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Abstract

This paper investigates the geometric consistency for
monocular 3D object detection, which suffers from the ill-
posed depth estimation. We first conduct a thorough anal-
ysis to reveal how existing methods fail to consistently lo-
calize objects when different geometric shifts occur. In par-
ticular, we design a series of geometric manipulations to
diagnose existing detectors and then illustrate their vulner-
ability to consistently associate the depth with object ap-
parent sizes and positions. To alleviate this issue, we pro-
pose four geometry-aware data augmentation approaches
to enhance the geometric consistency of the detectors. We
first modify some commonly used data augmentation meth-
ods for 2D images so that they can maintain geometric con-
sistency in 3D spaces. We demonstrate such modifications
are important. In addition, we propose a 3D-specific image
perturbation method that employs the camera movement.
During the augmentation process, the camera system with
the corresponding image is manipulated, while the geomet-
ric visual cues for depth recovery are preserved. We show
that by using the geometric consistency constraints, the pro-
posed augmentation techniques lead to improvements on the
KITTI and nuScenes monocular 3D detection benchmarks
with state-of-the-art results. In addition, we demonstrate
that the augmentation methods are well suited for semi-
supervised training and cross-dataset generalization.

1. Introduction
Given an input image, the objective of monocular 3D

object detection is to detect objects of interest and recover
their position in 3D space. Recently, it has received increas-
ing attention due to its importance in many downstream
tasks, such as autonomous driving, robot navigation, etc.
Different from stereo or lidar sensors, a monocular camera
requires a lower cost to perceive the surrounding environ-
ments. However, it suffers from unreliable depth recovery,
leading to unsatisfied performance for deployment.

“Size + pos” (small depth) “Size + pos” (large depth)

“Pos only” (large depth) “Size only” (large depth)

(a) Visualization of different copy-paste manipulation techniques.
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(b) Visualization of the estimated depth from the baseline and augmentation-
enhanced detectors under the copy-paste manipulation (see the details in
Sec 4.2).

Figure 1. We select one of the proposed manipulation tech-
niques (copy-paste) to illustrate the instability of object localiza-
tion under distortion of objects’ apparent size and vertical posi-
tion. “Size+pos” denotes geometry-consistent manipulation that
shifts the two visual cues with satisfying geometric constraints,
“Size only” and “Pos only” denote geometry-inconsistent manip-
ulation that only shifts the vertical position or apparent size. The
shaded region indicates the std of the depth in the “Size + pos”
manipulation.

To alleviate the ambiguity in depth estimation, recent
approaches [1, 3, 22, 24] leverage deep neural networks to
model the semantic and geometric information for depth
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reasoning. However, what geometric features existing de-
tectors use and if they are robust when the used features are
perturbed are still under-explored. As a result, this work
conducts a comprehensive study on the geometry robust-
ness of existing detectors and proposes several augmenta-
tion techniques to enhance their geometric consistency un-
der geometric shifts. Different from 2D detection, the ge-
ometric visual cues for depth recovery are supposed to be
preserved when the objects’ coordinates are manipulated,
which is not straightforward.

It is demonstrated in [10] that neural networks might
rely on the features of appearance size and vertical posi-
tion to estimate object depth. As visualized in Figure 1a,
objects farther away from the camera have smaller apparent
sizes and their vertical position is closer to the vanishing
points. To study if detectors utilize these two pictorial vi-
sual cues in localizing objects, we conduct controlled exper-
iments that shift one of the visual cues during manipulating.
As the results of “Size + pos”, “Size only” and “Pos only”
shown in Figure 1, the estimated depth changes as the shift
of pictorial visual cues, especially for the objects’ appar-
ent size. We further evaluate the robustness of the detectors
in utilizing them to estimate depth by manually distorting
the visual cues (i.e., shifting the objects’ apparent size or
vertical position) with the proposed manipulations (visual-
ized in Figure 2 and 1a). Through the evaluation, we ob-
serve that detectors cannot capture consistent relationships
between depth with the two pictorial visual cues, even they
can identify the variation of them. As shown in Figure 1b
and 3, the estimated depth from the baseline detectors has a
strong deviation when the images are manipulated.

Inspired by the above analysis, we convert the manipula-
tions into several geometry-aware data augmentation tech-
niques to improve the geometric consistency of existing de-
tectors. The awareness means that the pictorial visual cues
for estimating object depth are preserved during manipulat-
ing. At the image level, we lift random scale and random
crop, the commonly used 2D augmentation to 3D space by
connecting the image manipulation with the shift of camera
focal lengths and receptive field. With the help of a dense
depth estimation network, we provide a new 3D augmenta-
tion method that models the shifts of the camera’s 3D loca-
tion. At the instance level, we propose a geometry-aware
copy-paste that leverage the guidance of geometric hints to
guide the pasting procedure. Through modeling the geo-
metric constraints, the objects are pasted to novel scenes,
while their pictorial visual cues are still preserved.

By enhancing the geometric consistency, the proposed
augmentation techniques yield significant performance
boost in both state-of-the-art anchor-free and anchor-based
detectors. Compared with the baseline in Figure 1b, the
estimated depth from the enhanced detectors with the de-
signed geometric augmentation methods has less deviation

under manipulation. With regularizing the geometric con-
sistency, the trained detectors also show strong robustness
in the cross-domain scenario. Furthermore, the consistency
regularization techniques also can be applied in the semi-
supervised setting, which boosts the performance by regu-
larizing the output consistency under different levels of ma-
nipulations. Our contributions are summarized as follows:

• Through a study of how monocular detectors estimate
depth, we identified an instability problem of depth re-
covery under the changes of the object’s apparent size
and position.

• We provide four geometry-aware augmentation tech-
niques at the image-level and instance-level to address
this problem. With the proposed augmentation tech-
niques, we achieve state-of-the-art results on both the
KITTI and nuScenes monocular 3D object detection
benchmarks.

• We extend the geometry augmentation techniques into
semi-supervised training and cross-domain evaluation,
showing the effectiveness of improving performance
by regularizing the geometric consistency.

2. Related work
In this section, we present the review on monocular 3D

object detection and the data augmentation techniques used
in object detection.

2.1. Monocular 3D detection

Current monocular 3D object detectors can be split into
two categories: image-based and pseudo-lidar based.

Image-based approaches estimate the 3D information by
lifting 2D detectors [36, 49] to the 3D space. Traditional
approaches [1, 38, 49] infer the 3D bounding boxes by ad-
ditionally estimating location, dimension, and orientation
based on 2D detectors [36,49]. M3D-RPN [1] redesigns the
anchor proposal module to better extract 3D information.
MonoDis [38] and MonoFlex [48] address the multi-task
learning by disentangling the loss functions and neural net-
work architectures. Shi et al. [37] and Yan et al. [30] decom-
pose the depth into two easier estimated metrics: 2D and 3D
height. To alleviate the label noise in object location, mul-
tiple approaches [30–32, 37, 50] model the aleatoric uncer-
tainty in both the training and inference stages. In addition,
several methods take external information [3, 11, 33, 34]
(e.g., semantic segmentation, CAD model, the ground sur-
face) to enrich the contextual information for localization.

Except for directly regressing depth, several approaches
design 2D and 3D geometry constraints for object depth re-
covery. RTM3D [24], KM3D-Net [23], and MonoPair [5]
propose to use the geometric constraints to recovery depth
from the constraints in single instance [23, 24] or pairwise
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instances [5]. Similar to MonoPair [5], RAR-Net [26] pro-
poses a reinforcement learning based post-processing strat-
egy to refine the 3D information. To alleviate the sparse
constraints, AutoShape [28] utilizes CAD models to learn
dense keypoints to label the semantic keypoints. MonoRun
enriches the sparse keypoint constraint to a self-supervised
dense constraint, where a modified PnP algorithm is pro-
posed to solve the designed constraint.

In addition to directly taking the monocular image as in-
put, pseudo-lidar based approaches [35, 41–43, 46] adopt a
depth estimation network [14] to convert the 2D images into
3D point cloud and then apply a point cloud detector on
them. Although they achieve superior performance, the in-
put transformation requires an extra depth estimation mod-
ule during inference, leading to high latency.

2.2. Data augmentation in object detection

Data augmentation is an effective technique to boost
the performance of object detection [25, 36, 51]. Both
geometry-based (e.g., random scale, random crop, and etc.)
and color-based (e.g., color distortion) augmentation tech-
niques have been widely adopted in 2D detection mod-
els [25, 36, 49, 51]. In addition, copy-paste augmentation
has also proven to be an effective technique to improve the
generalization in detection and segmentation. Dvornik et al
and Zuo et al [12, 39] propose to guide the object pasting
by aligning the visual context before and after the augmen-
tation. InstaBoost [13] proposes a probability heatmap to
learn where to paste. In the 3D space, Moca [47] proposes
an occlusion-aware copy-paste approach for multi-modality
3D detection. In lidar-based detection, data augmentation
is also widely adopted [6, 21, 40]. Besides the common
schemes used in object detection, there are several special
augmentation methods tailored to point cloud data, such as
the random erasing in SECOND [45], part-aware data aug-
mentation method in [7].

While these aggressive data augmentation methods have
yielded impressive gains for either 2D cases or some spe-
cific 3D data representation, however, they are hardly lever-
aged in current monocular 3D detection frameworks due
to the violation of geometric constraints, where horizon-
tal flip and color distortion are the only two methods used
in this field for a long time. To this end, we hope to re-
shape this embarrassing situation by offering more diverse
geometry-consistent data augmentation techniques to en-
hance the baseline monocular 3D detectors.

3. Preliminaries
3.1. Baselines

In this section, we first introduce the basic setup of
the monocular detectors. We use lower-case and upper-
case letters to represent the 2D and 3D coordinates, re-

(a) Origin image (b) Change focal length (image scaling)

(c) Change receptive field image cropping (d) Change camera’s 3D location

Figure 2. Visualization of the image-level manipulation.

spectively. Monocular 3D detectors are required to recover
the following 3D information: (1) 3D bounding box di-
mension [W,H,L]T , (2) 3D bounding box center location
P = [X,Y, Z, 1]T (3) object yaw angle θ. On the KITTI
dataset [15], the following coordinate conversion is adopted
to connect the 2D and 3D coordinate:

p =
1

Z
KP, (1)

where p = [u, v, 1]T is the 2D location of the 3D center
projected in the image and the transformation matrix K is
formulated as:

K =

 f 0 cu 0
0 f cv 0
0 0 1 0

 . (2)

In this work, we adopt one anchor-free (CenterNet [49])
and one anchor-based (M3D-RPN [1]) detectors as our
baselines and lift them to state-of-the-art results by several
recently proposed techniques. (1) For depth estimation, we
follow [5,32,48] and model the regression uncertainty with
laplacian distribution during training and inference. (2) We
add an integral corner loss as in [38,48] to directly supervise
the estimated bounding box coordinates with ground-truth.
(3) Following [24,27,32,48], we replace the objective of the
classification heatmap in CenterNet from the 2D bounding
box center to the projected 3D bounding box center.

3.2. Pictorial visual cues

In human and machine perception, researchers [10, 17]
provide several pictorial visual cues that might be used for
3D reconstruction, including object apparent size, vertical
position, occlusion, shading, and etc. As part of the ob-
jective in 3D object detection, the object’s apparent size
and vertical position are the two most relevant cues for ob-
ject depth recovery. We visualize the relationships between
them with depth in Figure 4. As shown in Figure 4, the or-
ange triangle displays the relationship between 2D bound-
ing box height h and 3D bounding box height H with depth
Z. Given the camera focal length f , we can infer the depth
with the following equation:

Z = f
H

h
. (3)
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Figure 3. Empirical analysis of anchor-based (M3D-RPN) and anchor-free (CenterNet) detectors under geometric manipulations. As
displayed, their object depth estimation modules are not robust under different geometric manipulations.

Z
Camera
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Figure 4. Visualization of the geometric relationships between
depth with objects’ apparent size and position.

The intuition behind this visual cue is that objects that are
farther away from the camera tend to have smaller apparent
sizes.

Except for the apparent size, depth also can be recovered
by localizing the vertical position of the object’s ground
contact points. Given the camera height Ycam relative to the
ground and the height of the horizon line vh in the image,
depth can be obtained by:

Z = f
Ycam
v − vh

. (4)

In Figure 4, we visualize the relationship of vertical position
with depth in the green triangle, where point A1 represents
one of the horizon lines projected in the object, point A2

represents one of the object’s ground contact points. The
points that A1 and A2 projected in image coordinate are a1
and a2, whose vertical positions are v and vh, respectively.
The intuition behind this visual cue is that an object closer
to the camera would have a lower vertical position in the im-
age. Although the two geometric relationships require sev-
eral assumptions, most of them are satisfied in autonomous
driving environments. We refer readers to [10] for a more
thorough review of the pictorial cues.

4. Analysis based on Geometric manipulations

In this section, we first present three image-level and one
instance-level geometric manipulation techniques to disturb
the aforementioned visual cues in the image. Then we in-
troduce the robustness analysis based on the presented ma-
nipulation techniques. KITTI validation set [4] is adopted
to conduct the empirical analysis.

4.1. Image-level

Random Scale. Random scale resizes the image with a
specific scale, which corresponds to shifting the camera fo-
cal length in the imaging process. Under the same camera
intrinsic in the pinhole camera, image scaling also can be
treated as moving all the objects towards a relative scale.
For a scaling factor s, the location change in 3D space is
formulated as:

Pnew =


1 0 (1− s) cuf 0

0 1 (1− s) cvf 0

0 0 s 0
0 0 0 1

P. (5)

We evaluate if the detector can identify this location change
when the objects are scaled with different sizes.
Random Crop. The second manipulation is randomly
cropping the image, which corresponds to changing the
camera receptive field. To preserve the pictorial visual cue
during manipulating, we pad the cropped region to keep the
objects’ vertical position in random scale. As demonstrated
by Md et al [19], neural networks would utilize the padding
region to extract the position information. We evaluate if
the detectors are robust under this manipulation technique
by checking if they can estimate consistent depth after crop-
ping and padding.
Moving Camera The third manipulation is moving the
camera’s location, which equals to taking images from a
different location. In this manipulation, we change the
camera’s location in the Z coordinate, where the object-to-
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Table 1. Experimental results of anchor-based (M3D-RPN) and
anchor-free (CenterNet) detectors under different manipulation
techniques. Except the baseline, we replace the ground-truth with
estimated results. For example, “Depth*“ denotes replacing the
ground truth depth with the estimation and setting all other com-
ponents with ground truth. (Results of AP |40 with IoU≥0.5 on
car (easy) are reported.)

Network Method Base Depth* Dim* Pos*

M3D-RPN

Origin 54.3 55.6 99.1 98.9
Random scale 31.3 34.8 98.2 98.4
Random crop 40.2 42.3 95.6 96.7
Moving cam 25.6 29.4 91.0 89.3
Copy-paste 35.2 43.3 83.4 97.3

CenterNet

Origin 49.9 50.6 98.9 99.0
Random scale 23.3 27.3 97.8 97.9
Random crop 38.8 41.0 94.7 94.2
Moving cam 25.9 28.8 91.7 88.6
Copy-paste 36.2 42.3 82.0 97.0

camera distance should be shifted with an offset d:

Pnew = P + [0, 0, d, 0]T . (6)

To generate corresponding images, we adopt a depth esti-
mation network: DORN [14] to regress the location of each
pixel. With the manipulated images, we evaluate if the de-
tectors cannot identify the offset in the generated image.

4.2. Instance-level: Copy-paste

In addition to the image-level manipulation, we fur-
ther provide an instance-level manipulation: copy-paste.
Copy-paste is widely used in 2D instance segmentation,
where several approaches are proposed to preserve the se-
mantic context during pasting. However, most of the ap-
proaches [12,13,39] ignore the geometric relationships, de-
stroying the pictorial visual cues during manipulation. We
first provide a geometric consistent copy-paste to study the
robustness of the detectors and then introduce two geomet-
ric violated copy-paste to study how neural networks esti-
mate depth.
Geometric consistent copy-paste This manipulation is
split into two stages: (1) what to copy and (2) how to paste.
What to Copy. In this stage, we first collect an instance
database from the training data. Specifically, we crop the
objects of interest in the training images by a pre-trained in-
stance segmentation model [44]. To filter out outliers, we
remove the instances that are truncated or have low visibil-
ity. Since the two pictorial visual cues we studied assume
the ground is flat, we further remove the unqualified objects
by comparing their corresponding vanish points as in [10].
How to Paste. In the pasting stage, we sample depth in a
valid region (i.e., [0m, 60m]) and then calculate the corre-
sponding bounding box size and the pasting location based

on Equation 3 and 4. The whole pipeline of pasting is de-
scribed in Algorithm 1.

Algorithm 1 Procedure of copy-paste augmentation.
1: Input:Original object with ground truth:

[(u1, v1, u2, v2), (X,Y, Z), (W,H,L), θ].
2: Sample a new scene for pasting.
3: Sample new depth Ẑ.
4: Set the orientation θ̂ = θ.
5: Set the location of X̂ = X Ẑ

Z .
6: Compute the location of Ŷ based on Eq 4.
7: Set the dimension as Ŵ =W, Ĥ = H, L̂ = L.
8: Generate a 2D bounding box (û1, v̂1, û2, v̂2) by

projecting the corner points in 3D boxes to the image.
9: if the new instances does not satisfy the Eq 3. then

10: Go back to Step 2.
11: end if
12: Output: the new instances with ground truth:

[(û1, v̂1, û2, v̂2), (X̂, Ŷ , Ẑ), (Ŵ , Ĥ, L̂), θ̂].

Note that to simplify the generation process, we fix the
object yaw and alpha angle during pasting. Step 4 and Step
5 display how we use the geometric relationship to deter-
mine the objects’ apparent size and vertical position. For
the geometry violated manipulation, the value in step 3 and
step 5 are randomly sampled. The if statement in step 9
would be false when the height of the ground plan in the
origin and pasted scenes are different. Figure 5 visualizes
the difference between geometry consistent and geometry
violated copy-paste.

4.3. Stability under different manipulations

In Figure 3, we plot the estimated depth of the detectors
for manipulated images and compare it with the expected
depth to measure whether the detectors are robust against
the four above-mentioned manipulations. As illustrated,
while the estimated depth in anchor-based and anchor-free
detectors is approximately correlated with the expected re-
sult, however, both of them suffer from a large deviation,
especially for the anchor-free detector. To further evaluate if
the detectors can capture the variation of each visual cue and
learn consistent geometric relationships, we report the mAP
with the prediction of depth, 3D dimension and position in
Table 1. As illustrated, the base version denotes the overall
mAP with the estimation results. The versions of depth*,
dim* and pos* mark the mAP with the estimated depth, di-
mension and position offset respectively, while leaving the
other components the same as the ground truth. We draw the
following observations: 1) In the origin setting, the perfor-
mance drop in depth* is larger than dim* and pos*, showing
that the depth recovery is more challenging; 2) Both detec-
tors suffer from a significant performance drop under the
four kinds of manipulations, especially for the anchor-free
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detector; 3) For the results of dim* and pos*, they almost
achieve 100% mAP, showing that the detectors accurately
estimate the dimensions and positions of the objects, even
in the manipulated image. However, the accuracy in depth*
is much less than 100%, indicating that the detectors can-
not capture consistent geometry relationships under the ma-
nipulations; 4) Unlike the phenomenon in the image-level
manipulation, detectors are unable to accurately regress the
objects’ dimensions for the inserted objects.

5. Geometry-aware data augmentation
After diagnosing the geometric inconsistency of the de-

tectors, we convert the manipulations into geometric consis-
tent augmentation approaches to enhance this consistency.
Random Scale As aforementioned in Section 4.1, we dis-
tort the camera focal length to generate the image with
scales from 0.8 to 1.2. Although images with different
scales are generated, cameras’ intrinsic may be inconsis-
tent with the testing data, which would be harmful to the
testing performance. To customize the detectors with this
augmentation method, we disentangle the training objective
of depth from Z to a camera intrinsic irrelevant Z

f . During
inference, we recover the depth by timing Z

f with the corre-
sponding camera focal length. For the other 3D metrics, we
fix them as the original value, because they are consistent
under different image scales.
Random Crop As discussed in Section 4.1, we adopt a
crop-then-pad operation to make sure the geometric cue
is consistent during training and inference. We randomly
cropped out 25% of the region and adopt a zero-padding to
fill the image in the vertical direction.
Moving camera Regarding moving the camera, we ran-
domly move the camera in the Z direction with a range from
-5m to 5m. For the coordinate conversion in the 2D and 3D
coordinates, we adopt the same operation as in Section 4.1.
To simplify the augmentation process, we do not adopt so-
phisticated novel view synthesis models, while leveraging
neural networks to convert the pixel in the origin view to
the target view. For the pixels that cannot find the corre-
sponding pixel in the source view, we fill them by the near-
est neighbor pixel.
Copy-Paste For the copy-paste augmentation technique, we
adopt the geometric-consistent version as discussed in Sec-
tion 4.2. As visualized in Figure 5, the apparent size and
vertical position are matched with ground truth depth after
considering the geometry relationships.

6. Experiments
We first introduce the experimental setup, including eval-

uation benchmarks, metrics, and our implementation de-
tails. Then, we present and analyse the results of our exper-
iments. In addition, we verify the effectiveness of the pro-

posed augmentation techniques in label-efficient settings.

6.1. Experimental setup

We evaluate the effectiveness of the proposed data aug-
mentation approaches on the KITTI [16] and nuScenes [2]
3D object detection benchmarks.

Copied objects

geo-aware

w/o geo-aware

training data with copy-paste aug

Figure 5. Visualization of copy-paste data augmentation with and
without geometry-aware consideration.

KITTI [16] consists of 7,481 training frames and 7,518 test
frames with 80,256 annotated 3D bounding boxes. For fair
comparisons, we follow prior work [3,4] and split the train-
ing data into training and validation subsets. We evaluate
the effectiveness of the proposed components on the valida-
tion set and evaluate the final model on the test set.
nuScenes [2] is a recently released autonomous driving
dataset. It contains up to 40K annotated key frames from
6 cameras with 4 different scene locations. Compared with
the KITTI dataset, it has 7x as many annotations with 23
different object classes. The dataset is split into 700 video
sequences for training, 150 for validation, and 150 for test-
ing. Due to the limited computation resources, we train
the detectors on the training subset and evaluate the per-
formance on the official validation subset.
Evaluation metrics In the KITTI dataset, we follow the of-
ficial protocol [16] and adopt the AP |40 evaluation metrics
on both bird-eye view (BEV) and 3D bounding box estima-
tion tasks. The evaluation is conducted separately based on
the difficulty levels (Easy, Moderate, and Hard) and object
categories (Car, Pedestrian, and Cyclist). In the nuScenes
dataset, we adopt the provided [2] evaluation metrics from
the perspective of entire boxes (mAP), translation (mATE),
size (mASE), etc.
Implementation details As described in Section 3.1, our
experiments are conducted based on CenterNet [49] and
M3D-RPN [1]. We use the modified DLA-34 [49] (Center-
Net) and DesNet-141 [18] (M3D-RPN) as detectors’ back-
bone and initialize the parameters with ImageNet [8] pre-
trained weights. Before applying the proposed augmenta-
tion techniques, we first pad the images in KITTI to the size
of 1280×384 and downsample the images in nuScenes to
half of the resolution. Regarding optimization, we train the
two detectors with 90 epochs in the KITTI dataset and 12
epochs in the nuScenes dataset. We adopt the AdamW [29]
optimizer for training and set the initial learning rate as 3e-
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4. The detailed descriptions of the experimental setup are
provided in the supplementary material.

6.2. Individual and composite effect of the proposed
augmentation methods

To evaluate the effectiveness of our geometry-aware
strategy, we first conduct experiments with different aug-
mentation strategies for comparison. In the vanilla strategy,
we adopt the horizontal flip augmentation in both 2D and
3D tasks. For the other augmentation techniques (random
scale, random crop, and copy-paste), we only adopt them in
the 2D task, because the vanilla operations violate the geo-
metric constraints and cannot directly get the corresponding
3D ground-truth. In our geometry-aware scheme, we add
the coordinate-based augmentation to 3D task with the pro-
posed geometric-preserving operations, where the 3D re-
lated ground-truth are calculated as in Section 5. Table 2
displays the comparison results with anchor-based (M3D-
RPN) and anchor-free (CenterNet) detectors. As illus-
trated, the geometry-aware scheme consistently improves
the vanilla strategy and the combination of four augmen-
tation techniques yields consistently performance boosting
with 5.99%/4.79%, 4.96%/3.75%, and 3.85%/2.35% of the
three settings on the two detectors, respectively. We also
observe that the improvement of “vanilla aug” over “w/o
aug” is limited. The potential reason is that the performance
of monocular 3D detection heavily relies on the accuracy
of depth recovery, while vanilla augmentation destroys the
pictorial visual cue for recovery.

Table 2. Comparison among different augmentation strategies on
the KITTI validation dataset. AP |40 of 3d bounding box on the
Car category are reported.

Method Setting Easy Mod Hard

M3D-RPN

W/o aug 17.45 10.03 9.42
Vanilla aug 18.21 11.28 9.56
+ Random scale 22.06 15.43 12.04
+ Random crop 20.91 14.42 11.60
+ Moving cam 21.73 14.56 11.37
+ Copy-paste 22.63 15.94 12.61
All aug 23.42 16.24 13.41

CenterNet

W/o aug 18.74 13.21 10.80
Vanilla aug 20.16 13.49 11.95
+ Random scale 22.46 15.60 13.57
+ Random crop 22.63 16.02 13.21
+ Moving cam 21.34 15.10 12.92
+ Copy-paste 22.23 15.47 13.24
All aug 24.53 17.23 14.32

6.3. Results on the KITTI test set

In Table 3, we present the comparison of the pro-
posed augmentation enhanced detectors with state-of-the-

art methods on the KITTI test set. Quantitatively, the
two baseline approaches with vanilla augmentation already
achieve comparable results in each setting. Powered by
the proposed geometry-aware augmentation, we outper-
form the baseline with 3.89%/4.00%, 3.03%/2.05%, and
2.00%/1.76% of the three different difficulties in the 3D
task. For the anchor-based detectors, we outperform the
state-of-the-art approach DDMP-3D [41] a large margin
while keeping a low running time. For the anchor-free de-
tector, we achieve almost 2% improvement over the state-
of-the-art method MonoEF [50].

6.4. Results on the nuScenes dataset

Except for the KITTI dataset, we also evaluate the pro-
posed augmentation techniques on the nuScenes dataset.
Table 4 presents the experimental results of the modified
CenterNet on nuScenes validation set. Although nuScenes
contains more training instances, the proposed geometry-
aware augmentation strategies still improve the vanilla set-
ting in different evaluation metrics. Typically, regarding the
most important mAP metric, the geometry-aware strategy
outperforms the vanilla version over 3.89%.
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Figure 6. Experimental results of our geometric data augmentation
on the semi-supervised learning setting.

6.5. On the benefit of the proposed augmentation
methods to label-efficient settings

It is worth mentioning that our proposed augmentation
techniques are orthogonal to which setting it is conducted.
In this part, besides supervised 3D detection, we also in-
vestigate the effectiveness of our proposed augmentation
in label-efficient settings that include semi-supervised and
cross-domain scenarios.
Semi-supervised training. In semi-supervised learning,
one of the common practices [9, 20] is to regularize the
output consistency of the unlabeled data under image ma-
nipulations. As for monocular 3D detection, we utilize our
proposed augmentation to generate different views of unla-
beled data and then feed them into mean-teacher architec-
ture [9, 20] to regularize the geometric consistency of their
outputs. In terms of the different levels of manipulation,
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Table 3. Experimental results of the “Car” class on the KITTI Test set. The best results are marked with bold.

Setting 3D (Test) BEV (Test) Running time (ms)Easy Mod Hard Easy Mod Hard

Anchor-based

M3DSSD 17.51 11.46 8.98 24.15 15.93 12.11 -
Mono R-CNN 18.36 12.65 10.03 25.48 18.11 14.10 70
GrooMed-NMS 18.10 12.32 9.65 26.19 18.27 14.05 -
Kinemantic 19.07 12.72 9.17 26.69 17.52 13.10 -
MonoRun 19.65 12.30 10.58 27.94 17.34 15.24 70
DDMP-3D 19.71 12.78 9.80 28.08 17.89 13.44 -
CaDDN 19.17 13.41 11.46 27.94 18.01 17.19 630
M3D-RPN (vanilla aug) 16.45 11.24 10.02 26.53 17.78 12.11 40
M3D-RPN (geo aug) 20.34 14.27 12.02 28.15 19.67 16.73 40

Anchor-free

MonoFlex 19.94 13.89 12.07 28.23 19.75 16.89 30
MonoEF 21.29 13.87 11.71 29.03 19.70 17.26 30
AutoShape 22.47 14.17 11.36 30.66 20.08 15.59 50
Monodle 17.23 12.26 10.29 27.94 17.34 15.24 40
CenterNet (vanilla aug) 19.41 13.21 11.04 27.89 19.24 15.53 30
CenterNet (geo aug) 23.41 15.26 12.80 31.58 20.75 17.66 30

Table 4. Experimental results of the anchor-free detector on the
nuScenes validation set.

Setting mAP↑ mATE↓ mASE↓ NDS↑
Vanilla aug 33.2 0.69 0.28 38.4
Geo aug 34.5 0.68 0.27 39.4

Table 5. Cross-domain evaluation between different augmentation
methods with the anchor-free detector. Results of car on the KITTI
(easy with 3D mAP) and nuScenes datasets (mAP) are reported.

Training data Setting KITTI nuScenes

KITTI Vanilla aug 20.16 10.23
Geo aug 24.53 19.40

the regularization requires detectors to estimate consistent
object dimension and yaw angle and predict depth that sat-
isfied the geometric relationships.

We conduct this case study on the KITTI dataset by us-
ing the “Eigen-clean” split [33] with 14,940 images as the
unlabeled subset and the training split as the labeled sub-
set. We provide the detailed setup of the mean-teacher
framework on the supplementary material. Figure 6 shows
the detection performance with different numbers of la-
beled data. Compared with the “baseline” that adopts
the vanilla augmentation, the version with geometry-aware
data augmentation obtains significant improvements when
500∼1500 labeled data are sampled. Furthermore, when
semi-supervised training is conducted with the unlabeled
data, it achieves higher performance over the baseline ver-
sion. This superior results demonstrate the potential of our
augmentation techniques to reduce the labeling budget.
Cross-domain evaluation. As stated in Section 5, the ge-
ometric manipulations correspond to the shift of the cam-
era configurations. We adopt a cross-domain evaluation
to evaluate if the proposed augmentation techniques can

enhance the detectors’ robustness in real-scenario camera
configuration shifts. Specifically, we conduct a KITTI to
nuScenes evaluation, where the models are trained on the
source domain (KITTI) and tested in the unseen target do-
main (nuScenes). On the KITTI and nuScenes datasets, the
cameras’ focal length and their receptive field are different.
As shown in Table 5, the augmentation enhanced detector
not only outperforms baseline in the in-domain scenario but
also shows better robustness in the cross-domain situation.

7. Conclusion and Discussion

In this work, we diagnosed the instability issues of
monocular detectors under geometric shifts. To alleviate the
geometric inconsistency issues observed in the diagnosis,
we proposed diverse augmentation techniques for regular-
izing the monocular object detectors. Our work provides a
new way to improve the 3D detection performance by gen-
erating more training data with preserving the geometric
properties. With more diverse training data, the augmen-
tation methods yield consistently improvement over state-
of-the-art approaches on the KITTI and nuScenes datasets.

Except for the simple image perturbations, sophisticated
augmentation techniques have already emerged in 2D ob-
ject detection and 3D scene understanding for improving
model robustness (e.g., mixup, novel view synthesis, sim-
to-real, adversarial example, etc.). On the other hand,
monocular 3D object detection also has its robustness issues
(e.g., the perturbation of camera pitch and roll angle, occlu-
sion, etc.), which could be alleviated by customized data
augmentation methods. We hope this paper will provide a
baseline setup for future work in leveraging augmentation
methods to enhance monocular 3D object detection.
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