We hope the proposed end-to-end framework with the
aforementioned advantages could serve as a strong baseline
for the video inpainting community.

2. Related Work
Video inpainting. Building upon the development of deep
learning, great progress has been made in video inpainting.
These methods can be roughly divided into three classes:
3D convolution-based [8, 21, 49], flow-based [17, 56], and
attention-based methods [28, 29, 33, 62]. Some meth-
ods [7, 23, 28, 49] employing 3D convolution and attention
usually yield temporally inconsistent results due to the lim-
ited temporal receptive fields. To generate more tempo-
ral coherence results, many works [23, 66] regard optical
flows as strong priors for video inpainting and incorporate
them into the network. However, directly computing optical
flows between images within invalid regions is extremely
difficult as these regions themselves become occlusion fac-
tors, restricting the performance. Recent flow-based meth-
ods [17,56] perform flow completion first and use the com-
pleted optical flows to propagate indexed pixels along their
trajectories. Instead of conducting hand-crafted pixel-level
propagation, we design an end-to-end trainable framework
that performs the propagation process at the feature space.
Besides, our method benefits from recent advances in using
transformers to improve the inpainting results [32, 33, 62].
Flow-based video processing. The motion information
across frames well assists many video-related tasks, such
as video understanding [3,31], video segmentation [11,47],
video object detection [65], depth estimation [18,36], video
super-resolution [4, 57], frame interpolation [22, 27], etc.
Specifically, many video restoration and enhancement al-
gorithms [4, 24, 40, 45, 57] rely on optical flow to per-
form alignment for compensating the information between
frames. Recent works [4,27,51,53,54] leverage deformable
convolution [63] to simulate the behavior of optical flow but
with more learnable offsets for more effective alignment.
Our works also share the same merit as these works.
Vision transformer. Recently, Transformer [48] has gained
much attention in the vision community. Vision Trans-
former [15] and its follow-ups [19, 34, 46, 58, 61] achieve
an impressive performance on image and video represen-
tation learning [9, 13, 35, 43], image generation [41], ob-
ject detection [2, 64], and many other applications [10,
12, 20, 30]. Because of the quadratic complexity of self-
attention, many works deployed effective window-based at-
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Figure 2. Overview of the proposed End-to-End framework for Flow-Guided Video Inpainting (E2FGVI). It consists of 1) a frame-level
content encoder, 2) a flow completion module, 3) a feature propagation module, 4) a content hallucination module which is composed of
multiple temporal focal transformer blocks, and 5) a frame-level decoder.

tentions [14, 34, 58] to reduce its computational complexity
while improving the model’s capability with the limited re-
ceptive fields. Swin Transformer [34] strengthens local con-
nections by computing self-attention through shifting local
windows. Focal Transformer [58] introduces focal self-
attention, which enhances the global-local interactions.

3. Method
Given a corrupted video sequence {Xt ∈ RH×W×3 |

t = 1 . . . T} with sequence length T and corresponding
frame-wise binary masks {M t ∈ RH×W×1 | t = 1 . . . T},
we aim at synthesizing faithful content which is consis-
tent in both space and time dimensions within the cor-
rupted (masked) areas. In the following, we discuss the
main components of our method. First, we use a context
encoder, which encodes all corrupted frames into lower-
resolution features for computational efficiency at subse-
quent processing. Second, we extract and complete the
optical flow between local neighbors through a flow com-
pletion module (Sec. 3.1). Third, the completed optical
flow assists the features extracted from local neighbors to
accomplish feature alignment and bidirectional propaga-
tion (Sec. 3.1). Fourth, multi-layer temporal focal trans-
formers perform content hallucination by combining prop-
agated local neighboring features with non-local reference
features. (Sec. 3.2). Finally, a decoder up-scales the filled
features and reconstructs them to a final video sequence
{Ŷ t ∈ RH×W×3 | t = 1 . . . T}.

Fig. 2 shows the whole pipeline of the proposed
E2FGVI. It is worth noticing that all modules are differen-
tiable and constitute an end-to-end trainable architecture.

3.1. Flow completion and feature propagation

In this section, we will detail the proposed flow-related
operations. Note that we only apply flow-based modules
on the features extracted from local neighboring frames be-
cause the flow estimation is substantially degraded or even
fails because of the presence of large motion, which fre-
quently occurs in non-local frames. Besides, the flow-

related operations are given at lower-resolution space for
computational efficiency.
End-to-end flow completion. Before flow prediction, we
first downsample the original corrupted frames Xt at 1/4
resolution, which matches the spatial resolution of encoded
low-resolution features. The downsampled frames are de-
noted as Xt

↓ ∈ RH
4 ×

W
4 ×3. The flow prediction between

adjacent frames i and j is computed by a flow estimation
network F :

F̂i→j = F(Xi
↓, X

j
↓). (1)

We initialize the network using pretrained weights from
a lightweight flow estimation network to resort to its rich
knowledge about optical flows.

Following most flow-based video inpainting meth-
ods [17, 56], we estimate both forward flow F̂t→t+1 and
backward flow F̂t→t−1 through Eq. (1) for flow-guided
bidirectional propagation. Since the missing areas in cor-
rupted videos become occlusion factors for flow estima-
tion, which severely affects the quality of estimated flow,
we need to restore the forward and backward flow before
using them for feature propagation. For simplicity, we use
L1 loss2 to restore the bidirectional flows:

Lflow =

T−1∑
t=1

‖F̂t→t+1−Ft→t+1‖1+

T∑
t=2

‖F̂t→t−1−Ft→t−1‖1,

(2)
where Ft→t+1 and Ft→t−1 are the ground truth forward
and backward flow, respectively, which are calculated from
original uncorrupted videos.

Our flow completion module differs from DFVI [56] and
FGVC [17] from two main aspects. (1) DFVI and FGVC
deploy the flow completion network and propagation algo-
rithm separately. In contrast, our flow completion module
can be trained with other network components in an end-to-
end manner, which facilitates the module to generate task-
oriented flows [57]. (2) The flow completion in DFVI and
FGVC is less efficient (> 0.4s/flow) because they need to
initialize the flow first and then refine the initialized flow

2Other loss functions can also be used in Eq. (2), but we do not observe
significant improvements on the final inpainting performance.
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Figure 3. An example of using the completed forward flow F̂t→t+1

to guide the feature backward propagation, where⊕ and c© denote
an addition operation and a concatenation operation, respectively.
Note that the backward flow will act in the opposite direction.

with multiple stages, while we estimate and complete the
flow in only one feed-forward pass with much faster speed
(< 0.01s/flow).
Flow-guided feature propagation. Suppose {Et ∈
RH

4 ×
W
4 ×C | t = 1 . . . Tl} are the local temporal neighbor-

ing features extracted from the context encoder, where Tl

denotes the length of local neighboring frames. Taking the
forward flow F̂t→t+1 as an example, it assists us in captur-
ing the motion of the corrupted regions from the t-th frame
to the (t+1)-th frame. Once the pixels in the corrupted re-
gions at the t-th content feature is known in the valid area
at the (t+1)-th feature, we can intuitively exploit this valid
information through warping the (t+1)-th backward prop-
agation feature Êt+1

b to current time step with the help of
the forward flow F̂t→t+1. The warped feature can be fur-
ther merged with current content feature Et and updated
through a backward propagation function Pb(·):

Êt
b = Pb(E

t,W(Êt+1
b , F̂t→t+1)), (3)

whereW(·) denotes the spatial warping operation based on
optical flow, Êt

b is the backward propagation feature at the
t-th time step, and the propagation functionPb(·) represents
two convolutional layers with a LeakyReLU [37] activation.

The warping and merging operations in Eq. (3) are ap-
proximate to the whole propagation process in DFVI and
FGVC, but we conduct them in the feature space rather than
the image space. The propagation feature Êt

b is updated step
by step as faithful content is gradually involved in the cor-
rupted area for each content feature, which also facilitates
the connection across all local neighboring features with
flow guidance. Unlike the hand-crafted pixel-level propaga-
tion in flow-based methods, which is very time-consuming
and depends heavily on the quality of estimated flow, the

feature-level propagation adaptively merges the flow-traced
information with larger receptive fields using convolutional
layers and can be speeded up by GPUs.

Although the feature-level propagation can be much
faster and more effective than FGVC and DFVI, it still
needs to face the problem caused by the inaccurate flow es-
timation results in Eq. (1), which will bring irrelevant in-
formation in the propagation process and further hamper
the final performance. To mitigate this problem, inspired
by [4–6, 51], we employ modulated deformable convolu-
tion [63] to further index and weight the candidate feature
points. As shown in Fig. 3, we first calculate the weight
mask Wt→t+1 and the offsets ∆Ft→t+1 relative to the esti-
mated optical flow with:

[Wt→t+1,∆Ft→t+1] = Cb(Et,W(Êt+1
b , F̂t→t+1), F̂t→t+1),

(4)
where Cb(·) denotes multiple cascading convolutional lay-
ers. Both the size of computed weight mask Mt→t+1 and
offset ∆Ft→t+1 are H

4 ×
W
4 ×K2×G, where K and G are

the kernel size and the group number of deformable convo-
lution, respectively. We can further generate K2 × G can-
didate feature points for each spatial location by adding the
offset ∆Ft→t+1 to the completed optical flow F̂t→t+1. The
relationship between the offset ∆Ft→t+1 and the completed
optical flow F̂t→t+1 are mutually beneficial. On the one
hand, more flexible sampling locations could well compen-
sate for the inaccurate flow completion. On the other hand,
the completed flow provides promising initial sampling lo-
cations, which make it easily find more meaningful content
within their surroundings. Then, we use a deformable con-
volutional layer to warp the backward feature Êt+1

b instead
of optical flow-based warping in Eq. (3) and further obtain
the backward propagation feature Êt

b through:

Êt
b = Pb(E

t,Db(Ê
t+1
b ,Wt→t+1, F̂t→t+1 + ∆Ft→t+1)), (5)

where Db denotes the operation of the deformable convolu-
tional layer. The weight mask Wt→t+1, whose values are
normalized via a sigmoid function, can be applied to each
sampling pixel for measuring its validity.

The aforementioned operations are employed bidirec-
tionally following [17, 56], while the forward propagation
feature Êt

f can be obtained in the same way but in the op-
posite direction. Finally, we use a learnable 1 × 1 sized
convolution layer to fuse the forward and backward prop-
agation features adaptively instead of using a pre-defined
rule to combine the bidirectional flow traced pixels in [56].

Êt = I(Êt
f , Ê

t
b), (6)

where I denotes a 1× 1 sized convolutional layer.

3.2. Temporal focal transformer

Only using the information provided by local temporal
neighbors is not enough for video inpainting. As discussed
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in [17], the corrupted content at local neighbors may appear
in the non-local ones. Thus, the information in the non-
local temporal neighbors can be regarded as a promising
reference for these missing regions in local neighbors. Here
we stack multiple temporal focal transformer blocks to ef-
fectively combine the information from local and non-local
temporal neighbors for performing content hallucination.

Suppose Tnl is the number of selected non-local frames.
Enl ∈ RTnl×H

4 ×
W
4 ×C is the encoded features of all non-

local neighbors. Êl ∈ RTl×H
4 ×

W
4 ×C is the local temporal

feature through concatenating the results in Eq. (6) at the
temporal dimension. We use a soft split operation [33] to
perform overlapped patch embedding on the concatenated
local and non-local temporal features:

Z0 = SS([Êl,Enl]) ∈ R(Tl+Tnl)×M×N×Ce , (7)

where SS denotes the operation of soft split. Z0 is the em-
bedded token that contains both local and non-local tempo-
ral information. M×N is the embedded spatial dimension,
and Ce is the feature dimension.

Instead of vanilla vision transformer [15], which is fre-
quently employed in recent works [33, 62], we use focal
transformer [58] to search from both local and non-local
neighbors to fill missing contents. The reasons are listed as
follows: (1) Compared with performing fine-grained global
attention, the computational and memory cost can be effec-
tively reduced through window-based attention [34,58]. (2)
For each token in the missing regions, it is reasonable to
perform the fine-grained self-attention only in local regions
while the coarse-grained attentions globally because of the
local self-similarity of an image.

Since the original focal transformer is unable to pro-
cess sequence data, we propose a temporal focal trans-
former that essentially extends the size of focal windows
from 2D to 3D. Specifically, we first split the input to-
ken Zn−1, where n ∈ [1, N ] and N is the stacking
number of focal transformer blocks, into a grid of sub-
windows with size st × sh × sw. The split token Ẑn−1 ∈
R(

(Tl+Tnl)

st
×M

sh
× N

sw
×Ce)×(st×sh×sw) can be directly used

for computing fine-grained local attentions. To perform
global attention at the coarse granularity, a linear embed-
ding layer fp is used to pool the sub-windows spatially via

Ẑn−1
g = fp(Ẑn−1) ∈ R(

(Tl+Tnl)

st
×M

sh
× N

sw
×Ce)×st . We then

calculate the query, key, and value through two linear pro-
jection layers fq , fkv:

Qn = fq(Ẑn−1), {Kn
l ,K

n
g , V

n
l , V n

g } = fkv({Ẑn−1, Ẑn−1
g }).

(8)
To calculate attentions with local-global interactions,

for the queries inside the i-th sub-window Qn
i ∈

Rst×sh×sw×Ce , we gather the keys not only from the i-th
local window Kn

l,i ∈ Rst×sh×sw×Ce but also from the i-
th unfolded coarse-grained window Kn

g,i ∈ Rst×sh×sw×Ce .

Sub-window pooling

Flatten

Flatten

Multi-head 
Self-Attention

Local window

Coarse-grained window

Input tokens

T

fq

fkv

Ẑn−1

Ẑn−1
g

Qn

{Kn, V n}

Figure 4. Illustration of temporal focal self-attention. Here we use
the window size of 2 × 2 × 2 as an example. We can see that the
keys and values {Kn, V n} contain both fine-grained local infor-
mation and coarse-grained global information.

This operation can be processed in parallel. We concate-
nate corresponding keys and values respectively by Kn =
{Kn

l ,K
n
g } and V n = {V n

l , V n
g }, and then calculate the fo-

cal self-attention for Ql
i:

Attention (Qn,Kn, V n) = Softmax

(
Qn(Kn)T√

Ce

)
V n. (9)

Note that the attention function also can work in a multi-
head manner. An example is shown in Fig. 4.

Finally, the whole process in the n-th focal transformer
block is formulated as

Z′n = MFSA(LN1(Zn−1)) + Zn−1, (10)

Zn = F3N(LN2(Z′n)) + Z′n, (11)

where MFSA and LN denote the multi-head focal self-
attention and layer normalization [1], respectively. We use
F3N [33] to link the connections across embedded patches.

3.3. Training objectives

We employ three loss functions to optimize our model.
The first is the reconstruction loss which measures pixel-
level differences between synthetic videos Ŷ and the origi-
nal ones Y through L1 distance:

Lrec = ‖Ŷ −Y‖1. (12)

The second is the adversarial loss which has been proven
to be useful for the generation of high-quality and realistic
content. We employ a T-PatchGAN [7] based discriminator
to make the model focus on both global and local features
across all temporal neighbors. The training objective of this
discriminator D is:

LD = Ex∼PY(x)[ReLU(1−D(x))]+

Ez∼P
Ŷ

(z)[ReLU(1 + D(z))],
(13)

For video inpainting generator, the adversarial loss is for-
mulated as:

Ladv = −Ez∼P
Ŷ

(z)[D(z)], (14)
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Table 1. Quantitative comparisons with SOTA video inpainting models on YouTube-VOS [55] and DAVIS [44] datasets. ↑ indicates
higher is better. ↓ indicates lower is better. Ewarp

∗ denotes Ewarp × 10−2. Each method is evaluated following the procedures in
FuseFormer [33]. VINet, DFVI, and FGVC are not end-to-end training methods. Their FLOPs, thus, are not projectable.

Accuracy Efficiency
YouTube-VOS DAVIS

FLOPs
Runtime

Models PSNR ↑ SSIM ↑ VFID ↓ Ewarp
∗ ↓ PSNR ↑ SSIM ↑ VFID ↓ Ewarp

∗ ↓ (s/frame)
VINet [23] 29.20 0.9434 0.072 0.1490 28.96 0.9411 0.199 0.1785 - -
DFVI [56] 29.16 0.9429 0.066 0.1509 28.81 0.9404 0.187 0.1608 - 2.56
LGTSM [8] 29.74 0.9504 0.070 0.1859 28.57 0.9409 0.170 0.1640 1008G 0.23
CAP [28] 31.58 0.9607 0.071 0.1470 30.28 0.9521 0.182 0.1533 861G 0.40
FGVC [17] 29.67 0.9403 0.064 0.1022 30.80 0.9497 0.165 0.1586 - 2.44
STTN [62] 32.34 0.9655 0.053 0.0907 30.67 0.9560 0.149 0.1449 1032G 0.12
FuseFormer [33] 33.29 0.9681 0.053 0.0900 32.54 0.9700 0.138 0.1362 752G 0.20

E2FGVI (Ours) 33.71 0.9700 0.046 0.0864 33.01 0.9721 0.116 0.1315 682G 0.16

CAP DFVI STTN FGVC FuseFormer
40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

removal
stationary

Figure 5. User study results. The vertical axis indicates the per-
centage of favoring our method compared to other methods.

The third loss is the flow consistency loss shown in Eq. (2).
Training details can be found in supplementary materials.

4. Experiments
4.1. Settings

Dataset. To show the effectiveness of the proposed
method, we evaluate it on two popular video object segmen-
tation datasets, i.e., YouTube-VOS [55] and DAVIS [44].
YouTube-VOS, with diverse scenes, consists of 3471, 474,
and 508 video clips for training, validation, and test, respec-
tively. We follow the original split mode and report the ex-
perimental metrics on the test set for YouTube-VOS. DAVIS
is composed of 60 video clips for training and 90 video clips
for testing. Following FuseFormer [33], 50 video clips from
the test set are used for calculating metrics. We train our
model on the YouTube-VOS dataset and evaluate it on both
YouTube-VOS and DAVIS datasets. As for masks, dur-
ing training, we generate stationary and object-like masks
to simulate video completion and object removal applica-
tions following [8, 23, 28, 33, 62]. For evaluation, stationary
masks are used to calculate objective metrics, and object-
like masks are adopted for qualitative comparisons because
of the lack of references.
Metrics. We choose PSNR, SSIM [52], VFID [50], and
flow warping error Ewarp [25] to evaluate the performance

of recent video inpainting methods. Specifically, PSNR and
SSIM are frequently used metrics for distortion-oriented
image and video assessment. VFID measures the perceptual
similarity between two input videos and has been adopted in
recent video inpainting works [33, 62]. Flow warping error
Ewarp is employed to measure the temporal stability.

4.2. Comparison

Quantitative results. We report quantitative results on
YouTube-VOS [55] and DAVIS [44] under the station-
ary masks and compare our method with previous video
inpainting methods, including VINet [23], DFVI [56],
LGTSM [8], CAP [28], STTN [62], FGVC [17], and Fuse-
former [33]. As shown in Tab. 1, our method substantially
surpasses all previous SOTA algorithms on all four quan-
titative metrics. The superior results demonstrate that our
method can generate videos with less distortion (PSNR and
SSIM), more visually plausible content (VFID), and better
spatial and temporal coherence (Ewarp), which verifies the
superiority of the proposed method.
Qualitative results. We choose three representative meth-
ods, including CAP [28], FGVC [17], and Fuseformer [33],
to conduct visual comparisons. Fig. 6 shows both video
completion and object removal results. While the com-
pared methods are hard to recover reasonable details in the
masked regions, the proposed method can generate faithful
textural and structure information. This demonstrates the
effectiveness of the proposed method.

For further comprehensive comparisons, a user study is
conducted on both object removal and video completion
applications. We select five methods including two flow-
based methods (i.e., DFVI [56] and FGVC [17]), and three
attention-based methods (i.e., CAP [28], STTN [62], and
Fuseformer [33]). We invite 20 participants for the user
study totally. Every volunteer is shown randomly sampled
40 video triplets and asked to select a visually better in-
painting video. Each triplet is composed of one original
video, one from our method, and one from a randomly cho-
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Masked Frames CAP [28] FGVC [17] FuseFormer [33] E2FGVI (Ours)

Figure 6. Qualitative results compared with CAP [28], FGVC [17], FuseFormer [33].
Flow GT w/o motion info w/o completed flow w/ completed flow

Figure 7. Ablation studies on the flow completion module. The
first row shows the results generated from the flow completion
modules under different situations. The second row visualizes cor-
responding inpainting frames.

sen method. The user study results are shown in Fig. 5.
As we can see, volunteers obviously favor our results over
those from almost all methods. Although such significant
preference does not exist in the comparisons with FGVC,
the proposed method still receives a majority of votes. This
demonstrates that the proposed method could generate more
visually pleasant results than compared methods.
Efficiency comparisons. We use FLOPs and inference time
to measure the efficiency of each method. The FLOPs are
calculated using the temporal size of 8, and the runtime is
measured on a single Titan Xp GPU using DAVIS dataset.
The compared results are shown in Tab. 1. The proposed
method shows comparable running time with transformer-
based methods and is nearly ×15 faster than flow-based
methods. Besides, it holds the lowest FLOPs in contrast to
all other methods. This indicates that the proposed method
is highly efficient for video inpainting.

Table 2. Ablation studies on the flow completion module.
Case PSNR SSIM

w/o motion information 32.08 0.9673
w/o completed flow 32.23 0.9682
w/ completed flow 32.35 0.9688

Flow GT 32.54 0.9698

4.3. Ablations

We perform three ablation studies on flow completion,
feature propagation, and attention mechanism to verify the
effectiveness of proposed modules in our framework. All
ablation studies are conducted on the DAVIS dataset.
Study of flow completion module. First, we investigate
that the importance of motion information for video inpaint-
ing. By only removing the flow consistency loss Lflow,
our flow completion module no longer provides information
about object motions (see Fig. 7), resulting in a large perfor-
mance decrease, as shown in Tab. 2. Second, we study the
necessity of completing the optical flow through fixing the
pretrained weights in the flow completion module. With the
preliminary knowledge about optical flow, the flow comple-
tion module regards the masked regions as occlusion fac-
tors and provides initial flow estimation for visible regions
(see Fig. 7). In contrast to the model without motion in-
formation, the performance has an obvious improvement.
However, such model ignores the motion information in the
masked regions. After we complete the flow by training the
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Table 3. Investigation on the feature propagation module. ‘Flow’
indicates the flow-based warping function W in Eq. (4). ‘DCN’
denotes modulated deformable convolution [63].

(a) (b) (c) (d)
Flow 7 3 7 3
DCN 7 7 3 3

PSNR 31.73/0.9653 32.15/.9677 32.17/0.9676 32.35/.9688

Masked Frames (a) (b) (c) (d)

Figure 8. Qualitative results of the ablation studies on the feature
propagation module. The last four columns correspond to four
cases in Tab. 3.

flow completion module towards minimizing the flow con-
sistency loss, we obtain larger PSNR and SSIM values than
before. As shown in Fig. 7, the model with completed flows
recovers more faithful content about the human arm. Ad-
ditionally, in Tab. 2 and Fig. 7, we also show the potential
upper bound of our method which estimates the optical flow
between uncorrupted frames.
Study of feature propagation module. After we remove
the feature propagation module from the model (case (a) in
Tab. 3), the values of quantitative metrics are decreased dra-
matically. From Fig. 8 (a), we can see that the results gener-
ated by this model exist severe artifacts and discontinuous
content. After adding flow-based warping and propagation
(see Eq. (3)) to this model (case (b) in Tab. 3), since we
could bring valid pixels from adjacent frames to unseen re-
gions with the assistance of optical flow, the generated con-
tent becomes more faithful as shown in Fig. 8 (b), and the
PSNR value is increased by a large margin (0.42dB). How-
ever, it is hard for flow-based warping and propagation to
recover the content that cannot be traced by optical flow (the
white line in Fig. 8 (b)). Besides, for the feature propaga-
tion module, which only involves deformable convolution-
based warping (case (c) in Tab. 3), the structure details can
be more clearly recovered with the help of more learnable
offsets, but more artifacts are involved due to the lack of
faithful information warped from adjacent frames in con-
trast to flow-based warping. By combining deformable con-
volution with flow guidance (case (d) in Tab. 3), the PSNR
and SSIM values can be further improved. In Fig. 8 (d), this
model achieves the visually best results among all variants
while preserving promising structure details. This demon-
strates the effectiveness of the feature propagation module.
Study of attention mechanism. We remove the flow com-
pletion and feature propagation modules to purely compare
different attention mechanisms, including vanilla global at-
tention (FuseFormer [33]), local window attention, and fo-

Table 4. Ablation study on various attention mechanisms. Fuse-
Former [33] is the current SOTA method that uses vanilla global
attention.

Case PSNR SSIM FLOPs
FuseFormer 31.74 0.9662 752G

Local attention 31.57 0.9648 497G
Focal attention 31.73 0.9653 560G

Masked Frames FGVC OursFuseFormer

Figure 9. Two failure cases (car drifting). Current video inpainting
methods fail to deal with large motion or a large number of missing
object details and may produce severe artifacts.

cal attention. As shown in Tab. 4, vanilla global attention
achieves the best quantitative performance while suffering
from the heavy computation. Local attention introduces
local windows as Video Swin Transformer [35] does. Al-
though the FLOPs are decreased by 34%, the attention cal-
culation is limited in the local window, leading to poor per-
formance. Focal attention shows a good trade-off between
performance and computation. Its PSNR and SSIM values
are comparable to FuseFormer, and the computational cost
is only increased by 12% in contrast to the local one.

4.4. Limitation
Fig. 9 shows two failure cases. When encountering large

motion or a large amount of missing object details across
frames, our method produces implausible content and many
artifacts in masked regions as well as FGVC [17] and Fuse-
Former [33] do. This demonstrates that these situations are
still challenging for video inpainting.

5. Conclusion
We have proposed an end-to-end trainable flow-based

model for video inpainting named E2FGVI. The elaborately
designed three modules (i.e., flow completion, feature prop-
agation, and content hallucination modules) are collabo-
rated together and address many bottlenecks of previous
methods. Experimental results have shown that our method
achieves state-of-the-art quantitative and qualitative perfor-
mance on two benchmark datasets and is efficient in terms
of inference time and computational complexity. We hope
it can serve as a strong baseline for future works.
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