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Figure 1. Example animations generated by our Granularly Controlled Audio-Visual Talking Heads (GC-AVT). Given a reference
identity frame, GC-AVT generates audio-visual driven talking head video with other emotional expression source and pose source video
frames independently. The mouth shapes of driven results are matched with the synced video (on top row), and the expressions of driven
results are matched with the expression source (on bottom row) while the poses are matched with the pose source (left column).

Abstract

Generating expressive talking heads is essential for cre-
ating virtual humans. However, existing one- or few-shot
methods focus on lip-sync and head motion, ignoring the
emotional expressions that make talking faces realistic. In
this paper, we propose the Granularly Controlled Audio-
Visual Talking Heads (GC-AVT), which controls lip move-
ments, head poses, and facial expressions of a talking head
in a granular manner. Our insight is to decouple the audio-
visual driving sources through prior-based pre-processing
designs. Detailedly, we disassemble the driving image into
three complementary parts including: 1) a cropped mouth

*Equal contribution.
Corresponding authors.

that facilitates lip-sync; 2) a masked head that implicitly
learns pose; and 3) the upper face which works corpo-
rately and complementarily with a time-shifted mouth to
contribute the expression. Interestingly, the encoded fea-
tures from the three sources are integrally balanced through
reconstruction training. Extensive experiments show that
our method generates expressive faces with not only synced
mouth shapes, controllable poses, but precisely animated
emotional expressions as well.

1. Introduction

With the rapid development of automatic video genera-
tion technology, the task of audio-driven talking head gen-
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eration has drawn much attention due to its extensive real-
world applications such as creating virtual anchors, digi-
tal avatars, and animated movies. In order to achieve con-
venient deployment with a generalized model, researchers
have proposed to drive only a single or a few frames to talk
with audios [8, 10,46,48,50,51]. While accurate lip sync
has been almost realized, the ability to control the facial ex-
pression, which is crucial for creating human-like talking
heads, has not been fully explored.

A great number of previous methods focus only on the
lip-sync accuracy with audios [7, 10, 27, 30, 48]. More
recently, researchers propose to generate rhythmic [0, 42]
or changeable head poses [50] along with talking heads.
However, their methods cannot change detailed expressions
such as eyebrows. On the other hand, methods that gen-
erate emotional dynamics [18,21,35] are basically person-
specific, i.e., one model has to be trained for one specific
person. Moreover, their models rely on labeled emotional
data, thus can only cover limited expressions.

In real-world scenes, people could speak the same con-
tent with fixed stress and intonation but flexible expressions
and head motions. Inspired by this observation, we argue
that the generation of emotional expressions can be divided
from mouth movements and poses, that the three of them
could be controlled independently. This is technically chal-
lenging for nearly all existing models. 1) For methods pre-
dicting intermediate structural representation such as 2D or
3D landmarks [0, 8, 51], the above information is inher-
ently entangled. Even mainstream 3D face models, such as
3D Face Morphable Model (3DMM) [1], represent mouth
movement and facial expression within the same parame-
ter. Besides, the accuracy of intermediate representations
will be compromised under extreme cases. 2) For latent
feature learning methods [3, 10,48, 50], the expression in-
formation can hardly be individually distilled, and current
works [3, 50] do not support disentangled expression and
mouth control.

In this work, we propose Granularly Controlled
Audio-Visual Talking Heads (GC-AVT), which drives a
portrait head from a higher level of granularity. Avoid
using any intermediate representation, our method is pure
learning-based without specific emotion labels. The most
intriguing property of our model is the independent fa-
cial control from three complementary perspectives: speech
content, head pose, and emotional expression, which makes
our talking head more expressive. As shown in Fig 1, while
the head pose and expression information are derived from
visual sources, the mouth movement can be decided by ei-
ther audio or visual information.

Our insight is to explicitly divide the driving informa-
tion into granular parts through delicate pre-processing
designs. Different from previous methods that learn non-
identity representation in a holistic view [3, 50], we argue

that all information can be separately extracted in a com-
plementary manner. We analyze the key-factors that affect
each desired facial area and adopt different types of mask-
ing and augmentation schemes. Three functional inputs are
thus formulated. Audio input associates explicitly with the
mouth shapes, thus the temporal alignment between speech
and cropped mouths is leveraged to account for the speech
content information. Then we expect that the emotional ex-
pressions could be driven by additional visual sources. In
particular, we factorize the emotion of a whole face into an
upper-face and a time-shifted mouth. The two of them are
seamlessly collaborated together to provide precise expres-
sions. Finally, an implicit pose code is devised from the
whole face. Three encoders are leveraged for the individ-
ual information extraction, and a style-based generator pro-
cesses them through reconstruction training. Experiments
demonstrate that our method manages to generate an ex-
pressive talking head with the precise mouth shape, head
pose, and emotional expression control.

The contributions of this work are summarized as fol-
lows: (1) We propose the Granularly Controlled Audio-
Visual Talking Heads (GC-AVT) System, which generates
expressive portrait videos from the granular control of pose,
audio, and an expression video. (2) We identify three del-
icate pre-processing procedures for handling the three dif-
ferent control sources. (3) By integrating audio-visual syn-
chronization, our system generates accurate mouth move-
ments that can be driven by either audio or video.

2. Related work

Audio-Driven Talking Head Generation. The task of an-
imating virtual humans [5, 22, 23, 50, 52] from arbitrary
speech sequence has drawn considerable attention in both
computer vision and graphics, among which talking face
generation is particular important. Earlier works [32,36,37]
require a large number of video footage of a target per-
son by modeling the mouth area through either retrieval
or graphics-based methods. With the develop of deep
learning, a number of works leverage structural informa-
tion within GAN-based pipelines [18, 25,29, 33] to gener-
ate person-specific high-quality results. Other researchers
tend to seek speaker-independent settings that can ad-
dress all identities through one or more framework refer-
ences [8,10,30,48,50,51]. Chung et al. [10] firstly propose
an end-to-end reconstruction-based network in an image-to-
image translation manner based on audios. Then [48] uses
adversarial training to further separate identity from word.
Wav2Lip [27] particularly proposes to inpaint the mouth ar-
eas. The basic idea behind these reconstruction-based meth-
ods is to synchronize mouth motion in video with speech
content in audio. Facial expressions and head poses, on the
other hand, are neglected.

More recently a few methods [6, 18,31,50,51] have been
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proposed not only to solve the problem of synchronization
but add extra components to create a more vivid talking
head. Zhou et al. [48] and Yi et al. [51] models rhythmic
head motions with 3D representations. PC-AVS [50] lever-
age another pose source video to control head poses while
driving talking faces with audio sequences. [46] produces
the animation parameters of mouth, eyebrow and head pose
simultaneously and synthesizes talking face videos from
dense flow. Particularly, Wang et al, [35] and Ji et al. [18]
propose to alter emotions, but one model has to be trained
on one person. Controlling different attributes of the por-
trait video simultaneously in the one-shot manner has been
proven to be difficult.

Visually Driven Face Reenactment. The task of sace
reenactment aims to generate talking head videos by trans-
ferring the facial dynamics from a different actor’s video.
Most techniques rely on structural information such as land-
marks [16, 40,43, 44] or 3D models [4, 14, 19, 20, 34, 47].
Deep Video Portraits [20] is capable of producing high-
quality photo-realistic dubbing results. It keeps the target
actor’s identity and pose while capturing the source actor’s
facial emotions, but should be trained per target video. Re-
cently, FReeNet [44] utilize a unified landmark converter
to transfer facial expressions between identities. Moreover,
latent pose descriptors based on the reconstruction losses
[3,24] are proposed for cross-person reenactment. These
works aim to handle multi-identity face reenactment, and
our work expands the task’s complexity by involving gran-
ularly control.

3. Our Approach

In this section, we describe our Granularly Controlled
Audio-Visual Talking Heads (GC-AVT) system, which
encodes the head pose, speech content, emotional expres-
sion, together with person identity into latent spaces and
generates the driven talking head with either audio or video.
First, we briefly introduce the pipeline of our approach
in Sec. 3.1. Next, we introduce the prior-based face pre-
processing which is crucial for devising independent gran-
ular control sources (Sec. 3.2). Finally, we introduce the
learning process of the pipeline 3.3.

3.1. Overall Formulation

The whole pipeline of our method is illustrated in Fig. 2.
We adopt the typical cross-frame self-reconstruction [10,

] setting for training, and expect the driving informa-
tion of speech content, pose, and expression could originate
from completely different videos during inference.

Given a pre-processed video clip with NV frames V =
(I1,...,Iy) and its corresponding audio spectrograms
A = (ai,...,an), we sample a set of K frames
{Ii1, Lia, ..., I;x } from V randomly as the representatives
for identity information. This representation is supervised

by a simple identity loss [3]. Then we randomly sample
one frame I, from V' as the source of all driving conditions
(i.e. expression, pose, and speech content). Our goal is to
recover [; based on the corresponding audio spectrogram
ay, and the desired information from [. This is inherently
difficult for two reasons: (1) The input source Iy, is also the
target, the network might take a shortcut during the recon-
struction. (2) The granular information desired is entangled
together and difficult to discriminate and extract.

To this end, we propose that each desired driving part
can be specifically identified from the input image do-
main. Specifically, I} is decomposed into three comple-
mentary parts through delicate prior-based pre-processing.
As the identity information also requires modeling, a to-
tal of four visual encoders independently encode the iden-
tity, head pose, emotional expression, and speech content
(mouth shape) information into latent features named f;g4,
fps fes [ respectively. Specifically, f7 is further lever-
aged to assist the learning of the audio feature f¢. The two
features should lie in a same latent space. At last, we ex-
pect that one generator G is capable of handling all informa-
tion. The features can be assembled together as the overall
audio-based feature f%;, = {fia, fp, fe, £} or visual-based
feature fY, = {fia, fp, fe, f¢}. They are sent into G for
reconstructing I and I},

The detailed pre-processing steps are described in
Sec. 3.2 and the learning objectives are illustrated in
Sec. 3.3.

3.2. Prior-based Pre-Processing

As stated above, three particular types of pre-processing
paradigms are designed based on the prior knowledge of
different functional areas of a face. Each of them corre-
sponds to a driving source, representing disentangled infor-
mation.

While detailed pre-processing procedures are different,
identity information should be removed from all sources.
Specifically, it is achieved by pixel-wise augmentation con-
sisting of color transfer, blurring, sharpening, and JPEG
compression. This augmentation is applied to all three pre-
processing steps.

On the other hand, masking is widely applied in our
implementations, where the landmarks of Ij; and the fore-
ground segmentation map are detected. The segmentation
map is also used for wiping out background interference.
Note that we do not leverage the landmarks as an interme-
diate representation. They are used only as guidance for
data pre-processing, thus we do not suffer from the error
accumulation problem caused by inaccurate predictions.
Pre-processing for Expression. The extraction of expres-
sion information alone without the semantics on mouth
shapes has rarely been achieved before. One plausible way
is to mask out the mouth based on landmarks around it. This
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Figure 2. The proposed architecture of our Granularly Controlled Audio-Visual Talking Heads (GC-AVT). The data pre-processing sample
K + 1 frames from a video frame sequence, one of the selected frames is used to generate training data for pose encoder (£}), emotional
expression encoder (), and content encoder (F.) through different data augmentation methods, which will be described in Sec. 3.2. The
rest K frames are used as input to the identity encoder (£;) and will be encoded into latent feature f;4. The pose encoder and the emotional
expression encoder encode the corresponding augmented images into f, and fe. respectively. To encode the speech content information,
we design a visual-audio synchronization network (E. and FE,) that encode the visual frame and the audio spectrum into latent feature f.
and f¢. The features are assembled together and fed to the Generator. The learning of the pipeline is described in Sec. 3.3.

is to maintain the expressions on the upper face. However,
the influence of the mouth cannot be directly ignored. Emo-
tional information also has effects on the mouth, e.g., we
can infer that a person is smiling and talking at the same
time by looking at the mouth movements only.

Our method is built upon the observation that the seman-
tics in mouth shapes change much more rapidly than emo-
tion. For example, a person rarely changes the emotion and
even the head pose within one second but could speak sev-
eral syllables. Thus we argue that a shortly time-shifted
frame Ij,; could possess the same emotional but different
semantic information in mouth shapes with 1.

Specifically, the mouth areas are cropped out from [ ;.
When : is reasonably small, the time-shifted mouth can be
seamlessly blended to I;. In this way, the precise expres-
sion and emotion information on the mouth are preserved.
Furthermore, an additional random rotation is applied for
erasing the pose information.

Pre-processing for Speech Content. The encoding of
speech content information from visual modality is in-
tended as a particular type of guidance for audio infor-
mation encoding. Specifically, researchers have verified
that the intrinsic temporal audio-visual synchronization lies
around the mouths [13,27]. Thus we leverage a cropped
out mouth of I;. The random rotation is also applied to the
speech content processing.

Pre-processing for Pose. It is simple and safe to mask out

the facial organs on a talking head to represent the head
pose information. We also devise the latent pose space as
a dimension of 12 and rely solely on networks for learning
the implicit pose information in a fully reconstruction-based
network as performed in [50].

3.3. Learning Procedures

Except for the simple learning objective on the identity
features, other learning constraints are designed from two
perspectives: 1) The constraints on speech content features
which synchronizes audio to the visual modality; 2) the
constraints on the reconstructed frames [ g' and I}C" (uni-
formly denoted as I;,) that implicitly balance the informa-
tion within all embeddings.

Learning Audio-Visual Synchronization. It has been
verified that learning audio-visual synchronization benefits
audio-visual cross-generation tasks generation [27,31, 48—

], and it would be easier to learn mouth shapes from the
visual domain [48].

Thus in order to stabilize the training, we prevent the
synchronization loss from affecting the visual branch and
update the audio branch alone. Detailedly, we adopt soft-
max contrastive loss. The distan(;‘f%s between two features
are measured as D(f?, f¢) = ‘fL \Tf“l’ where fY and f¢
are timely assembled v1sual and audio features from con-
secutive frames. Supposing a total of M ~ negative samples
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are leveraged, the contrastive learning is formulated as:

exp(D(f2, f2)) |
Y ) + 50, exp(D(f2G) )
(1)

L.=—lo
g[exp(D(

where f;’(;) denotes the jth negative sample.
Reconstruction Objectives. We directly borrow the gen-
erator structure from [3], which relies on the AdalIN [17].
Note that the same set of losses are applied to both audio
and visual reconstructed images as I and I}’. The re-
construction training is generally supervised by pixel-wise
comparing L distances between I;, and I;. Two VGG-
19 models, one pre-trained on ImageNet classification and
one on face recognition are leveraged in the perceptual loss
manner [26, 38], where a total of N,4, feature maps are
leveraged. The three loss functions can be written as:

Lr, = I = I, (2)
N“gg

Ly = Y [VGG;(Ix) — VGG, (I})x
=1
Nugg

+ > IVGGI (1) = VGG ““(I) |- ()
i=1
To further improve the generation quality, a multi-scale

discriminator D with Np layers is involved with the gener-
ative adversarial loss:

Np
Loan = minmax > (B [log Dy (1))

n=1

+ Efall(k) [IOg(l - Dn(Il/c))]v

“4)

The overall constraints during training can be summarized
as:

Loy = Loan + ML, + AaLyge + A3Le, &)

where the As are coefficients.

Notably, we not only constrain the embedding space of
audio and visual speech content features but also use both of
them for reconstruction training. Thus our method supports
talking face generation with mouth shapes driven by both
an audio clip or a mouth sequence.

4. Experiments
4.1. Experimental Settings

Dataset. Our method is trained on VoxCeleb2 [11] and
evaluated on both Voxceleb2 and MEAD [35].

¢ VoxCeleb2 [11] is an audio-visual dataset which is
popularly used in the area of talking head generation.

We use the URLs provided by VoxCeleb2 to download
the original videos, collecting roughly 2,000 speaker
identities for training and 100 for evaluation.

* MEAD [35] is a high-quality emotional audio-visual
dataset with over 30 available actors/actresses and
eight emotion categories at three different intensity
levels. The frontal-view videos in this dataset are
leveraged only for testing.

Implementation Details: All videos are processed at 25
frames per second. For each frame, we detect the face with
S3FD detector [45], then enlarge the bounding box by 80%
to keep the face in the center. The final cropped images are
of size 256x256. We apply the Graphonomy [ 5] model to
get background segmentation and mask out the background
in the pre-processing. We retrain a FAN model [2] to get
landmarks for each image. Similarly to [50], we process
the audios to 16kHz, then convert them to mel-spectrograms
with FFT window size 1280, hop length 160 and 80 Mel
filter-banks. For each video frame, 0.2s mel-spectrogram
with the target frame time-step in the middle are sampled as
condition.

In our method, the ID encoder is a ResNeXt-50 [41]
structure. We set K = 8 for the input of the identity encoder
and 512 dimension for the identity embedding output. Both
of the pose encoder and emotional expression encoder are
the MobileNetV2 [28] structure. The pose and emotional
expression embedding sizes are 12 and 256 respectively.
The content encoder and audio encoder are ResNetSE34
borrowed from [9], each generating a 256-dimension em-
bedding. We train our model for 80 epoch with a minibatch
of 16 samples on 32 GB Tesla V100 GPUs. We pretrain
the visual-audio synchronization with the contrastive loss
L. then joint train the whole pipeline end-to-end.
Comparing Methods: Our method focuses on audio-
driven talking head generation, thus we mainly compare
the audio-driven results of Ours (audio) with state-of-
the-arts audio-driven works [3, 27, 50]. Wav2Lip [27]
is a reconstruction-based method that focuses on produc-
ing accurate lip movements; MakeitTalk [51] is based on
3D landmarks for learning personalized head movements
under the audio-driven setting. PC-AVS [50] is also a
reconstruction-based framework and can generate lip syn-
chronization while controlling pose implicitly. Note that
our model could also adopt the visual-driven setting, thus
we compare the visual-driven results of Qurs (video) with
LPD [3], a head reenactment system. We compare all the
results generated by non-fine-tuned models directly for fair-
ness.

4.2. Quantitative Evaluation

Evaluation Metrics: To quantitatively evaluate different
methods, we compute four evaluation metrics under the
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Table 1. The comparison of quantitative results on Voxceleb2 [11] and MEAD [35]. For LMD and LMD,,, the lower the better, and the
higher the better for other metrics. Note that in this comparison the PC-AVS [50] fails on some frames because of the landmark detecting

failure and the results of it are just for reference.

Method MEAD VoxCeleb2
SSIMT  LMD] LMD,,| SynceonsT | SSIMT LMD| LMD,, | Synceons?
Ground Truth 1.000 0.000 0.000 4.770 1.000 0.000 0.000 5.543
Wav2Lip 0.747 3.543 4.014 4.674 0.704 4.139 3.662 5.218
MakeltTalk 0.618 4.102 4.249 3.926 0.624 5.358 4.689 4.887
PC-AVS 0.605 3.963 4.334 3.248 0.606 5.101 4.654 4.986
ours (audio) 0.659 2.764 3.252 3.730 0.710 3.025 3.356 5.250
LPD 0.669 2.762 2.966 3.355 0.707 4.176 4.035 5.213
ours (video) 0.671 2.483 2.349 3.435 0.739 2.757 2.811 5.149

self-driven setting on the test set of VoxCeleb2. They are:
SSIM [39] for generation quality; LMD for mean dis-
tance of all landmarks and LMD,,, for landmarks around
the mouths. We also borrow the confidence score Sync.,, f
from SyncNet [ 2] to evaluate the precision of lip synchro-
nization.

Evaluation Results: We use a similar experimental setting
with PC-AVS [50]. Specifically, we select the first frame
of each test video as the identity reference. Then the rest
frames are used as the sources of pose, emotional expres-
sion and speech information. The audios are used as driving
conditions to generate audio-driven results. We calculate
the numerical metrics between the generated results and the
ground truth.

The results are shown in Table 1. In this comparison, our
GC-AVT achieves comprehensively better results on both
datasets. Note that audio-driven methods and visual-driven
ones are not directly comparable, so we analysis them sep-
arately, and focus more on the audio-driven setting. In
terms of the lip sync accuracy, our audio setting achieves
a better LMD,,, than other methods, which proves that we
can generate good lip sync quality from one perspective.
Though we do not possess the highest confidence score
(Sync.o,, ¢). Our results are close to the ground truth, which
show competitive performance. Note that Wav2Lip directly
uses SyncNet in its loss function, thus naturally leading to
better results on this metric. Benefited from the pose control
and expression manipulation ability, our method is naturally
better on the general LMD metric. The SSIM score is suit-
able for Wav2Lip as their only inpaint missing areas. As for
the visual-driven setting, we observe several failure cases
in the LPD results, making their LMD and LMD,,, results
lower than ours.

4.3. Qualitative Evaluation

Comparisons with Other Methods. The comparing meth-
ods do not support granular control, therefore it’s unfair to
set too detailed sources. Since LPD [3] and PC-AVS [50]
can control the head pose of generated video, here we as-

ID reference

Driving
source

-«

A‘Jﬂld l‘?“ A <

LPD

Wav2Lip

PC-AVS

Ours
(video)

Ours
(audio)

Figure 3. Qualitative evaluation results. The driving source frames
are listed in first row. Wav2Lip [27] fails to generate the frames
with head pose similar to the driving source. The PC-AVS [50] can
generate most images with similar head pose to the driving source
but the result in second column is not quite accurate. Both LPD [3]
and our GC-AVT can generate driven results with accurate head
pose. The expression driven results are better than LPD [3].

sign the pose source, speech content source, and expression
source all as one single video denoted as driving source on
the Figure 3. Note that MakeitTalk [51] can neither control
pose nor generate accurate mouth shapes, thus we neglect
its results here.

We can see that Wav2Lip [27] can only leverage the pose
of the original video. Its background will be fixed still when
its input is a single image (see demo video). While PC-
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Figure 4. The qualitative results with different driving expression source and content source. The first row lists the identity reference while
the expression and content source frames are listed in the left column and right column respectively. Our GC-AVT can generate the vivid
driven results with the corresponding expression source and content source.

AVS [50] can mimic the pose of the driving source, its re-
sults are not quite precise on certain cases. Both of them can
only generate neutral expressions. The pose driving results
of LPD [3] are quite close to ours. Both generated results
of LPD [3] and Ours (video) have precise head pose with
the driving source. It can also be seen from the second col-
umn that, our pre-processing scheme enables the success-
ful emotional expression transfer from the source video to
our results. While such information is neglected in LPD.
In terms of the lip sync accuracy, we can see that both
our visual- and audio-driven results generate high-fidelity
mouth shapes which are aligned with the driving source and
outperforms the results of PC-AVS.

Evaluation on Emotional Expression Control. A remark-
able feature of our GC-AVT is that we can control the emo-
tional expression independently from the semantic mouth
shapes and head poses. We visualize the independent con-
trol of emotional expression, and speech content in Figure 4.
We frontalize all the generated results. As can be seen that
in the process of independent control, the emotional expres-
sion and the speech content can be well decoupled.

User Study. To further verify the quality of audio-driven
results by organizing a user study of 20 participants for
their opinions on 50 videos. Specifically, we randomly sam-
ple 5 videos as the driving source videos and 10 identity
reference images from Voxceleb2 dataset. Then we gen-
erate the 50 videos with the same setting as we described

in Sec. 4.1. The comparing methods are Wav2Lip [27],
MakeitTalk [51], PC-AVS [50] and our GC-AVT respec-
tively. The evaluation of user study is developed on three
dimensions for users: (1) Lip Sync Quality; (2) Expression
Realness and Richness. (3) Overall Fidality and Quality.
The widely used Mean Opinion Scores (MOS) is adopted
with rating scores from 1 to 5.

The rating results of our user study are listed in Table 2.
Our GC-AVT outperforms previous methods on the expres-
sion realness and richness by a large margin, which verifies
the effectiveness of our method in handling emotional ex-
pressions. And our results are apparently more vivid than
others. Although we do not score the best in lip sync qual-
ity, the results between the three methods are very close and
can be regarded as comparable.

4.4. Ablation Study

In this section, we study the effects of the losses setting
and the necessity of time-shift operation. Note that the ex-
periments are carried out on the VoxCeleb2 dataset with our
audio-driven setting.

For loss setting, we study the effects of VGG loss, VG-
GFace loss and Contrastive loss. The results are listed in
Table 3, where w/o VGG means without both VGG loss and
VGGFace loss. The contrastive loss is used for audio-visual
synchronization. In order to verify the effects of contrastive
loss, we test the LMD, LMD,,, and Sync.,,, s in Voxceleb2
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Table 2. User study on audio-driven methods, the evaluations are conducted on lip synchronization, the naturalness of facial expression
and video quality.

Method Wav2Lip [27] | MakeltTalk [51] | PC-AVS[50] | GC-AVT (Ours)
Lip Sync Quality 3.92 2.85 3.90 391
Expression Realness and Richness 2.65 2.68 3.16 4.21
Overall Fidelity and Quality 3.33 3.06 3.69 3.95

Table 3. Ablation study on Voxceleb2 [11]. °

‘A |

Method SSIM LMD LMD,,, Sync.o. s “
w/o VGG 0.662 4.753 4.212 4.586 ID source :
w/o Contrastive | 0.692 4.890 4.311 4.066 VGV(VE/FC;CG
w/o time-shift |0.684 4.311 3.704 4.760 —
Ground Truth | 1.000 0.000 0.000 5.543 w/o
ours (audio) 0.710 3.025 3.356 5.250 ‘5 Contrastive

Test setting Train setting

ID

Expression
reference SN 8

input
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Content
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Figure 5. Ablation study of the masking areas.

testset. As demonstrated in Table 3, the performances of
LMD, LMD,,, and Sync,,, s all get worse prominently. Be-
sides, we visualize the results of the ablation studies in Fig-
ure 6. Without the perceptual losses such as VGG loss and
VGGFace loss, the quality of generated images are obvi-
ously poor, and the performance of attribute control is also
worse than the results of our complete setting. The speech
content driving results are affected when we remove the
contrastive loss. The speech driven results are not synced
with the driving source. Without the time-shift operation
the speech driven results is affected but the quality of the
generated image is hardly affected.

We further show the ablation studies on the mask de-
signs. Experiments are carried out on the following settings
shown in Fig. 5: (a) no masks are applied; (b) no mask on
mouth; (¢) no mask on expression; (d) smaller mouth area;
and (e) time-shifted mouth on expression. Setting (a), (b),
(c) would confuse the training procedure of the networks,
which eventually leads to the loss of the speech content con-
trol ability. The results of setting (a) - (f) are shown in the
figure below. Our setting e) achieves the best results. The
qualitative and quantitative comparisons will be added to
the final version.

5. Conclusion and Discussion

Conclusion. In this paper, we propose the Granu-
larly Controlled Audio-Visual Talking Heads (GC-AVT)

w/o
VGG

GC-AVT

Figure 6. Ablation study for losses setting with visual results. As
shown in second row and the fourth row, without either VGGFace
loss or VGG loss, the quality of generated results decreased sig-
nificantly. The speech content driving results are affected without
the contrastive loss as shown in the third row.

pipeline. By explicitly divide the driving information into
granular parts through delicate pre-processing designs, GC-
AVT supports talking head generation controlled from the
perspectives of speech-content, pose, expressions. To the
best of our knowledge, such property has rarely been
achieved before. Moreover, it supports accurate lip sync
from both audio and visual inputs, which enlarges applica-
tions of our system.

Limitations. One of most important limitations is that the
backgrounds are masked our in our method, thus we cannot
handle sophisticated background changes. Moreover, our
method cannot generate high resolution results.

Ethical Statements. Although animating talking heads has
extensive applications, it might be misused for deepfake
creation and media manipulation. We will restrict the us-
age of our model and share it with the deepfake detection
community.
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