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Abstract

Learning from a label distribution has achieved promis-
ing results on ordinal regression tasks such as facial age
and head pose estimation wherein, the concept of adaptive
label distribution learning (ALDL) has drawn lots of atten-
tion recently for its superiority in theory. However, com-
pared with the methods assuming fixed form label distribu-
tion, ALDL methods have not achieved better performance.
We argue that existing ALDL algorithms do not fully ex-
ploit the intrinsic properties of ordinal regression. In this
paper, we emphatically summarize that learning an adap-
tive label distribution on ordinal regression tasks should
follow three principles. First, the probability correspond-
ing to the ground-truth should be the highest in label dis-
tribution. Second, the probabilities of neighboring labels
should decrease with the increase of distance away from
the ground-truth, i.e., the distribution is unimodal. Third,
the label distribution should vary with samples changing,
and even be distinct for different instances with the same
label, due to the different levels of difficulty and ambiguity.
Under the premise of these principles, we propose a novel
loss function for fully adaptive label distribution learning,
namely unimodal-concentrated loss. Specifically, the uni-
modal loss derived from the learning to rank strategy con-
strains the distribution to be unimodal. Furthermore, the
estimation error and the variance of the predicted distribu-
tion for a specific sample are integrated into the proposed
concentrated loss to make the predicted distribution maxi-
mize at the ground-truth and vary according to the predict-
ing uncertainty. Extensive experimental results on typical
ordinal regression tasks including age and head pose es-
timation, show the superiority of our proposed unimodal-
concentrated loss compared with existing loss functions.
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†Shiliang Pu is the corresponding author.
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Figure 1. Distributions predicted by Mean-Variance method [22]
and ours. Our predictions are optimized to be unimodal and
learned according to specific instances adaptively. On the contrary,
predictions of Mean-Variance are optimized to be concentrated for
all instances and do not ensure unimodal distributions explicitly.

1. Introduction

Ordinal regression solves the challenging problems that
labels are related in a natural or implied order. Many critical
tasks are involved in the ordinal regression problem, e.g.,
facial age estimation, head pose estimation, facial attrac-
tiveness computation and movie ratings, which play an im-
portant role in many practical applications such as human-
computer interaction, driver monitoring, precise advertising
and video surveillance [10, 32].

Early classic works [11, 17, 20, 24, 37, 38] are based on
ordinary classification or regression, which do not perform
well due to ignoring the ordinal relationship among labels,
and suffering from the ambiguous labeling. In recent years,
ranking based methods [3,21] are proposed which use mul-
tiple binary classifiers to determine the rank order. They
explicitly make use of the ordinal information but they do
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not consider the label ambiguity.
To address the ordinal relationship and label ambiguity,

label distribution learning (LDL) [7] converts a single label
to a label distribution. The label distribution covers a cer-
tain number of class labels, representing the degree to which
each label describes the instance. Since the real distribution
for each instance is not available and must be artificially
generated with proper assumption, it can be called fixed
form label distribution learning (FLDL). The typical form is
the Gaussian distribution centered at the ground-truth with
assumed standard deviation [1, 7, 8]. Although FLDL ap-
proaches achieve improved performance, however, they use
a fixed form distribution to describe various instances which
limits their expression ability.

To overcome this limitation, the concept adaptive la-
bel distribution learning (ALDL) [9] has been proposed.
Among the ALDL based methods, Mean-Variance [22] is
a typical work achieving the promising result, which esti-
mates a distribution with learned mean and variance. How-
ever, it pursues a highly concentrated distribution for all in-
stances by making the mean as close to the ground-truth as
possible, and the variance as small as possible. Moreover,
it can not guarantee the learned distribution is unimodal by
a joint use of softmax and mean-variance loss without uni-
modal constraint. Therefore, we observe that the distribu-
tions learned by Mean-Variance are not fully adaptive and
are multimodal for some instances, as shown in Fig. 1. We
can see the learned distribution for the older man is mul-
timodal, and the learned distributions for the two persons
are similar. The learned distributions do not accord with
the tendency of facial aging, which might be significantly
different at different ages [9].

Obviously, current ALDL methods have not fully ex-
ploited the intrinsic properties of ordinal regression. In
this paper, the following three principles are summarized
for ordinal regression. First, following the empirical risk
minimization, the probability corresponding to the ground-
truth should be the highest in a label distribution. Second,
the labels in ordinal regression tasks change gradually, and
the similarity between the test instance and the class pro-
totype decreases gradually when the label move away from
the ground-truth. Therefore, the probabilities of neighbor-
ing labels accounting for the instance should decrease with
the increase of distance away from the ground-truth, i.e.,
the distribution is unimodal. Third, the label distribution
should vary with the samples changing, and even be distinct
for different instances with the same label, due to the differ-
ent levels of difficulty and ambiguity. In other words, the
learned label distribution should be adaptive for a particular
instance. To satisfy the principles above, we propose a new
adaptive label distribution learning approach equipped with
a unimodal-concentrated loss. Based on principle I, we di-
rectly maximize the probability at the ground-truth via con-

centrated loss as our primary learning objective. Based on
principle II, the unimodal loss derived from learning to rank
strategy (LTR) [6] is introduced to constrain the distribution
to be unimodal. If two neighboring labels are ranked incor-
rectly, a positive loss would be output to update the train-
able parameters to correct the ordinal relationship. Based
on principle III, the variance of the distribution correspond-
ing to the concentration degree is integrated and optimized
jointly in the concentrated loss, which can be regarded as an
indicator of data uncertainty and label ambiguity. The main
contributions of this work are three-fold:

• We are the first to comprehensively summarize the in-
trinsic principles for learning an adaptive label distri-
bution on ordinal regression tasks. First, the probabil-
ity at the ground-truth should be the highest in the dis-
tribution. Second, the distribution should be unimodal.
Third, the distribution should be adaptive to individual
instances. These three principles would shed light on
the design of loss functions for future works in the field
of ordinal regression.

• Different from previous methods which do not fully
comply the above principles, we propose a new
unimodal-concentrated loss, with the unimodal part
constraining the distribution to be unimodal, and with
the concentrated part making the distribution concen-
trated at the ground-truth and fully adaptive to individ-
ual instances.

• The proposed loss can be easily embedded into exist-
ing CNNs without modifying the structure, and exten-
sive experimental results demonstrate its superiority.

2. Related Work
Existing methods for ordinal regression can be divided

into three categories: non-LDL based methods, FLDL
based methods and ALDL based methods.

2.1. Non-LDL

Non-LDL methods can be grouped into regression based,
classification based and ranking based. Classification based
methods usually cast ordinal regression as a classification
problem. For examples, age estimation was cast as a clas-
sification problem with 101 categories [27], and the angle
of yaw was divided into coarse bins as class labels for head
pose estimation [14, 25]. These methods treat ordinal la-
bels as independent ones, and the cost of being assigned to
any wrong category is the same, which can’t exploit the re-
lations between labels. Regression based methods directly
regress the ground-truth with Euclidean loss to penalize the
difference between the estimation and ground-truth mostly,
which do not explicitly make use of the ordinal informa-
tion. Yi et al. [38] used CNNs models to extract features
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from several facial regions, and used a square loss for age
estimation. Ranjan et al. [24] proposed a unified CNN net-
work to jointly estimate facial age, head pose, and other at-
tributes. Recently, ranking techniques are introduced to the
problem of ordinal regression. Niu et al. [21] leveraged the
ordinal information of ages by learning a network with mul-
tiple binary outputs, while Chen et al. [3] did this by learn-
ing multiple binary CNNs and aggregating the outputs for
age estimation. However, although these methods use or-
dinal information for better performance, they take a single
label as ground-truth without considering label ambiguity.

2.2. FLDL

Label distribution learning is proposed to address the la-
bel ambiguity issues. For FLDL based methods, distribu-
tion form is established before training and kept fixed dur-
ing training. Their objective is to narrow the gap between
the learned distribution and the fixed one. Geng et al. [8]
firstly defined the label distribution by assigning a Gaussian
or Triangle distribution for an instance. DLDL [5] adopted
the normal distribution and learned the label distribution
by minimizing a Kullback-Leibler divergence between two
distributions using deep CNNs. Similar to DLDL, Liu et
al. [19] employed three Gaussian label distributions to de-
scribe a face example in the yaw, pitch and roll domain
respectively. DLDL-v2 [1] improved the DLDL by intro-
ducing an expectation loss from distribution to alleviate the
inconsistency between the training objectives and evalua-
tion metric. DFRs [30] connected random forests to deep
neural networks and exploited the decision trees’ poten-
tial to model any general form of label distributions. SP-
DFRs [23] proposed self-paced regression forests to distin-
guish noisy and confusing facial images from regular ones,
which alleviate the interference arising from them. How-
ever, these methods use a fixed form distribution to describe
various instances which limits their expression ability.

2.3. ALDL

Different from FLDL based methods which assume fixed
form label distributions, the distribution form for ALDL
based methods is not assumed at the beginning and it is gen-
erated automatically during learning. Geng et al. [8] pro-
posed two adaptive label distributions learning algorithms
named IIS-ALDL and BFGS-ALDL respectively to auto-
matically learn the label distributions adapted to different
ages. He et al. [13] generated age label distributions through
a weighted linear combination of the input image’s label and
its context-neighboring samples. Pan at al. [22] proposed
the Mean-Variance loss, in which the mean loss penalizes
the difference between the mean of the estimated distribu-
tion and the ground-truth, while the variance loss penalizes
the variance of the estimated distribution to ensure a sharp
distribution. However, we argue that existing ALDL meth-

ods have not strictly complied the intrinsic principles sum-
marized in this work, which can not fully take the advan-
tages of ALDL.

3. Methodology
In this section, we will first give a brief review of FLDL

based methods and then detail our ALDL method, where
a novel objective function, unimodal-concentrated loss, is
proposed for highly flexible distribution learning.

3.1. Preliminaries

Formally, let xi denote the i-th input instance with i =
1, 2, ..., N , ŷi denote the predicted value by the network,
and yi ∈ {1, 2, ..., C} denote the ground-truth label where
N is the number of instances and C is the number of classes.
Instead of regressing yi directly, FLDL based methods
transform yi from a single class label to a label distribution
and then predict ŷi by label distribution learning. Gaussian
distribution is commonly used in FLDL [1,5,7,9]. Instances
with the same class label yi share the identical Gaussian dis-
tribution. Taking Gaussian distribution d∼ N(µ, σ2) as an
example

di,j =
1

S
√
2πσ2

exp(− (j − µ)2

2σ2
), j = 1, 2, ..., C, (1)

where di,j denotes the probability of xi belongs to class j

and
∑C

j di,j = 1; µ equals to the ground-truth label yi; σ
is the standard deviation of di; S is a normalization factor.

Let zi = f(xi; Θ) denote the output of the last fully con-
nected (FC) layer of a CNN model f(·), where Θ is the
model parameter. Softmax operation is applied to turn out-
put zi into distribution pi. The elements pi,j of pi is com-
puted as

pi,j =
exp(zi,j)∑C
k=1 exp(zi,k)

. (2)

Kullback-Leibler (KL) divergence is usually adopted in
FLDL as the loss function. KL loss (LKL) is optimized
to reduce the gap between the pre-defined distribution di

and the predicted distribution pi. The final prediction ŷi is
obtained by taking the expectation of pi as follows

ŷi =

C∑
j=1

j ∗ pi,j . (3)

Thus, different instances with the same label are expected to
predict similar distributions. It is against the nature that dif-
ferent instances with the same label should have their own
distributions corresponding to their characteristics.

3.2. Proposed Approach

In order to tackle the issues above, we present a novel
adaptive label distribution learning method which can pro-
duce unimodal and instance-aware distributions. Fig. 2
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Figure 2. Overview of our proposed method. The unimodal loss makes the final predicted distribution be inclined to a mountain-liking
curve with single peak, while the mean and variance of the probabilities are optimized jointly via the concentrated loss to make the predicted
distribution adaptive to individual instances.

gives the overview of our approach, in which the proposed
unimodel loss and concentrated loss are embedded into a
exsting CNN for end-to-end learning without any additional
modification on the model. The details are given below.

3.2.1 Unimodal loss

Based on the principles we have summarized previously, it
is crucial to output a unimodal distribution for ordinal re-
gression tasks. Hence, we propose a unimodal loss denoted
as Luni, which is formulated as follows

Luni =
1

N

N∑
i=1

C−1∑
j=1

max(0,−(pi,j−pi,j+1) ∗ sign[j − yi]),

(4)
where sign[j−yi] is a sign function which equals to -1 while
j−yi < 0 and equals to 1 otherwise. It is desirable for value
of pi,j − pi,j+1 to be negative if j − yi < 0 and be positive
if j−yi > 0, which conforms to the properties of unimodal
distribution.

Constrain distribution to be unimodal. In order to
show how our unimodal loss Luni performs, we take a case
of j < yi (i.e. sign[j − yi]=− 1) for illustration, as shown
in the blue region of Fig. 3, where pi,j − pi,j+1 > 0. That
is the adjacent probabilities are not in ascending order, and
consequently the gradient of Luni w.r.t. pi,j and pi,j+1 can
be computed respectively as

∂Luni

∂pi,j
= +1, (5)

∂Luni

∂pi,j+1
= −1. (6)

According to Eq. 5 and Eq. 6, the pi,j will be decreased
due to its positive gradients, while pi,j+1 will be increased
due to its negative gradients. In other words, our unimodal
loss Luni adjusts the probabilities to make them increase
monotonically before reaching the ground-truth position.

In the other direction where sign[j − yi]= + 1, our Luni

adjusts the probabilities to decrease monotonically after the
ground-truth position. Thus, the predicted distribution will
be optimized to be unimodal via Luni.

Our proposed Luni is superior to the softmax loss used
in [22]. since Luni can adjust the ranking relation within
the predicted distribution while the softmax loss not. Please
refer to proof in Sec. 3.2.3 for more details. Consequently,
the predicted probabilities of Mean-Variance [22] are more
likely to be multimodal, and the examples for comparison
are given in Fig. 4.

3.2.2 Concentrated loss

According to principles discussed before, the learned distri-
bution should maximize at the ground-truth and be adaptive
for individual instances. To accomplish this goal, we pro-
pose a concentrated loss denoted as Lcon, which integrates
the difference between the estimation ŷ and the ground-
truth y and the uncertainty indictor variance of the predicted
distribution together, and optimizes them jointly.

We first maximize the following likelihood for xi

Φ(pi;xi,Θ) =
1

N

N∑
i=1

1√
2πvi

exp(− (ŷi − yi)
2

2vi
), (7)

where vi is the variance of predicted distribution pi. Based
on Eq. 2 and Eq. 3, vi can be calculated as below

vi =

C∑
j=1

pi,j ∗ (j − ŷi)
2. (8)

Then we take the negative log of Φ(·) to get Lcon as follows

Lcon = −ln(Φ(pi;xi,Θ)) (9)

=
1

N

N∑
i=1

(
1

2
lnvi+

(ŷi − yi)
2

2vi
+
1

2
ln2π), (10)
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where constant 1
2 ln2π can be omitted during optimization.

Instance-aware adaptive distribution learning. To
demonstrate how it works, we take the gradient of concen-
trated loss Lcon w.r.t. the variance vi. As we all know the
sample mean and variance are statistically independent of
each other, for simplicity, it is computed as

∂Lcon

∂vi
=

1

2vi
− (ŷi − yi)

2

2v2i
, (11)

where ∂Lcon

∂vi
has following properties

∂Lcon

∂vi
> 0, while vi > (ŷi − yi)

2, (12)

∂Lcon

∂vi
< 0,while 0 < vi < (ŷi − yi)

2. (13)

According to Eq. 12, the network will be optimized to
decrease the intensity of vi to make it close to (ŷi−yi)

2 via
its positive gradient. In this situation, (ŷi − yi)

2 is an adap-
tive lower bound of vi. In other words, when estimation
error (ŷi−yi)

2 is small which indicates an easy sample, the
distribution variance vi is decreased to be small.

According to Eq. 13, the network will be optimized to
increase the intensity of vi to make it close to (ŷi − yi)

2

via its negative gradient. In this situation, (ŷi − yi)
2 is an

adaptive upper bound of vi. That is to say, when estimation
error (ŷi − yi)

2 is large which indicates a hard sample, the
distribution variance vi is increased to be large.

Take the gradient of Lcon w.r.t. the estimation error ϵi =
(ŷi − yi)

2 as follows

∂Lcon

∂ϵi
=

1

2vi
. (14)

According to Eq. 14, the estimation error ϵ is always opti-
mized as small as possible via its positive gradient. More-
over, the optimization speed of ϵ is negatively correlated
with the magnitude of vi.

Finally, the estimation error and the variance of the dis-
tribution are optimized in a fully adaptive way, and conse-
quently the learned distribution can be instance-aware. As
shown in Fig. 5, the first row examples are in high quality
and the second row examples are in low quality which are
polluted by illumination, occlusion and heavy makeup. It is
obvious that our predicted distributions can reflect the qual-
ity among faces where variances of the first row instances
are small while the variances of the second ones are large.

3.2.3 Unimodal-Concentrated loss

The final objective function of our proposed approach is de-
noted as Luc and formulated as follows

Luc = Lcon + λ ∗ Luni, (15)
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Figure 3. An illustration of how unimodal loss (orange) and soft-
max loss (green) affect the probability distribution respectively.

where λ is a hyper-parameter to weight the two terms.
Comparison with Mean-Variance. The Mean-

Variance loss [22] can be formulated as

Lm−v = Ls + λ1Lm + λ2Lv (16)

=
1

N

N∑
i=1

−logpi,yi +
λ1

2
(ŷi − yi)

2 + λ2vi, (17)

where Ls is the softmax loss. To show the effect of Mean-
Variance loss on the generated distribution, we take the gra-
dient of Lm−v with respect to item pi,j , (ŷi − yi) and vi,
respectively. Firstly, we take the gradient of Lm−v w.r.t pi,j

∂Lm−v

∂pi,j
=

{
λ1(ŷi−yi)j+λ2(j−ŷi)

2, j ̸=yi
−1
pi,j

+ λ1(ŷi−yi)j+λ2(j−ŷi)
2, j=yi.

(18)

And then, we take the gradient of Lm−v w.r.t ϵi = (ŷi−yi)
2

∂Lm−v

∂ϵi
=

1

2
λ1. (19)

Finally, we take the gradient of Lm−v w.r.t vi

∂Lm−v

∂vi
= λ2. (20)

For simplicity, we omit 1
N in Eq.18, Eq.19, Eq.20.

Base on equations above, we have three observations:

• According to Eq.18, we can see that the gradient
∂Lm−v

∂pi,j
and ∂Lm−v

∂pi,j+1
have similar expression and the di-

rection of both ∂Lm−v

∂pi,j
and ∂Lm−v

∂pi,j+1
are irrelevant with

the relative order of pi,j and pi,j+1. Additionally, ∂Ls

∂pi,j

can only be non-zero when j = yi which means that
the softmax loss cannot correct the wrong ordinal rela-
tionship between adjacent probabilities, see Fig. 3.
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• According to Eq.20, the gradient ∂Lm−v

∂vi
is a positive

constant which means that Mean-Variance loss will al-
ways optimize the variance of the predicted distribu-
tion to be small. In other words, Mean-Variance loss
makes the estimated distribution as sharp as possible
[22].

• According to Eq.19 and Eq.20, we can see that there is
no vi item in gradient ∂Lm−v

∂(ŷi−yi)2
and there is no (ŷi−yi)

item in gradient ∂Lm−v

∂vi
. That is to say, the estimation

error and variance of the predicted distribution are op-
timized independently without interaction.

In summary, the Mean-Variance loss does not constrain
the predicted distribution to be unimodal explicitly. Be-
sides, the minimization of Mean-Variance loss does not
generate an instance-aware distribution adaptively.

4. Experiments
In this section, we will first detail the experiment settings

and then compare our method with state-of-the-art works on
facial age database MORPH Album II [26] and head pose
databases including AFLW2000 [40] and BIWI [4].

4.1. Datasets

MORPH Album II is one of the most commonly used
and largest longitudianal face databases in the public do-
main for age estimation, which contains 55,134 face im-
ages of 13,617 subjects and the ages range from 16 to 77
[26]. Mugshots are captured in high quality and all faces
are frontal. We follow the most widely adopted evalua-
tion protocol namely the five-fold random split (RS) proto-
col [1, 3, 22, 23], where 80 percent of images are randomly
chosen as the training set and the remaining for testing.

IMDB-WIKI contains more than half a million labeled
images of celebrities, which are crawled from IMDB and
Wikipedia. Although it is the largest facial dataset with age
labels, it is polluted by too much noise. Instead of using it to
evaluate our method, we utilize it to pre-train our network
as previous works [1, 18, 28].

AFLW2000 is one of the most commonly used bench-
marks for head pose estimation [29,36,39]. The challenging
AFLW2000 dataset [40] contains the first 2,000 samples of
the AFLW dataset [16] which have been re-annotated with
68 3D landmarks using a 3D model for each face. The faces
in the dataset have large pose variations with various occlu-
sions, expressions as well as illumination conditions.

BIWI is collected by recording RGB-D videos of 20 dif-
ferent subjects across different head poses using a Kinect v2
device in a laboratory setting, and about 15,000 frames are
generated with pose annotations [4] .

300W-LP dataset [40] is re-annotated from a collection
of several popular in the wild facial 2D landmark datasets

by fitting the 3D dense face model to the image. The
database contains 61,225 samples across large poses and
expands to 122,450 samples by horizontal-flipping. Follow-
ing the previous works [29,36,39], we use 300W-LP dataset
for network training while using AFLW2000 and BIWI for
evaluation.

4.2. Implementation Details

For the age estimation task, we use VGG-16 [31] as the
backbone network without modification except the dimen-
sion of the last fully-connected layer is modified to 101 for
wide age range following [1, 5, 22]. All faces are cropped
and resized to the 224× 224 resolution. Data augmentation
includes random horizontal flipping, standard color jittering
and random affine transformation. The model is pre-trained
on IMDB-WIKI and then fine-tuned with a learning rate lr
which is initialized as lr=0.01 and decayed by a factor of
0.5 after each 10K iterations. the maximum number of iter-
ations is 60K, and batch size is set to 128. Hyper-parameter
λ is 1000.

For the head pose estimation task, we directly follow the
experiment settings of Hopenet [29], in which Resnet-50
[12] is chosen as the backbone network and Adam optimizer
[15] is used for optimization. Please kindly refer to Hopenet
for more experiment details if you need. It’s worth to note
that, we also make a modification like Hopenet, i.e., the
output dimension is changed from 66 to 200 for the reason
that the angles are in ±99◦ in fact. In this way, 31 images
are discarded from AFLW2000 for their angles are out of
range. Hyper-parameter λ is set to be 1000. Following [5,
22,29], we use MAE as our evaluation metric for both tasks.

4.3. Comparison with the State-of-the-arts

In this section, we compare our methods with state-of-
the-art ones on Morph II, AFLW2000 and BIWI respec-
tively. As shown in Table 1, our model for age estimation
achieves 1.86 MAE with the VGG-16 backbone, which is

Table 1. Comparisons with other state-of-the-art methods on the
Morph II. All results are under the five-fold random split protocol.

Method Form MAE
Ranking-CNN [3] Non-LDL 2.96

BridgeNet [18] Non-LDL 2.38
DLDL-v2 [1] FLDL 1.97

DRFs [30] FLDL 2.17
SPUDRFs [23] FLDL 1.91

Mean-Variance [22] ALDL 2.16
AVDL [35] ALDL 1.94

Ours ALDL 1.86
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Table 2. Comparisons with other state-of-the-art methods on AFLW2000 and BIWI dataset. All models are trained on 300W-LP dataset.

Method Form
AFLW2000 BIWI

Yaw Pitch Roll Mean Yaw Pitch Roll Mean

3DDFA [40] Non-LDL 5.40 8.53 8.25 7.39 36.17 12.25 8.77 19.06
FAN [2] Non-LDL 6.36 12.28 8.71 9.12 8.53 7.48 7.63 7.88
Hopenet (α=2) [29] Non-LDL 6.47 6.56 5.44 6.16 5.17 6.98 3.39 5.18
Hybrid Classification [34] Non-LDL 4.82 6.23 5.14 5.40 - - - -
FSA [36] Non-LDL 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00
FDN [39] Non-LDL 3.78 5.61 3.88 4.42 4.52 4.70 2.56 3.93
Guo [33] Non-LDL - - - - 3.68 4.36 3.02 3.69

Ours ALDL 3.46 5.24 3.68 4.13 3.91 3.96 2.83 3.57

Table 3. The performances compared with the same backbone net-
work but different losses.

Loss Form MORPH II AFLW BIWI

DLDL-v2 FLDL 1.90 4.20 3.80
Mean-Variance ALDL 2.01 4.36 4.01

Ours ALDL 1.86 4.13 3.57

Table 4. The results for different loss combinations of Mean-
Variance and ours.

Combinations Benchmarks
Auxiliary Primary MORPH II AFLW2000 BIWI

Softmax Concentrated 1.92 4.25 3.61
Unimodal Concentrated 1.86 4.13 3.57
Softmax Mean & Variance 2.01 4.36 4.01

Unimodal Mean & Variance 3.30 4.53 4.39

the best performance among all methods. It is noted that
compared with the FLDL based SPUDFRs [23] and ALDL
based Mean-Variance [22], our result is obviously better
than them which shows the effectiveness of our proposed
fully adaptive label distribution learning.

As shown in Table 2, on the challenging AFLW2000
and BIWI datasets for head pose estimation, our unimodal-
concentrated loss outperforms previous state-of-the-art
methods such as FSA [36] and FDN [39], which further ex-
hibits its superiority. Moreover, compared with landmark-
based methods [2, 40], our method only uses pixel intensity
information which is landmark-free.

Comparison with different losses. Methods for ordi-
nal regression listed in Table 1 and Table 2 are all un-
der different experimental settings. For fair comparison,
we conduct the experiment using the VGG-16 backbone
with different losses. Specifically, we choose DLDL-v2

Age-50 Age-64

Age-24 Age-31Age-38

Age-55

Age-50 Age-64

Age-24 Age-31

Figure 4. Age examples for comparisons with the same backbone
network but different losses. Some distributions are not unimodal
generated by Mean-Variance while our proposed method can en-
sure the unimodality of distribution. And DLDL-v2 tends to out-
put the distributions with similar shapes.

and Mean-Variance as they achieve the convincing perfor-
mances based on FLDL and ALDL respectively. As shown
in Table 3, our proposed loss outperforms the DLDL-v2
and Mean-Variance loss. As viewed in Fig. 6, DLDL-
v2 loss tends to output distributions with the same vari-
ance at different ages, because it learns from a fixed-form
distribution with the assumed standard deviation. Mean-
Variance loss generates distributions with smaller variances
than ours as the distributions are optimized to be as sharp as
possible. While the learned distributions of our unimodal-
concentrated loss can adapt more appropriately with the fa-
cial aging. Some examples are shown in Fig. 4.

4.4. Ablation Study

4.4.1 Different Loss Combinations

Our proposed loss is composed of the unimodal loss and
concentrated loss. Since it is hard to optimize the network
with only one part, to demonstrate the effectiveness of each
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Figure 5. Examples of head pose estimation for different losses combinations when the yaw angle is zero. The first row examples are in
high quality and the second row examples are in low quality which are polluted by illumination, occlusion and heavy makeup. As can be
see, first, when equipped with unimodal loss, the distributions are relatively smooth and unimodal. When equipped with softmax loss, the
distributions are easy to be multimodal. Second, when equipped with concentrated loss, the concentrations of distribution or the prediction
uncertainties vary obviously among the samples of the same class with different quality.
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Figure 6. Average standard deviations at different labels on
MORPH II. Labels with the number of samples less than 10 are
discarded.

part respectively, we conduct experiments under different
combinations of our loss with loss in Mean-Variance. From
Table 6, we can see:

Compared with the combination of softmax and concen-
trated loss, the combination of unimodal and concentrated
loss achieves higher performance, since the unimodal loss
constrains the probabilities to be unimodal while the soft-
max loss not. As shown in the second image and the last
image of the second row of Fig 5, the probabilities outputed
by softmax+concentrated is multimodal. It verifies the ef-
fectiveness of our proposed principle II, i.e. the distribution
should be unimodal.

Compared with the combination of softmax and mean
loss & variance loss, the combination of softmax and con-
centrated loss achieves higher performance since concen-
trated loss takes instance-aware uncertainty into consider-
ation instead of minimizing the mean and variance loss
as small as possible in [22]. As shown in Fig 5, the

confidences outputed by softmax+concentrated in the nor-
mal faces (shown in the first row) is relatively higher, and
the ones in the hard faces (shown in the second row) is
relatively lower. While the confidences output by soft-
max+mean&variance have relatively smaller difference be-
tween the two rows. It verifies the effectiveness of our pro-
posed principle III, i.e. the label distribution should vary
with the samples changing.

It is worth noting that, compared with the combination of
softmax and mean loss & variance loss, although the combi-
nation of unimodal and mean loss & variance loss can make
the probabilities to be unimodal as shown in Fig 5, it still
gets the poorer performance. The reason is that it is hard to
optimize the network with the mean & variance loss when
the softmax loss is not used jointly as viewed in [22], while
our concentrated loss does not have this problem. More de-
tailed analysis can be found in the supplementary materials.

5. Conclusion

In this paper, we propose a fully adaptive distribution
learning method for ordinal regression by introducing an ef-
ficient cost function called unimodal-concentrated loss. The
unimodal loss ensures the unimodality of the learned distri-
bution and the concentrated loss maximizes the probability
at the ground-truth in a fully adaptive way for individual in-
stances. Experimental results show our method outperforms
previous works on MORPH II benchmark for facial age es-
timation, AFLW2000 and BIWI benchmarks for head pose
estimation. In the future work, we would like to investigate
the effectiveness of the proposed loss in other related tasks.
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