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Abstract

Fine-tuning pre-trained models for downstream tasks is
mainstream in deep learning. However, the pre-trained
models are limited to be fine-tuned by data from a specific
modality. For example, as a visual model, DenseNet cannot
directly take the textual data as its input. Hence, although
the large pre-trained models such as DenseNet or BERT
have a great potential for the downstream recognition tasks,
they have weaknesses in leveraging multimodal informa-
tion, which is a new trend of deep learning. This work fo-
cuses on fine-tuning pre-trained unimodal models with mul-
timodal inputs of image-text pairs and expanding them for
image-text multimodal recognition. To this end, we propose
the Multimodal Information Injection Plug-in (MI2P) which
is attached to different layers of the unimodal models (e.g.,
DenseNet and BERT). The proposed MI2P unit provides the
path to integrate the information of other modalities into the
unimodal models. Specifically, MI2P performs cross-modal
feature transformation by learning the fine-grained corre-
lations between the visual and textual features. Through
the proposed MI2P unit, we can inject the language infor-
mation into the vision backbone by attending the word-wise
textual features to different visual channels, as well as inject
the visual information into the language backbone by at-
tending the channel-wise visual features to different textual
words. Armed with the MI2P attachments, the pre-trained
unimodal models can be expanded to process multimodal
data without the need to change the network structures.

1. Introduction

In social media such as Twitter, a tweet usually contains
both the text and image contents which share the same con-
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cept. With the increased use of social media, a massive
number of multimodal user-generated contents can be avail-
able for training deep models. It is clear that multimodal
classification can gain a nontrivial advantage over the uni-
modal counterpart by using information from both the vi-
sual and language modalities [22]. Over the past years,
image-text multimodal classification has been widely ap-
plied to different social media projects such as emergency
response [1, 2], emotional recognition [31], fake news de-
tection [25], etc.

The core idea in image-text multimodal classification is
to integrate the image and texts together. In general, the
current works for image-text multimodal recognition can
be categorized into two strategies. The first strategy main-
tains two separate backbones (e.g., DenseNet or BERT) to
process each modality and performs multimodal fusion on
the classification scores or the high-level features produced
by each backbone [1, 7, 15]. On the other hand, the sec-
ond strategy goes in-depth into the intermediate layers of
the backbones and performs multimodal fusion on the fine-
grained mid-level features of each modality [13, 16, 17, 29].
However, the current works along this line mainly focus on
the homogeneous setting in which the modalities are just
different views of the same input (e.g., RGB and depth im-
ages) [13, 29, 34]. Due to the strong heterogeneity between
the mid-level features of images and texts, the second strat-
egy is less studied for the image-text multimodal fusion
task. The recently proposed multimodal BERT can model
the inter-modal interactions between the fine-grained mid-
level features of the visual and language modalities based
on the recent advances of Transformer [12, 16–19, 23]. As
large pre-trained models, multimodal BERT can be fine-
tuned for image-text multimodal recognition.

The previous works have shown that an efficient multi-
modal classification algorithm needs to consider both the
intra-modal processing and inter-modal interaction [13,29].
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To be specific, the intra-modal processing requires to extract
the discriminative semantic information from each modal-
ity, which is crucial for the classification task, while the
inter-modal interaction requires to fully integrate the con-
tent of each modality. In general, the first strategy does well
in intra-modal processing by maintaining separate unimodal
backbones to process each modality, but has weaknesses in
modeling sufficient inter-modal interaction [1, 7, 15]. On
the other hand, the multimodal BERT models from the sec-
ond strategy do well in inter-modal interaction by attending
to the fine-grained token features of each modality, but un-
derestimate the end-to-end intra-modal processing of each
modality (e.g., directly take the region features extracted
from faster-RCNN as visual inputs [17–19]; directly aggre-
gate the original image patches or textual features [16]). Al-
though the recent PixelBERT proposes to leverage an end-
to-end CNN backbone to extract the image features [12],
the intra-modal processing is still prone to be underesti-
mated once the mid-level features of each modality have
been input into the transformer layers [29]. The stacked
transformer layers cut off the direct connection between the
CNN backbone and the final prediction. Compared with
the pre-trained multimodal BERT models, the large pre-
trained unimodal models (e.g., DenseNet or BERT) care-
fully consider the end-to-end intra-modal processing and
have a strong ability in extracting the discriminative seman-
tic information from each modality.

Motivated by the above discussion, this work focuses
on directly expanding the large pre-trained unimodal mod-
els for image-text multimodal recognition, with the consid-
eration of both effective intra-modal processing and inter-
modal interaction. Our core idea is to integrate the features
from other modalities to augment the mid-level features of
the unimodal models. To this end, we propose the Multi-
modal Information Injection Plug-in (MI2P) attached to the
mid-level layers of the unimodal networks (e.g., DenseNet
or BERT). In order to bridge the heterogeneity across differ-
ent modality features, MI2P performs cross-modal feature
transformation by learning the fine-grained cross-modal at-
tentions between the visual and textual features. Through
the MI2P unit, the language information can flow into the
visual backbone by attending the word-wise textual features
to different visual channels. Similarly, the visual infor-
mation can also flow into language backbone by attending
the channel-wise visual features to different textual words.
By fine-tuning the unimodal backbone together with the at-
tached MI2P units, the injected multimodal information can
be adapted to augment the mid-level features in a proper
manner, i.e., enrich the semantic patterns of the mid-level
features but not suppress their intra-modal processing.

Compared with the existing image-text multimodal clas-
sification methods [1, 9, 14, 17, 18], our approach can bet-
ter balance the inter-modal interaction and intra-modal pro-

cessing. For the former purpose, the fine-grained cross-
modal interactions are explicitly modeled within the MI2P
attachment. In practice, the visual and textual modalities are
usually correlated on different abstraction levels (e.g., in the
sentence of “An elephant is drinking from the stream with
its long nose”, the word nose may relate to the mid-level vi-
sual features of images, while the word elephant may relate
to the high-level features of images). The MI2P plug-ins
can be flexibly attached to multiple layers of the unimodal
networks, in order to model the cross-modal interactions of
different abstraction levels. For the latter purpose, our ap-
proach completely preserves the original network structures
of the large pre-trained unimodal models. As plug-ins, the
MI2P units will not suppress the intra-modal processing of
the unimodal models.

To sum up, the contributions of this work are three-fold:

• We propose to expand the large pre-trained unimodal
models for image-text multimodal classification by
arming them with the introduced Multimodal Infor-
mation Injection Plug-in units. The proposed imple-
mentation of multimodal recognition can preserve the
strong intra-modal processing ability of the large pre-
trained unimodal models.
• Our approach can model the cross-modal interactions

of different abstraction levels by attaching the MI2P
units to multiple layers of the unimodal models, with
the consideration of sufficient inter-modal interaction.
• Our approach can obtain state-of-the-art performance

across different image-text multimodal classification
benchmarks.

2. Related Works
2.1. Image-text multimodal classification

Image-text multimodal classification aims to improve
the performance over the unimodal counterpart by integrat-
ing information from both the visual and language modali-
ties [22]. Over the past years, multimodal classification has
been widely applied into various social media projects such
as emergency response [1, 2], emotional recognition [31],
fake news detection [25], etc. According to where the
modalities are integrated, we can categorize the current
multimodal recognition approaches as two strategies. The
first strategy is the predominant method which maintains
two separate backbone network (e.g., DenseNet or BERT)
to process each modality and performs multimodal fusion
on the classification scores [8, 30] or the high-level features
produced from each backbone network [1, 4, 7, 15, 33] via
aggregation operations such as addition [15], outer prod-
uct [7], cross-gating [1], tensor fusion [33], etc. The main
drawback for this strategy lies in insufficient inter-modal
interaction. Hence, the second strategy mainly focuses on
performing multimodal fusion on the fine-grained mid-level
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features of each modality [12, 14, 17–19, 29, 34]. In partic-
ular, the recently proposed multimodal BERT models stack
transformer layers over the mid-level features of images
and texts and can be fine-tuned for image-text multimodal
recognition [12,14,17,18]. The fine-grained inter-modal in-
teractions between the textual words and the visual tokens
can be modeled by the attention mechanism.

2.2. Pre-training

The pre-training paradigm is one of the main causes
that lead to the great success of deep learning. Fine-
tuning large pre-trained models for specific downstream
tasks is currently a common notion in the field of both com-
puter vision and natural language processing. For example,
deep convolutional neural networks (e.g., ResNet [10] or
DenseNet [11]) pre-trained on ImageNet have been widely
used as the standard baselines to process visual signals like
images or videos. In the recent year, various large pre-
trained models which are not based on convolutional op-
erations are also proposed [6, 24]. On the other hand, the
recent advances in natural language processing are also
greatly driven by the large pre-trained language models
like BERT [5] or XLNet [32]. We call the above mod-
els as unimodal models since they are pre-trained with the
corpus of a particular modality, as well as carefully de-
signed for processing the features of that modality. Over
the past years, various large pre-trained multimodal models
(e.g., PixelBERT [12], VisualBERT [18] or VilT [16]) are
also proposed. These models are usually called as multi-
modal BERT models since they are originally inspired by
language BERT. The multimodal BERT models are usu-
ally fine-tuned for different downstream tasks such as visual
question answer or image-text retrieval [17, 19].

3. Methodology
3.1. Problem statement

In image-text multimodal classification, each sample is
associated with an image Zi ∈ Rc×h×w and a textual de-
scription Ti ∈ Rli×d. The notations li and d represent
the textual length and feature dimension, respectively. Both
the visual and textual modalities correspond to a class label
Yi ∈ {0, 1, ...,K}. Denote by D = {(Zi, Ti, Yi)}Ni=1 the
training dataset. Our goal is to learn a classifier h(Zi, Ti)
which can make good predictions on Yi by integrating in-
formation from both the visual and language modalities.

3.2. Model overview

This work adopts the Convolutional Neural Networks
(CNN) and the language BERT as our study objects since
they have been widely recognized as the standard baselines
in their respective fields. In our approach, the pre-trained
CNN and BERT are respectively expanded for image-text

multimodal recognition. We call the above expanded uni-
modal models as Multimodal Expanded CNN and Multi-
modal Expanded BERT, respectively.

The overall architectures of the multimodal expanded
models are shown in Fig. 1. To arm the CNN model with the
language modality, we first pass the text features Ti through
an external pre-trained BERT model and obtain the high-
level representations T

′

i ∈ Rli×d. For each image-text pair,
we integrate T

′

i into the information flow of Zi across the
CNN backbone by the MI2P plug-ins attached to different
layers of CNN (see Fig. 1(a)). Similarly, to arm the lan-
guage BERT model with the image modality, we first pass
the image features Zi through an external pre-trained CNN
model and obtain the high-level representations before the
aggregation layer Z

′

i ∈ Rc′×h′×w′
. For each image-text

pair, we integrate Z
′

i into the information flow of Ti across
the language BERT backbone by the MI2P plug-ins at-
tached to different layers of BERT (see Fig. 1(b)). During
the fine-tuning process, the unimodal models are trained
jointly with the attached MI2P units. The injected multi-
modal information can be adapted to augment the mid-level
features properly.

3.3. Multimodal information injection plug-in

In order to expand the large pre-trained unimodal mod-
els for image-text multimodal recognition, we propose the
MI2P attachment which provides the path to integrate the
features from other modalities to augment the mid-level fea-
tures of the unimodal models. Due to the strong hetero-
geneity across different modalities, the features from other
modalities cannot directly flow into the unimodal back-
bones. To bridge the modality gap, the MI2P modules per-
form cross-modal feature transformation based on the fine-
grained cross-modal interactions between the visual and
textual features.

Before going on, we need to figure out how do the mid-
level features of the image Zi and its counterpart Ti interact
with each other. From the aspect of the image features, each
channel of the feature maps is associated with a specific se-
mantic pattern about the input image Zi. In the multimodal
setting, these semantic patterns are also expressed by the
textual words of the language counterpart Ti. Hence, the
channel-wise visual features can be closely correlated with
the textual words via their shared semantic patterns.

According to the above discussion, the MI2P units need
to model the cross-modal interactions between the channel-
wise visual features and the word-wise textual features.
Based on the modeled cross-modal interactions, the MI2P
attachments will inject the language information into the
unimodal CNN model by attending the word-wise textual
features to different visual channels, as well as inject the
visual information into the unimodal BERT model by at-
tending the channel-wise visual features to different textual
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(a) Multimodal Expanded CNN. (b) Multimodal Expanded Bert.

CNN backbone Bert backbone

Figure 1. The overall architecture of the proposed approach. The information of other modalities can be integrated into the unimodal
backbones via the MI2P units attached to different layers of the unimodal models. The unimodal backbones are fine-tuned jointly with the
MI2P units. The parameters of the external pre-trained models displayed in blue are fixed during the training phase.

words. As plug-ins, MI2P can be flexibly attached to mul-
tiple layers of the unimodal models, in order to model the
inter-modal interactions of different abstraction levels. Our
approach requires minimum changes in the original network
structures of the unimodal models.
Multimodal Expanded CNN. In this part, we introduce the
detail how the CNN backbone is expanded for multimodal
recognition. For a image-text pair consisted by Zi and Ti,
we first pass the text features Ti through an external pre-
trained BERT model and obtain the high-level representa-
tions T

′

i ∈ Rli×d. The language features T
′

i will then be
integrated into the CNN backbone via the MI2P plug-ins
attached to different layers of CNN.

Suppose a MI2P plug-in is attached at the k-th layer of
the CNN backbone. Denote by Zk

i ∈ Rck×hk×wk

the im-
age features in the k-th layer of CNN. The MI2P plug-in
integrates the language features T

′

i into the CNN backbone
by attending the word-wise textual features of T

′

i to differ-
ent visual channels. To this end, we use Zk

i to compute the
query and T

′

i to compute the key and value. Considering
the spatial characteristic of the channel-wise features, we
compute the query vectors Qk

i ∈ Rck×dq by performing the
convolution operation with dq kernels on each channel of
Zk
i and then aggregating the feature maps via average pool-

ing (see Fig. 2(a)). The key and value vectors are generated
via linear transformation: Kk

i = T
′

iW
k
K , V k

i = T
′

iW
k
V ,

where W k
K ∈ Rd×dk and W k

V ∈ Rd×dv . One individual
head of the cross-modal attention operation is formulated
as follows:

∆Zk
i = CAk

l→v(T
′

i , Z
k
i )

= softmax(
Qk

iK
k
i
T

√
dk

)V k
i ,

(1)

where ∆Zk
i ∈ Rck×dv . With h attention heads, the dimen-

sion of ∆Zk
i will be ck × hdv (the values of h and dv need

to satisfy the condition hdv = hkwk). We then reshape
∆Zk

i as Zk
i ∈ Rck×hk×wk

. ∆Zk
i can be considered as the

cross-modal transformation of T
′

i . The semantic patterns
of T

′

i are injected into different visual channels according
to modeled inter-modal interactions and augment the visual
content of Zk

i in each channel: Zk
i = Zk

i + ∆Zk
i . We il-

lustrate the above operations in Fig. 2(a). In order to imple-
ment inter-modal interactions between the visual and tex-
tual modalities on multiple abstraction levels (see the dis-
cussion in Section 1), the MI2P units are attached to differ-
ent layers of the CNN backbone.

The CNN backbone is fine-tuned together with the at-
tached MI2P units. The MI2P units will be trained to
augment the mid-level features of the CNN backbone in a
proper manner, i.e., enrich the semantic patterns of the vi-
sual channels but not suppress the intra-modal processing of
the image features. Armed with the MI2P attachments, the
unimodal CNN can obtain better recognition performance
by integrating the language information from texts.
Multimodal Expanded BERT. In this part, we introduce
the detail how the language BERT is expanded for multi-
modal recognition. For each image-text pair (Zi, Ti), we
first pass the image features Zi through an external pre-
trained CNN model and obtain the high-level representa-
tions Z

′

i ∈ Rc′×h′×w′
. The image features Z

′

i will then
be integrated into the BERT backbone via the MI2P units
attached to different layers of BERT.

Suppose a MI2P plug-in is attached at the k-th layer of
the language BERT model. Denote by T k

i ∈ Rli×d the tex-
tual features in the k-th layer of BERT. The MI2P plug-in
integrates the visual features Z

′

i into the BERT backbone
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(a) The MI2P units attached to the CNN model. (b) The MI2P units attached to the Bert model.

cross-modal attention cross-modal attention

injected textual
feature

injected visual
featureCNN feature Bert feature

transformed  
textual feature

transformed  
visual feature

Figure 2. The detailed operations in the MI2P attachments. (a) The MI2P attachments inject the information of T
′
i (i.e., the language

modality) into the CNN model by attending the word-wise textual features to the channel-wise visual features. (b) For the language
BERT mode, the MI2P attachments inject the information of Z

′
i (i.e., the visual modality) into the language BERT model by attending the

channel-wise visual features to the word-wise textual features.

by attending the channel-wise visual features of Z
′

i to dif-
ferent textual words. To this end, we use T k

i to compute
the query and Z

′

i to compute the key and value. The op-
erations are similar to the ones introduced in multimodal
expanded CNN. In particular, we compute the key vectors
Kk

i ∈ Rc′×dk by performing the convolution operation with
dk kernels on each channel of Z

′

i and then aggregating the
feature maps via average pooling (see Fig. 2(b)). The query
and value vectors are generated via linear transformation:
Qk

i = T k
i W

k
K , V k

i = Ẑ
′

iW
k
V , where Ẑ

′

i ∈ Rc′×h′w′
is

reshaped from Z
′

i , W
k
Q ∈ Rd×dq , W k

V ∈ Rh′w′×dv . One in-
dividual head of the cross-modal attention operation is for-
mulated as:

∆T k
i = CAk

v→l(Z
′

i , T
k
i )

= softmax(
Qk

iK
k
i
T

√
dk

)V k
i ,

(2)

where ∆T k
i ∈ Rli×dv . With h attention heads, the dimen-

sion of ∆T k
i will be li × hdv (the values of h and dv need

to satisfy the condition hdv = d). The semantic patterns
of Z

′

i are injected into different textual words according to
modeled inter-modal interactions and augment the language
content of T k

i in each word: T k
i = T k

i + ∆T k
i . The above

operations are illustrated in Fig. 2(b). Similarly, the MI2P
units are also attached to different layers of the language
BERT model, with the consideration of modeling the inter-
modal interactions between the visual and textual modali-
ties on multiple abstraction levels. After fine-tuned together
with the attached MI2P units, the language BERT model
can be expanded to integrate the visual information of im-
ages for prediction.

3.4. Late fusion strategy

Both the multimodal expanded CNN and BERT mod-
els can perform image-text multimodal recognition inde-
pendently. In order to further improve the performance, we
can also conduct late fusion on top of the expanded uni-
modal models. Different late fusion strategies, including
the commonly used score fusion (i.e., averaging the clas-
sification scores), feature concatenation (i.e., concatenating
the global features) and the recent cross-attention (i.e., fil-
tering the concatenated features via the cross-attention op-
eration in [1]), are implemented in our experiments. The
multimodal expanded CNN and BERT models are trained
jointly if the late fusion strategy is adopted.

4. Experiments

4.1. Experimental setup

We conduct experiments on the standard image-text
multimodal classification benchmarks, including Crisis-
MMD [3], Food101 [28] and MM-IMDB [20].

CrisisMMD. This benchmark focuses on detecting cri-
sis events for emergency response based on social media
posts [3]. In the dataset, each sample is associated with an
image-tweet pair collected by searching hashtags in Twit-
ter. This benchmark contains three sub-tasks. Specifically,
task1 mainly focuses on recognizing whether a social me-
dia post is informative or uninformative for humanitarian
aid purposes. In task2, the objective is to recognize the
humanitarian categories (i.e., infrastructure damage, vehi-
cle damage, rescue efforts, affected individuals and others)
based on each image-tweet pair. In task3, the objective is
to assess the severity (i.e., severe, mild, and none) of the
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Table 1. The sample number in different data splits of each setting.

Setting Training split Validation split Testing split
CrisisMMD (Task1) 9601 1573 1534
CrisisMMD (Task2) 2874 477 451
CrisisMMD (Task3) 2461 529 530
Food101 58131 6452 21519
MM-IMDB 15552 2608 7799

Table 2. The hyper-parameters used in each setting. The notation
Crisis-T1 denotes task1 of the CrisisMMD benchmark, and so on.

Crisis-T1 Crisis-T2 Crisis-T3 Food101 IMDB
Batch size 128 128 128 256 128
Epoch number 50 40 40 100 80
Learning rate 3.5e-5 2.5e-5 5e-5 7.5e-5 5e-5

damages reported in social media posts.

Food101. In this benchmark, each sample is associated
with a recipe description scraped from web pages and a cor-
responding image obtained from Google Image Search [28].
The web pages have been processed into raw texts via
html2text. The task is to classify each recipe-image pair
from 101 food labels.

MM-IMDB. In this benchmark, each sample is associ-
ated with a movie plot outline and a corresponding movie
poster [20]. The goal is to predict the movie genre based on
the plot-poster pairs. Different from the above settings, this
benchmark is featured as a multi-label learning task, since
each movie can have multiple genres.

Table 1 shows the sample number in different data splits
of each setting. The data used in our experiments do
not contain personally identifiable information or offensive
content.

4.2. Implementation details

We adopt DenseNet pre-trained on ImageNet [11] as
the CNN backbone and the standard BERT pre-trained on
BooksCorpus and English Wikipedia [5] as the language
backbone. DenseNet contains five dense blocks and we at-
tach the MI2P units to the endings of the first four blocks.
The attention head of the attention operation is set to 8.
BERT contains 12 transformer layers and we attach the
MI2P units to all the layers. The attention head h of the
attention operation is set to 12. The other important hyper-
parameters are displayed in Table 2. We adopt Adam as the
optimizer. The learning rate is fixed during training. The
hyper-parameters are determined on the validation set. The
models are trained on 24 T40 GPUs.

4.3. Performance comparison

Our proposed approach is compared to the original uni-
modal networks (i.e., DenseNet and language BERT), as

well as the existing state-of-the-art image-text multimodal
classification methods, including [1,7,12,14–16,18,20,26].
Of these, the works [1, 7, 15, 20, 26] mainly focus on per-
forming multimodal fusion on the global features produced
from each unimodal backbone; the works [12,14,16,18] are
the recently proposed pre-trained multimodal BERT mod-
els which can be fine-tuned for image-text multimodal clas-
sification. The fine-grained inter-modal interactions can
be modeled by the attention mechanism of the multimodal
BERT models. Moreover, we also compare our approach
to score fusion (i.e., averaging the classification scores of
each unimodal model) and feature concatenation (i.e., con-
catenating the global features produced by each unimodal
backbone) which are commonly used as the standard base-
lines for the multimodal recognition tasks.

CrisisMMD. We display the comparison on the Crisis-
MMD benchmark in Table 3. Since the previous works
have made changes in the standard dataset, we reproduce
the performance of the compared baselines for a fair com-
parison. In agreement with the previous work [1], we eval-
uate the performance by the metrics of classification accu-
racy, Macro F1-score and weighted F1-score.

From Table 3, we can draw the following observations.
First, the unimodal models perform worse than the mul-
timodal classification approaches. Second, our proposed
MI2P units can clearly improve the performance of the
unimodal models (see the performance of ME BERT and
ME DenseNet). Moreover, the same late fusion strategies
performed on the multimodal expanded models can ob-
tain significantly better performance than fusing the origi-
nal unimodal models when we compare Score Fusion, Fea-
ture Concat and Cross-attention with ME Score Fusion,
ME Feature Concat and ME Cross-attention, respectively.
The performance improvement can be attributed to the fine-
grained inter-modal interactions modeled in the interme-
diate layers of DenseNet and BERT. Finally, we can see
that the large pre-trained multimodal BERT models are sub-
optimal for multimodal classification (see the performance
of MMBT, VisualBERT, PixelBERT and VilT), which is
consistent with our previous discussion. In general, our
approach consistently outperforms the compared baselines
with a large performance gain.

Food101 & MM-IMDB. We display the performance com-
parison on MM-IMDB and Food101 in Table 4. Similarly,
we also reproduce the performance of the compared base-
lines. In agreement with the previous works [14, 15], we
evaluate the performance by the metrics of classification
accuracy in the Food101 benchmark and by the metrics
of Macro F1-score and Micro F1-score in the MM-IMDB
benchmark. Similar observations can be drawn as in the
above setting. Our approach can consistently outperform
the compared baselines.
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Table 3. Comparisons on CrisisMMD in terms of classification accuracy (%), Macro F1-score (%) and weighted F1-score (%). The
notation “ME DenseNet” denotes the multimodal expanded DenseNet, and so on. The notation “ME Score Fusion” denotes performing
score fusion on the multimodal expanded DenseNet and BERT, and so on.

Method Task 1 Task 2 Task 3
Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F

Unimodal DenseNet 81.6 79.1 81.2 83.4 60.5 87.0 62.9 52.3 66.1
Unimodal BERT 84.9 81.2 83.3 86.1 66.8 87.8 68.2 45.0 61.1
Score Fusion 88.2 83.5 85.3 86.9 54.0 88.9 71.2 53.5 66.3
Feature Concat 87.6 85.2 86.5 89.1 65.9 90.3 68.4 43.1 55.7
Cross-attention [1] 88.4 87.6 88.7 90.0 67.8 90.2 72.9 60.1 69.7
CentralNet [26] 87.8 85.3 86.1 89.3 64.7 89.8 71.1 57.4 68.7
GMU [20] 87.2 84.6 85.7 88.7 64.3 89.1 70.6 57.1 68.2
CBP [7] 87.9 85.6 86.4 90.2 66.1 89.8 65.8 60.4 69.3
CBGP [15] 88.1 86.7 87.3 84.7 65.1 88.7 67.9 50.7 64.6
MMBT [14] 86.4 85.3 86.2 88.7 64.9 89.6 70.1 59.2 68.7
VisualBERT [18] 88.1 86.7 88.6 87.5 64.7 86.1 66.3 56.7 62.1
PixelBERT [12] 88.7 86.4 87.1 89.1 66.5 88.9 65.2 57.3 63.7
VilT [16] 87.6 85.1 88.0 86.7 61.2 87.2 67.6 58.4 65.0
ME DenseNet 89.3 89.1 88.6 90.7 75.8 91.6 71.3 61.5 72.1
ME BERT 90.3 89.8 89.3 91.4 83.2 91.7 72.1 61.4 72.6
ME Score Fusion 91.6 90.8 90.6 93.3 84.9 93.0 75.8 63.9 75.0
ME Feature Concat 90.8 91.6 90.3 92.9 85.1 93.1 74.3 62.1 74.3
ME Cross-attention 92.0 91.2 91.3 93.5 85.6 93.6 76.5 63.8 75.7

Table 4. Comparisons on the MM-IMDB benchmark in terms of
Macro-F1 score (%) and Micro-F1 score (%) and comparisons on
the Food101 benchmark in terms of classification accuracy (%).

Method MM-IMDB Food101
Macro F1 Micro F1 Acc

Unimodal DenseNet 37.3 46.7 60.8
Unimodal BERT 57.9 60.7 87.9
Score Fusion 59.3 61.6 89.3
Feature Concat 59.8 61.9 89.9
Cross-attention [1] 60.4 63.8 91.3
CentralNet [26] 54.8 63.2 91.5
GMU [20] 53.9 62.7 90.6
CBP [7] 53.2 63.1 89.4
CBGP [15] 52.9 61.8 89.7
MMBT [14] 62.3 67.1 91.7
VisualBERT [18] 62.8 68.1 92.3
PixelBERT [12] 63.1 69.3 92.6
VilT [16] 63.0 68.6 92.9
ME DenseNet 61.4 66.3 90.6
ME BERT 62.6 67.5 91.9
ME Score Fusion 63.2 69.8 93.6
ME Feature Concat 63.1 70.2 94.7
ME Cross-attention 64.2 70.8 94.6

4.4. Analysis

Ablation study. Table 5 displays the ablation study on the
humanitarian categorization task of the CrisisMMD bench-
mark. The first row displays the performance of unimodal
DenseNet. In the next five rows, we attach the MI2P units to
different layers of the DenseNet backbone. We can see that
it is effective to inject the multimodal information into mul-

Table 5. Ablation study on the humanitarian categorization task
of the CrisisMMD benchmark. The notation MI2P{} denotes the
MI2P units attached to the corresponding dense blocks or trans-
former layers.

Model design Acc(%) M-F1(%) W-F1(%)
DenseNet 83.4 60.5 87.0
DenseNet + MI2P{1} 88.1 67.8 88.7
DenseNet + MI2P{2} 87.3 65.3 87.1
DenseNet + MI2P{3} 87.9 66.1 88.2
DenseNet + MI2P{4} 88.4 68.2 88.6
DenseNet + MI2P{1-4} 90.7 75.8 91.6
BERT 86.1 66.8 87.8
Bert + MI2P{1-3} 88.1 71.4 87.9
Bert + MI2P{4-6} 87.5 71.3 87.2
Bert + MI2P{7-9} 87.6 73.4 87.3
Bert + MI2P{10-12} 88.9 74.8 89.1
Bert + MI2P{1-12} 91.4 83.2 91.7

tiple layers of the unimodal backbone, which is consistent
with our motivation of modeling inter-modal interactions of
different abstraction levels. We also conduct the similar ab-
lation study on the language BERT model and can draw the
similar observations (see the next six rows).

In order to verify the scalability of our proposed ap-
proach, we also conduct experiments by attaching the MI2P
units to other large pre-trained neural models, i.e., ResNet-
50 [10], XLNet [32], and CLIP [21]. From Table 6, we can
clearly see that the proposed MI2P units again improve the
performance of the unimodal models by a large margin.
Visualization. Finally, we display the visualization exam-

15498



Thanks to the Texas National Guard for
their help to rescue flooded Texans.

Thanks to the Texas National Guard for
their help to rescue flooded Texans.

Thanks to the Texas National Guard for
their help to rescue flooded Texans.

Sri Lanka Floods Update: Safe to Travel. Sri Lanka Floods Update: Safe to Travel. Sri Lanka Floods Update: Safe to Travel.

Figure 3. Visualization examples of the attended visual channels and the textual words in the CrisisMMD benchmark. We conduct the
visualization by observing the inter-modal attention weights of the MI2P units attached to the last transformer layer of BERT.

ples of the modeled inter-modal interactions between the
visual channels and the textual words in the CrisisMMD
benchmark. From Fig. 3, we can see that the MI2P units can
model reasonable inter-modal interactions between images
and texts. The semantic patterns of the word features can be
enriched by the attended channel-wise visual features.

5. Limitation and Future Work
Various large pre-trained models (e.g., Vision Trans-

former (ViT) [6], MLP-Mixer [24] and ConvMixer) are pro-
posed in the recent year. We do not apply our approach to
these models considering that they have not been widely
recognized by the computer vision community compared
with the CNN models. Moreover, some key factors why
these models can be effective (e.g., what represents a visual
channel in ViT) remain to be revealed. Our future works
will try to expand these new models for multimodal recog-
nition with reliable interpretability. Moreover, we will also
extend our approach to the acoustic field by integrating mul-
timodal information into the large pre-trained acoustic mod-
els (e.g., SLU [27] and acoustic Transformer [35]).

6. Conclusion
This work proposes to expand the large pre-trained uni-

modal models for image-text multimodal classification. To
this end, we propose the MI2P plug-in which can be flex-
ibly attached to different layers of the unimodal models.
The MI2P plug-in attachments can integrate the features
of other modalities into the unimodal models by model-
ing the fine-grained cross-modal interactions between the

Table 6. The performance of other multimodal expanded pre-
trained models on the humanitarian categorization task of the Cri-
sisMMD benchmark.

Model design Acc(%) M-F1(%) W-F1(%)
ResNet-50 83.9 61.4 87.6
ME ResNet-50 91.4 76.3 91.9
XLNet 87.8 67.4 88.3
ME XLNet 92.1 84.6 92.8
CLIP-Text-Encoder 86.3 61.1 86.8
ME CLIP-Text-Encoder 90.4 76.2 90.2
CLIP-Img-Encoder 84.3 60.3 84.1
ME CLIP-Img-Encoder 89.6 74.7 90.1

channel-wise visual features and the word-wise textual fea-
tures. Compared with the existing methods for image-text
multimodal classification, our approach can better balance
the inter-modal interaction and intra-modal processing. We
conduct extensive experiments on different benchmarks of
image-text multimodal classification.
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