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Abstract

Due to the inherent ill-posed nature of 2D-3D projec-
tion, monocular 3D object detection lacks accurate depth
recovery ability. Although the deep neural network (DNN)
enables monocular depth-sensing from high-level learned
features, the pixel-level cues are usually omitted due to the
deep convolution mechanism. To benefit from both the pow-
erful feature representation in DNN and pixel-level geomet-
ric constraints, we reformulate the monocular object depth
estimation as a progressive refinement problem and propose
a joint semantic and geometric cost volume to model the
depth error. Specifically, we first leverage neural networks
to learn the object position, dimension, and dense normal-
ized 3D object coordinates. Based on the object depth, the
dense coordinates patch together with the corresponding
object features is reprojected to the image space to build
a cost volume in a joint semantic and geometric error man-
ner. The final depth is obtained by feeding the cost volume
to a refinement network, where the distribution of semantic
and geometric error is regularized by direct depth supervi-
sion. Through effectively mitigating depth error by the re-
finement framework, we achieve state-of-the-art results on
both the KITTI and Waymo datasets.1

1. Introduction
As a fundamental component in 3D perception, 3D ob-

ject detection has drawn increasing attention from the area
of autonomous driving, robotic navigation, etc. Recently, it
has achieved remarkable progress based on lidar or stereo
sensing solutions. However, the high cost of lidar sensors
and the complicated online calibration in stereo cameras
limit their mass applications in downstream tasks. There-
fore, researchers start to focus on a cheaper alternative,
monocular-based sensing solution. Yet due to the ill-posed
2D-3D projection, the localization accuracy of monocular
3D object detection is far behind the lidar and stereo-based

1Code available at https://github.com/lianqing11/MonoJSG

Figure 1. From top to bottom: Visualization of the estimated cor-
ners in the image space, which can be used to constrain an initial
3D bounding box; Reproject the object patch to the original image
using the initial bounding boxes; Initial (green) and our Mono-
JSG refined (blue) bounding boxes in the BEV space respectively.
Compared with corners, photometric mismatch provides discrimi-
native features for identifying localization error.

approaches.
Driven by powerful neural networks, multiple ap-

proaches [1, 16, 24, 35, 38, 39] are proposed to alleviate the
challenging monocular depth recovery from different per-
spectives. From the perspective of data formation, pseudo-
lidar based approaches [22, 23, 35, 37] transform the input
images to pseudo point cloud and directly adopt lidar de-
tectors on it. Although they achieve better performance
over traditional approaches [6,26], the heavy reliance on the
depth prediction network leads to high latency and overfit-
ting [29]. From the perspective of geometry reasoning, ge-
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ometric constraint based approaches [16, 38] leverage neu-
ral networks to predict variant 2D cues then solve the ob-
ject depth according to 2D-3D projection constraints. In
particular, the 2D-3D constraints are built from the object
edges [20, 26, 28, 38], sparse keypoints [16, 17, 19], dense
keypoints [4], etc. Although reasoning depth by 2D-3D
constraints is interpretable and easy-to-trace, the optimiza-
tion gap between the indirect 2D cue prediction and di-
rect depth prediction limits the final depth solving accuracy,
i.e., the overall minimum 2D loss on whole training data
does not necessarily mean the best depth estimation perfor-
mance. As visualized in Figure 1, although the estimated
bounding boxes’ edges and corners look almost accurate in
the image, the solved 3D bounding box has a non-trivial lo-
calization error from the bird’s eye view. This localization
error is agnostics from regressed 2D cues. However, if we
reproject the object to the original image using the inaccu-
rate location, a significant photometric misalignment can be
observed in Figure 1, which inspires our joint semantic and
geometric depth refinement approach.

In this work, we propose an approach called Joint Se-
mantic and Geometric Cost Volume (MonoJSG), which uti-
lizes pixel-level visual cues to refine bounding box propos-
als. We first enrich the traditional 2D-3D constraint [16,19]
by extra estimating the location of each pixel in the nor-
malized object coordinate. Based on the estimated object
depth, the normalized object coordinate is projected into
the image space to build a pixel-level constraint for each
bounding box. The pixel-level constraint measures the geo-
metric error between each pixel’s 2D location and the pro-
jection location of the normalized object coordinate. We
further enrich the constraints with a semantic error, which
measures the distance of the features queried by the ori-
gin 2D location and the projection location. As Figure 1
shows, although the depth error can be obviously revealed
by pixel-level raw photometric error, we found that simply
extending this strategy to all instances cannot always refine
accurate depth due to the variant textureless and irregular re-
gions (e.g., the windshield or the rear window, etc.). We in-
stead leverage neural networks to learn semantic features as
a more robust and discriminative representation compared
with the raw image intensity. Based on the designed joint
geometric and semantic error manner, we construct a 4D
cost volume to draw the error distribution around proposal
depth for refinement. To make the cost volume adapt to
variant depth error, its size is customized for each proposal
based on a predicted depth uncertainty. Then a refinement
network is designed to take the adaptive cost volume as in-
put and output the final depth.

Our approach shows benefits from two perspectives.
From the view of explicit constraining, the exploited se-
mantic features provide more dense cues to measure the lo-
calization error than pure sparse keypoints. From the view

of data-driven, we force the network to learn discriminative
features that are suitable for refinement by end-to-end depth
supervision. With the aforementioned advantages, the pro-
posed framework achieves superior performance, leading to
new state-of-the-arts on the KITTI and Waymo datasets.

We summarize our main contributions as follows:

• Based on pixel-level geometric and semantic visual
cues, we present a novel joint semantic and geomet-
ric error measuring approach for object depth.

• We design an adaptive 4D cost volume that models the
error distribution for depth refinement.

• We demonstrate the effectiveness of the proposed ap-
proach on both the KITTI and Waymo datasets, which
achieve state-of-the-art results with real-time perfor-
mance.

2. Related work
2.1. Image-based Monocular detection

The objective of monocular 3D object detection is to
identify objects of interest and localize their 3D bounding
boxes from a single image. To alleviate the ambiguous 2D-
3D projection problem, existing approaches either leverage
neural networks to extract high-level semantic representa-
tion, design 2D-3D geometry constraints, or incorporating
external depth information for depth reasoning.
Semantic representation based Some representative ap-
proaches [1, 6, 7, 25, 30, 39] train neural networks to learn
semantic representation and then directly regress the 3D
bounding boxes based on the learned representation. Later
work exploits from the perspective of network architec-
ture [1, 21, 27], objective function [20, 30], etc. Cen-
terNet [39] proposes a centerness-based object detection
paradigm and lifts the 2D detector to 3D space by adding
several 3D task heads. M3D-RPN proposes a 3D-anchor
that aligns the 2D anchors with 3D statistics. Shi et al. [28]
and Lu et al. [20] utilize geometric priors to decompose
the location estimation into 2D and 3D height estimation.
MonoFlex [38] proposes a disentangled network to han-
dle the bounding boxes with different degrees of trunca-
tion. However, as discussed in [24,38], the learned semantic
representation is unexplainable and easy to overfit on some
spurious features in the training data.
Geometry constraint based This line of approaches [4, 8,
14,16,17,19,26] reason 3D location with 2D-3D geometric
constraints. Mousavian et al. [26] first attempt to recover the
3D location by solving the constraints between 2D bound-
ing boxes edges and 3D dimension. Li et al. [16, 17] and
Liu et al. [19] propose a keypoint based approaches to fur-
ther limit the searching space of the geometric constraints
in [26]. MonoRun [4] proposes a self-supervised algorithm
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to learn a pixel-level constraint and recovers the 3D location
by adopting a modified PnP solver. However, the connec-
tion between the keypoint localization accuracy and depth
error is indirect, where the optimal keypoint localization
model does not guarantee the minimal depth error. Such
indirect connection introduces multiple failure cases in this
line of approach, i.e., the far away objects have small lo-
calization error but large depth estimation deviation. Fur-
thermore, the semantic information in the geometric con-
straint based approach is under-exploited, which can pro-
vide a strong visual cue for depth reasoning.
Depth-assisted monocular detection Instead of directly
taking images as the input of neural networks, depth-
assisted based approaches convert the RGB image to a
dense depth map and then utilize it to assist the recovery
of 3D information. Pseudo lidar based approaches [22, 23,
34, 35, 37] convert the depth map into pseudo point cloud
and adopt point cloud based detectors to localize 3D bound-
ing boxes. Instead of transforming the depth map into point
cloud, other approaches [9,20,33] leverage the depth map to
guide the learning of 2D convolution. Although the depth-
assisted based approaches achieve better performance, they
are required to train an extra depth estimation network,
which often needs more training data and is inefficient in
inference.

2.2. Cost volume for 3D representation

In the area of stereo matching [3, 11, 31], multi-view
stereo [5, 36], etc, cost volume is a widely adopted tech-
nique to compute the matching cost. Stereo matching ap-
proaches [3, 11, 31] leverage a siamese network to extract
features from the left and right cameras and then apply
correlation-based or concatenation-based cost volume to
compute the matching cost. In multi-view stereo, MVS-
Net [36] generates depth map by constructing a plane-
sweep volume in the camera frustum space. However, the
application of cost volume in monocular 3D object detec-
tion is not fully exploited. To the best of our knowledge,
we propose the first 2D-3D cost volume that computes the
matching cost for object depth.

3. Background

3.1. Problem definition

In monocular 3D object detection, detectors are required
to estimate the object dimension (w, h, l), location of the
object center Po = [xo, yo, zo]

T and the corresponding yaw
angle ρ. The estimated information also can be formulated
as a rigid transformation matrix [Ro→c, Po] that converts
the point in the normalized object coordinate to the cam-
era coordinate. The conversion matrix Ro→c is defined as

follows:

Ro→c =

 w
2 · cos(ρ) 0 w

2 · sin(ρ)
0 h

2 0
− l

2 · sin(ρ) 0 l
2 · cos(ρ)

 . (1)

And the rigid transformation for a point in the normalized
object coordinate oPi to the camera coordinate Pi is formu-
lated as:

Pi = Ro→c
oPi + Po. (2)

To recover the 3D information based on a 2D image,
most of the monocular-based detectors [1, 39] first regress
the projection location of Po in the image coordinate p0 =
[uo, vo, 1]

T and then recover the 3D location by estimating
the corresponding depth zo.

As shown in Figure 2, our detector first generates can-
didate proposals based on CenterNet [39], which outputs
the object classification, 2D bounding boxes, 2D projection
location of the 3D center, object dimension, and yaw an-
gle. For the depth estimation, we follow MonoDLE [24]
and further estimate the standard deviation with Laplacian
distribution during the training and inference stages. The
loss function is formulated as follows:

Ldepth =

√
2

σz
∥ẑ − z∗∥+ log σz, (3)

where σz denotes the estimated standard deviation of depth,
ẑ and z∗ represent the estimated and ground truth depth,
respectively.

3.2. Geometry constraint with 2D-3D coordinate

In this section, we introduce the way we build a pixel-
level 2D-3D matching and the corresponding geometric
constraint.
Learning normalized object coordinate Compared with
the camera coordinate, the normalized object coordinate
is an easier learning objective due to its scale-invariant
property under different locations and view angles [4, 15].
Therefore, we convert the location of each pixel i in the
camera coordinate Pi to the normalized object coordinate
oPi. Then we add a branch in the CenterNet to estimate the
location of each pixel in the normalized object coordinate.
For the pixels that have a matched lidar point, we utilize the
lidar point to generate the ground truth of normalized object
coordinate and directly minimize the ℓ1 loss between the
estimated and generated ground truth value. For the pixels
that do not have a matched lidar point, we adopt an unsuper-
vised loss [4] that converts the estimated oP̂i to the image
coordinate p̂i and minimize the ℓ1 distance between it and
ground truth pi.
Depth by solving 2D-3D constraint With estimating the
location of each pixel in the normalized object coordinate,
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Figure 2. The visualization of our framework pipeline. In the proposal stage, we leverage a modified CenterNet to generate 3D bounding
box proposals and estimate normalized object coordinate. Then, we construct the adaptive cost volume with the corresponding source and
target coordinate with semantic features. Final bounding boxes are obtained by taking the cost volume to refine bounding box proposals.
For visualization, we utilize the raw image to represent the learned semantic features. The attached image in the adaptive cost volume
represents the error with the joint semantic and geometric energy function. The color from purple to yellow corresponds to the error value
from 0 to 1.

a pixel-level energy function is built to represent the depth
error of the bounding box. Specifically, we first project the
estimated normalized object coordinate to the image coor-
dinate based on the bounding box proposal:

p̂i = π(K, R̂o→c
oP̂i + P̂o), (4)

where π denotes the coordinate conversion from the camera
to image coordinate and K is the camera intrinsic matrix.
Then an energy function between the source location and
the projected location of each pixel in the image coordinate
is built:

E =
1

n

n∑
i

∥pi − p̂i∥, (5)

where n denotes the number of selected pixels in the bound-
ing box. Traditional approaches [4, 15, 16] construct sparse
or dense 2D-3D matching and recover depth by solving sim-
ilar geometric-based energy functions.

4. Approach
As we introduced in Section 1, depth recovery based on

geometric constraints suffers from indiscriminative 2D cues
and the indirect optimization gap between 2D cue predic-
tion and depth estimation. To alleviate these issues, we
first propose a joint semantic and geometric energy func-
tion to enrich the geometric cue for depth reasoning. Based
on the estimated 2D box and roi module [12], we extract
object level features with F ∈ RW×H×C from the last fea-
ture extraction layer in CenterNet. For each pixel i, we
utilize its origin location pi and the projected location p̂i
to sample the corresponding semantic features F (pi) and

F (p̂i). Bi-linear interpolation is adopted to ensure the sam-
pling procedure differential. Through extracting the corre-
sponding semantic features, we construct a joint semantic
(F (pi) vs. F (p̂i)) and geometric (pi vs. p̂i) constraint.

4.1. Refinement by adaptive 2D-3D cost volume

By incorporating the semantic features into the 2D-3D
constraint, the energy function is more powerful than be-
fore. However, the semantic features also lead to a non-
convex energy function, making it unsolvable by fast linear
solvers. Instead of adopting a complicated solving mod-
ule, we treat the built energy function as depth refinement
features to indicate depth error. To provide effective refine-
ment features, we construct an adaptive 4D cost volume that
draws the error distribution of depth with the proposed en-
ergy function.
Adaptive Cost Volume For each proposal bounding box,
the 4D matching cost volume is built by concatenating the
origin and projected semantic and geometric features in the
image coordinate (with a size of W ×H ×D × 2(C + 2),
H: height of the roi feature, W : width of the ROI feature,
D: number of the sampled depth, the first “2” is from the
concatenation operation, C: the dimension of semantic fea-
tures, the second “2”: the dimension of pixels’ location in
the image coordinate). Specifically, the features contain the
source and the projected location in the image coordinate p
and p̂ and their corresponding semantic features: F (p)and
F (p̂), where the p̂ is determined by the candidate depth
based on Equation 4. Then we adopt a coordinate normal-
ization to obtain location invariant geometric features for
refinement:

op =

(
1
W 0 −uo

W
0 1

H − vo
H

)
pT , (6)
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where [uo, vo]
T is the location of the projected center

point in the image coordinate. As demonstrated in Mon-
oDLE [24], depth error changes with variant location, oc-
clusions, etc. Hence, to adapt the cost volume with variant
error distribution, the sampling size should be large enough
to cover the potential ground truth. However, A too large
sampling size would introduce high latency and memory
occupation. As a result, we adopt an adaptive sampling
strategy that determines the size of the cost volume based on
the uncertainty in depth estimation. Specifically, we lever-
age the estimated depth uncertainty σz in the proposal stage
to compute the sampling size. During sampling, we first
set the number of candidates with a fixed value D and then
determine the size of the depth grid ∆z based on σz:

∆z = λ · σz, (7)

where λ is a pre-defined hyper-parameter.
Network architecture of the refinement module Through
modeling the error distribution, we design a refinement net-
work that takes the distribution as refinement features for
depth recovery. We first adopt several 2D convolution mod-
ules to extract features from the spatial space. Then we in-
sert 3D convolution networks to aggregate the features in
the depth direction. After that, an average pooling layer
and fully-connected networks with softmax activation func-
tion are employed to integrate the features in the H and
W direction and output final estimation. The output vector
σd ∈ RD is processed with a soft arg-margin function [3] to
compute the expectation for all candidate depth with prob-
ability:

ẑrefine = ẑ +

D∑
i=1

+∆z · σi
d · (i−

n

2
), (8)

where ẑ is the estimated depth in the proposal stage and
σi
d denotes the estimated probability of the ith candidate

depth. Compared with directly regressing depth value, the
soft arg-margin operation with softmax function would en-
courage the model to learn discriminative features and se-
lect the optimal depth candidate. With refining the candi-
date depth ẑrefine, the depth estimation loss based on Equa-
tion 3 is adopted to update the refinement network. Because
the sampling operation in selecting semantic features is dif-
ferentialable, the neural network can be trained to learn suit-
able features for refinement. As the error map visualized in
Figure 2, the semantic representation ignores the texture-
less regions and highlights the semantic regions. During
inference, the final 3D bounding boxes are obtained by the
combination of the refined depth ẑrefine and the object di-
mension, yaw angle, and projection location estimated in
the proposal stage.

4.2. Overall pipeline

The overall pipeline is visualized in Figure 2. The pro-
posal module is the modified CenterNet as described in Sec-
tion 3.1. The refinement module is based on the cost volume
described in Section 4.1. During training, the loss for opti-
mizing the proposal module is the same as MonoDLE [24].
For the refinement loss, we filter the negative samples that
the corresponding 2D IoU with ground truth is smaller than
0.5. During inference, we select candidate bounding boxes
based on CenterNet and generate the final bounding boxes
by combining the estimated category, dimension, yaw an-
gle, projection location in the proposal stage and the esti-
mated depth in the refinement stage.

5. Experiments
5.1. Experimental setup

To demonstrate the efficacy of the proposed approach,
we carry out experiments on both the KITTI [10] and
Waymo [32] monocular 3D object detection benchmarks.

KITTI dataset consists of 7,481 training and 7,396 test-
ing images with annotating 80,256 3D bounding boxes. We
follow 3DOP [7] and further split the training set into sub-
sets with 3,712 images for training and 3,619 images for
validation. Results with metrics of AP |R40 in the space of
3D and BEV are reported. The bounding boxes are clas-
sified into three levels of difficulty: “Easy”, “Moderate”,
and “Hard”, determined by the height of the 2D bounding
box, the object’s occlusion, and truncation level. We train
the model on three categories ”Car”, ”Pedestrian” and ”Cy-
clist” simultaneously and mainly report the results on the
Car category.

Waymo open dataset is another large-scale autonomous
driving dataset, which contains 1,150 video sequences col-
lected from diverse driving environments. The official pro-
tocol splits the dataset into 798 training sequences, 202
validation sequences, and 150 test sequences. We follow
PCT [34] and adopt the data from the front camera for
monocular 3D object detection. For a fair comparison, we
sample the images with every 3rd frame from the training
sequences in the version of 1.2 (52,386 images) for training.
We adopt the official evaluation tools [32] to calculate the
mAP (mean average precision) and mAPH (mean average
precision weighting by heading). Different from the KITTI
dataset, Waymo separates the bounding boxes into two dif-
ficulty levels: ”Level 1” and ”Level 2” based on the number
of lidar points contained in the bounding box.
Implementation details We follow the recent work [19,21,
38, 40] and adopt the commonly used CenterNet [39] with
a modified DLA-34 backbone as the baseline detector. For
the KITTI dataset, the input images are kept with the origi-
nal resolution and pad to the size of 1280×384 for training
and inference. For the Waymo dataset, the input images

1074



Table 1. Comparison of the car category on the KITTI test set. We highlight the best results in bold. For the depth assisted-based approach
(PatchNet [22], PCT [34]), the inference time of depth estimator is from [22]. Data split denotes the used data during training. “Det”
denote the standard split for training 3D object detection and “Eigen” denotes the a set of unlabeled sequences in the KITTI dataset.
PatchNet [22] and PCT [34] use eigen split to train a depth estimation model, MonoEF [40] uses it to train extrinsic estimation network
and Kinemantic [2] uses it to supervise the ego-motion network.

Setting Data split 3D (Test) BEV (Test) Runtime (ms)Easy Mod Hard Easy Mod Hard
RTM3D (ECCV20) [16]

Det

14.41 10.34 8.77 19.17 41.20 11.99 50
RAR-Net (ECCV20) [18] 16.37 11.01 9.52 22.45 15.02 12.93 -
MonoDLE (CVPR21) [24] 17.23 12.26 10.29 27.94 17.34 15.24 40
M3DSSD (CVPR21) [21] 17.51 11.46 8.98 24.15 15.93 12.11 -
GrooMed-NMS (CVPR21) [13] 18.10 12.32 9.65 26.19 18.27 14.05
CaDDN (CVPR21) [27] 19.17 13.41 11.46 27.94 18.91 17.19 630
MonoRun (CVPR21) [4] 19.65 12.3 10.58 27.94 17.34 15.24 70
MonoFlex (CVPR21) [38] 19.94 13.89 12.07 28.23 19.75 16.89 30
Mono R-CNN (ICCV21) [28] 18.36 12.65 10.03 25.48 18.11 14.10 70
AutoShape (ICCV21) [19] 22.47 14.17 11.36 30.66 20.08 15.59 50
Kinemantic* (ECCV20) [2]

Det +
Eigen

19.07 12.72 9.17 26.69 17.52 13.10 -
PatchNet (ECCV20) [22] 15.68 11.12 10.17 22.97 16.86 14.97 488
MonoEF (CVPR21) [40] 21.29 13.87 11.71 29.03 19.70 17.26 30
DFR-NET (ICCV21) [41] 19.40 13.63 10.35 28.17 19.17 14.84 455
PCT (NeurIPS21) [34] 21.00 13.37 11.31 29.65 19.03 15.92 487
MonoJSG Det 24.69 16.14 13.64 32.59 21.26 18.18 42
Improvement - +2.22 +1.97 +1.54 +1.93 +1.18 +0.92 -

are down-sampled to the size of 960×640 to save compu-
tation time. We adopt the AdamW optimizer to train the
model and set the initial learning rate as 4e-3. The network
is initialized with ImageNet pre-trained weights and trained
with 90 epochs on the KITTI dataset and 15 epochs on the
Waymo dataset. During training, we only adopt random
horizontal flip to augment the input image.

Table 2. 3D object detection results of Pedestrian and Cyclist on
the KITTI test set.

Method Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard

MonoPair [8] 10.02 6.68 5.53 3.79 2.12 1.83
MonoFlex [38] 9.43 6.31 5.26 4.17 2.35 2.04
Autoshape [19] 5.76 3.74 3.03 5.99 3.06 2.70
MonoRun [4] 10.88 6.78 5.83 1.01 0.61 0.48
MonoJSG 11.02 7.49 6.41 5.45 3.21 2.57

5.2. Benchmark evaluation

5.2.1 Results on the KITTI test set

In Table 1, we present the experimental results of our de-
tectors and the other state-of-the-art methods on the KITTI
test set. We draw the following observations: (1) Our
approach achieves the best performance of the car class
on six different metrics. Compared with the second-best
approach, our approach outperforms them with the ratio

of 9.89%, 13.90%, and 12.75% on the 3D detection task
and 6.29%, 5.88%, and 5.33% on the BEV detection task
with the “Easy”, “Moderate”, and ”Hard” setting, respec-
tively. Furthermore, the designed modules in our detector
are lightweight, making it applicable for autonomous driv-
ing systems. (2) Compared with the geometric constraint
based methods (i.e., RTM3D [16], AutoShape [19], and
MonoRun [4]), our approach keeps a similar inference time
but achieves much better 3D detection performance, show-
ing the effectiveness of incorporating semantic features for
depth recovery. It is important to note that the second-best
method AutoShape [19] adopts extra CAD models to learn
the normalized object coordinate, where our approach is or-
thogonal to the proposed approach. (3) Furthermore, the
depth-assisted based approaches require an extra depth esti-
mation model, leading to a heavy computation burden [22]
during inference. In contrast, our detector not only keeps
a lightweight framework but also achieves better perfor-
mance.

In Table 2, we further display the experimental results
with Pedestrian and Cyclist class on the KITTI test set.
Our method obtains the best performance in the Pedestrian
class and achieves comparable performance with the best
approach Autoshape [19] in the Cyclist class. It is worth
noting that the number of the annotated instances in the two
categories is small (Pedestrian with 4,487 and Cyclist with
1,627 vs. Car with 28,742 in the training set), which may
introduce performance fluctuation.
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Table 3. Experimental results of the Car category on the Waymo validation set. We adopt the Metrics with mAP and mAPH under the IoU
threshold of 0.7 and 0.5, respectively. “Level 1” denotes the evaluation of the bounding boxes that contain more the 5 lidar points. “Level
2” denotes the evaluation of all of the bounding boxes.

Setting Method
3D mAP / 3D mAPH

IoU = 0.7 IoU = 0.5
Overall 0 - 30m 30 - 50m 50 - ∞ Overall 0 - 30m 30 - 50m 50 - ∞

Level 1

PatchNet (ECCV20) [22] 0.39/0.37 1.67/1.63 0.13/0.12 0.03/0.03 2.92/2.74 10.03/9.75 1.09/0.96 0.23/0.18
PCT (NeurIPS21) [34] 0.89/0.88 3.18/3.15 0.27/0.27 0.07/0.07 4.20/4.15 14.70/14.54 1.78/1.75 0.39/0.39
Baseline 0.78/0.76 3.80/3.73 0.49/0.48 0.08/0.07 4.59/4.47 18.35/17.93 3.16/3.09 0.74/0.10
MonoJSG 0.97/0.95 4.65/4.59 0.55/0.53 0.10/0.09 5.65/5.47 20.86/20.26 3.91/3.79 0.97/0.92

Level 2

PatchNet (ECCV20) [22] 0.38/0.36 1.67/1.63 0.13/0.11 0.03/0.03 2.42/2.28 10.01/9.73 1.07/0.94 0.22/0.16
PCT (NeurIPS21) [34] 0.66/0.66 3.18/3.15 0.27/0.26 0.07/0.07 4.03/3.99 14.67/14.51 1.74/1.71 0.36/0.35
Baseline 0.74/0.72 3.79/3.72 0.48/0.47 0.07/0.07 4.34/4.22 18.33/17.87 3.07/3.00 0.65/0.63
MonoJSG 0.91/0.89 4.64/4.65 0.55/0.53 0.09/0.09 5.34/5.17 20.79/20.19 3.79/3.67 0.85/0.82

Figure 3. Qualitative results of before and after refinement on the
KITTI dataset. “Green box” and “Blue box” represent the results
before and after refinement.

5.2.2 Results on the Waymo validation set

In Table 3, we compare the proposed approach with recent
top-performed approaches [22,34] on the Waymo validation
set. We report the evaluation results of the Car category with
two different IoU thresholds (0.7 and 0.5). Similar to the
observation on the KITTI dataset, our approach yields con-
sistent improvement over state-of-the-art approaches. Com-
pared to the second-best approach PCT [34], we improve
them over 5.61% and 26.42% on 3D mAP with IoU thresh-
old of 0.7 and 0.5 respectively. We display the detailed qual-
itative results in the supplementary.

5.3. Ablation study

In Table 4 , we compare the different ways of recover-
ing depth, and validate the improvement of using semantic
representations for depth recovering on the KITTI valida-
tion set. Surprisingly, the 3D bounding boxes estimated by
sparse geometry constraint are even worse than the base-
line model. On the opposite, the dense constraint improves

Table 4. Experimental results of constraint-based and refinement-
based approaches with different input features on the KITTI val-
idation set. The constraint based approaches adopt the depth that
achieves minimal error in the constraint as final results. “Sparse
Geo” and “Dense Geo” denote using the eight bounding box cor-
ners [16, 17] and all the pixels in the objects [4] to build the con-
straint. MonoJSG denotes using the pixel-level joint semantic and
geometric features for building the constraint.

Setting Easy Mod Hard
Baseline 20.5 14.2 12.0
Sparse Geo Constraint 18.9 13.1 10.8
Dense Geo Constraint 22.3 15.7 13.3
MonoJSG Constraint 24.3 17.0 14.5
MonoJSG Refine 26.4 18.3 15.4

the baseline model with 1.8% mAP in the Easy setting.
The performance degradation may come from the inaccu-
rate keypoint localization. Compared with the dense geo-
metric constraint, MonoJSG provides a data-driven fashion
to learn the visual cue, leading to better detection perfor-
mance. With the designed refinement module, MonoJSG
achieves the best performance among variant settings.

Table 5. Ablation study of different input features in the refine-
ment module. “Geo”, “Photo” and “Semantic” denote the location
of each pixel in the image coordinate, raw photo feature and the
learned semantic representation respectively.

# Geo Photo Semantic Easy Mod Hard
0 20.5 14.2 12.0
1 ✓ 22.4 15.6 13.3
2 ✓ ✓ 24.3 16.2 13.4
3 ✓ ✓ 26.3 18.4 15.4
4 ✓ ✓ ✓ 26.4 18.3 15.4

Different features for refinement In Table 5, we further
present the comparison of using different features for re-
finement. Compared with only using the geometric features,
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(a) (b)

(d)(c)

Figure 4. From left to right: Visualization of the origin images, the projected images and the loss distribution of the energy function with
different 2D cues. The loss distribution is drawn from the range of [-1.6m to 1.6m] around the estimated depth. “Sparse Keypoint” denotes
the eight bounding box corners. “Photometric” denotes the raw image.

the photometric and semantic features based approaches can
utilize the provided visual cue to identify the discriminative
region for refinement, which yields better detection results.
Furthermore, the comparison between experiments “2” and
“3” demonstrates the effectiveness of leveraging the learned
representation for refinement. By comparing the experi-
ment “4” and “5”, we observe a limited improvement of
incorporating photometric features to MonoJSG. This is be-
cause that the semantic features are extracted from the raw
image and act as a similar role in refinement.

Table 6. Ablation of the sampling operation in the proposed cost
volume.

Sample size Strategy Easy Mod Hard

8 Uniform 23.6 16.9 13.8
Adaptive 24.7 17.2 14.4

32 Uniform 25.2 17.3 14.7
Adaptive 26.4 18.3 15.4

Different sampling strategies in the cost volume To val-
idate the effectiveness of the proposed adaptive sampling
strategy in the cost volume, we compare it with the com-
monly used uniform sampling strategy on the KITTI vali-
dation set. We adopt the size of 8 and 32 to sample candi-
date depth. As illustrated in Table 6, the adaptive sampling
consistently outperforms the uniform sampling in the size
of 8 and 32. With more candidate depth, the cost volumes
with the size of 32 achieve better performance than the size
of 8, while it also increases 8x memory occupation in the
refinement module.

5.4. Qualitative results

In Figure 3 and 4, we provide the qualitative results of
our detector on the KITTI datasets. Compared with the
sparse geometric error and photometric error, the loss land-

scape of our MonoJSG is more robust. As illustrated, the
loss curve of MonoJSG is more convex and the correspond-
ing depth of minimum value is near to the ground truth.
On the opposite, as illustrated in instances (a) and (b), the
sparse keypoint based constraint fails in the occlusion situ-
ation. The instance in Figure 4 (d) shows a failure case that
the neural network fails to estimate accurate object coordi-
nate in the low-visibility situation, which also contributes to
inaccurate geometric and semantic cues for depth recovery.
However, the low-visibility is a typical problem in com-
puter vision, which could be addressed in the image pre-
processing stage.

6. Conclusion and Limitations

We have presented MonoJSG, a refinement-based
monocular 3D object detection framework for autonomous
driving scenarios. Benefits from both the powerful feature
representation from DNN and the pixel-level visual cues
from 2D-3D constraint, MonoJSG effectively mitigates the
object depth error, leading to state-of-the-art results on the
KITTI and Waymo datasets.

Similar to other geometric constraint based approaches,
the accuracy of our 2D-3D constraint is based on the esti-
mated object dimension and yaw angle. Although they are
easier to estimate than object depth, they may fluctuate in
the low-visibility or far away regions. Modeling their distri-
bution and incorporating their uncertainty to the constraint
may alleviate the limitation.

Potential impacts This work studies monocular 3D
object detection in autonomous driving. The poten-
tial security risk of this work is that the localization
error in the model may mislead the following mo-
tion planning, which may lead to traffic accidents.
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