SEEG: Semantic Energized Co-speech Gesture Generation

Yuanzhi Liang*1,2, Qianyu Feng3, Linchao Zhu2, Li Hu1, Pan Pan1, and Yi Yang3
1Alibaba DAMO Academy, Alibaba Group
2ReLER Lab, AAI, University of Technology Sydney
3Zhejiang University
liangyzh18@outlook.com qianyufeng718@gmail.com linchao.zhu@uts.edu.au
hooks.hl@alibaba-inc.com panpan.pp@alibaba-inc.com yangyics@zju.edu.cn

Abstract

Talking gesture generation is a practical yet challenging task that aims to synthesize gestures in line with speech. Gestures with meaningful signs can better convey useful information and arouse sympathy in the audience. Current works focus on aligning gestures with the speech rhythms, which are difficult to mine the semantics and model semantic gestures explicitly. This paper proposes a novel Semantic Energized Generation (SEEG) method for semantic-aware gesture generation. Our method contains two parts: DEcoupled Mining module (DEM) and Semantic Energizing Module (SEM). DEM decouples the semantic-irrelevant information from inputs and separately mines information for the beat and semantic gestures. SEM conducts semantic learning and produces semantic gestures. Apart from representational similarity, SEM requires the predictions to express the same semantics as the ground truth. Besides, a semantic prompter is designed in SEM to leverage the semantic-aware supervision to predictions. This promotes the networks to learn and generate semantic gestures. Experimental results reported in three metrics on different benchmarks prove that SEEG efficiently mines semantic cues and generates semantic gestures. SEEG outperforms other methods in all semantic-aware evaluations on different datasets. Qualitative evaluations also indicate the superiority of SEEG in semantic expressiveness. Code is available via https://github.com/akira-l/SEEG.

1. Introduction

Recently, in synthesizing digital humans, vivid gestures can primarily improve reality, naturalness, and efficient in-

*This work was performed at Alibaba DAMO Academy, Alibaba Group.
and body language. It provides a new opportunity for realistic human-human interaction in virtual platforms.

Toward vivid speech-driven gestures, an intuitive expectation is to produce gestures corresponding to the speech contents. Humans naturally respond to their speeches and produce gestures to deliver specific semantics as in human ethology. As shown in Fig. 1, most co-speech gestures are compounded by beat and semantic gestures [8, 15]. Beat gestures are irrelevant to lexical semantics. It is independent to the content of the speech and prefers to respond to the rhythms of sounds. For example, the fast-talker tends to move more frequently in speak gestures. Semantic gestures \(^1\) are apt to express certain speech content with body language, including iconic gestures, metaphoric gestures, and deictic gestures [8]. For example, speakers may raise their hands to emphasize their attitudes, corresponding to “clearly”, “definitely”, etc. Generating semantic gestures would lead to a vivid and reasonable content-based gesture rather than simply following the beat. However, the prior works of co-speech gestures synthesis [20, 29, 34, 35] do not explicitly produce semantic gestures and fail to model the lexical-semantic relevance between speech and gestures. For instance, when merely learning with the semantic-irrelevant cues, i.e., the rhythms of audio and speakers’ identities, we achieve a comparable score with state-of-the-art methods [34]. This indicates that the current methods are hard to learn semantics explicitly and produce semantic-aware gestures.

It is challenging to generate semantic gestures for the following two reasons. First, semantic cues for generating semantic gestures are hard to be mined. The styles and the movements of semantic gestures vary widely among speakers according to different contents. Meanwhile, beat gestures are inclined to intuitive and straightforward responses to the cues from sound, which commonly occur and are easier for the networks to mine. This difference induces semantic cues that are hard to be mined. The network may be relatively inclined to beat gestures and be slackened to investigate semantic cues. Second, semantic gestures and their corresponding texts are not well aligned temporally. As shown in Fig. 2, some gestures may be performed before or after the semantics they convey. This leads the network to unfavorably learn semantic gestures since it is hard to receive an explicit hint of semantic correlation via the given data. These two challenges hinder the generation and expression of semantics in gestures.

This paper introduces a novel method to achieve semantic-aware co-speech gesture generation named SEMantic Energized Generation (SEEG). SEEG efficiently mines semantic and beat cues respectively and conducts semantic-aware gesture generation. Specifically, SEEG contains two components, i.e., DEcoupled Mining module (DEM) and a Semantic Energized Module (SEM). DEM decouples speech input cues into semantic-relevant cues (closely coupled to speech contents) and semantic-irrelevant cues (only beat information). Then, two separate encoders in DEM process Semantic-relevant cues and semantic-irrelevant cues to understand information for semantic and beat gestures. After input decomposition, one encoder focuses on the representation for beat gestures, while the other encoder exploits the diverse semantic information for semantic gestures. This process eases the learning of semantic and beat gestures with huge disparities. The networks enable explicitly mine differential information for the beat and semantic gestures. If we expect the networks to learn semantics, DEM avoids forcing the networks to learn semantics from beat gestures that do not contain semantic denotations. Semantic Energized Module aims to avoid generation degrading to beat gestures. SEM energizes semantic learning by constraining two kinds of similarities: representational similarity and semantic similarity. Representational similarity requires the generation to be similar to the ground truth in appearances. More critically, DEM pursues semantic similarity and encourages the results to present similar semantics compared with the ground truth. In DEM, we additionally introduce a semantic prompt gallery and a semantic prompter network. The prompter is trained by the gallery and fix it in gesture generation. The prompter network is responsible for representing gestures in a semantic view. By producing similar representations under the view of the prompter, the generated gestures are regularized to align semantics conveyed from the ground truth. Rather than directly connecting speech contents to gestures that may be misaligned, SEM energizes semantic learning by restraining both representational similarity and semantic similarity.

Our main contributions can be summarized as follows:

1. We propose a new SEMantic Energized Generation (SEEG) framework for co-speech gesture generation. SEEG is a semantic-aware gesture generation method that is adept at generating gestures with better semantic expressiveness.

2. We propose DEcoupled Mining (DEM) and SEMantic Energized Module (SEM). DEM decouples semantic-irrelevant cues in inputs and eases the learning of disparate semantic and beat gestures. DEM encourages the network to learn semantics and produce semantic gestures.

3. In generating semantic gestures, the efficiency and advantages of our method are revealed by three subjective metrics on different datasets and objective human evaluations. We also find that the beat gestures may dominate the co-speech gesture generation. Visualizations show that SEEG achieves significant expressiveness in semantics.

\(^1\)We collectively refer to the three kinds of gestures as semantic gestures to distinguish them from the beat gesture.
2. Related Work

Speech-driven gesture generation is an emerging issue that aims to generate vivid gestures based on the given speech data. Generally, methods for this problem take the speech data [34, 35] (audio, text, etc.) as input and produce corresponding gestures to simulate the real human. This requires various knowledge understanding [33] like human ethology [7, 22, 28, 32], linguistics [19, 27, 30], robotics [11, 25], graphics [3, 17, 34], vision [20, 29, 34], etc. Proposed methods should understand mutli-modal and diverse information (speech rhythm from audio, text semantics, personal style from speakers’ identities, semantic conveyed from motions, etc.), then generate reasonable and expressive gestures.

To overcome the above challenges, various works are proposed to explore. To understand the audio data and bridge the audio inputs to the gestures, Taras et al. [20] investigate the network structure to map speech acoustic and semantic features into the feature space of 3D gestures. Moreover, benefiting from an efficient modeling method MoGlow which is controllable for 3D motion synthesis, Alexanderson et al. [3] propose the style-controllable gesture generation model based on the MoGlow. The proposed method can generate diverse and plausible gestures just like the actual human. Ahuja et al. [1] propose Mix-StAGE, which disentangle the style feature with gesture features and encodes the gestures features to the style space. Mix-StAGE overcomes the challenge of style preservation and generates diverse styles of gestures for different people. As the multi-modalities involved in speech-driven gestures, Yoon et al. [34] explore the embedding and representation of multiple modalities for gesture generation. They consider the trimodal context and construct holistic modeling for all the data. This paper goes further toward semantic-aware gesture generation and produces gestures with better semantic expressiveness.

In addition, the metrics for evaluating the generated gestures are also important and challenging. As the uncertainty of human behavior, evaluating the realistic level of generated gestures compared with the actual human maybe still an open question. Some works [1, 3, 14] rely on user studies to measure the quality of generated gestures. Rather than the subjective evaluation from an actual human, some works [1, 14, 29, 34] calculate the distances between generated gesture and the ground truth. In our work, besides the evaluations mentioned above, we further provide a measurement in semantic view. We introduce a new test set named Semantic-aware testing set (SatTED) and a new metric named Semantic-aware Accuracy (SAA). These provide better evaluations of the results in the semantic aspect.

3. SEmantic Energized Generation

We propose SEmantic Energized Generation (SEEG) to empower the learning of semantics in co-speech gesture generation. As shown in Fig. 3, SEEG contains two parts: DEcoupled Mining module (DEM) and Semantic Energized Module (SEM). DEM decouples semantics from inputs and contains two encoders for different inputs correspondingly. The two decoders are responsible for explicitly mining information for beat and semantic gestures. Moreover, SEM involves a semantic prompter and a gesture decoder. The decoder provides the final outputs for gesture generation. Then, the prompter network leverages an aligning loss for gestures which relieves the misalignment for semantics.

3.1. Preliminary

According to the speech data, co-speech gesture generation aims to generate vivid gestures as real speakers. Some works [21, 24, 29] synthesize body gestures, hand gestures, lips, or face key points by taking audio, text, and speaker identities as pre-processed inputs. In this work, we focus on generating upper body gestures by sequentially outputting the key points following [34, 35].

Taking the audio and text as inputs, methods are required to produce vivid speech gestures like real speakers. Generally, methods in this topic also introduce person ID and encode the ID into features. Additionally, the text is pre-processed and represented by pre-trained word vectors [6, 10, 26]. Thus, there are three parts of inputs: audio data x_a, text data x_w, and ID x_t. Then, the final output is the sequential gestural data denoted as \hat{y}. It contains the locations of key points for gestures in every time step. Besides, the ground truth gestures y are also extracted from videos.
and pre-processed [34, 35]. All x_a, x_w, y, and \hat{y} correspond to the time step t.

Moreover, we focus on energizing the gestures with better semantic expressiveness in this work. Instead of generating gestures resembling the ground truth, we emphasize producing semantic gestures conveying similar semantics as the ground truth.

3.2. DEcoupled Mining module

In speech gestures [4, 8, 15, 18], beat gestures are intuitive and relatively simple. Semitic gestures are diverse and demand semantic understanding. These induce that the beat cues are easier to be investigated, and the semantic gestures may be ignored in the generation. Then, the method may be trapped in the beat gestures. In our work, we first propose the DEcoupled Mining module (DEM) to learn information for semantic gestures and beat gestures separately and explicitly.

In the speech data, text corresponds to the speech content and is related to the semantics. Meanwhile, audio data reflects the pronunciations, emotions, accents, beats, volume, etc. Some factors in audio merely support semantic expression and do not convey particular semantics. Specifically, the beat and volume of the audio correspond to the rhythm and speed of the speech. They are semantic-irrelevant, and the listener cannot realize the semantics only by the beat and volume. Thus, we decouple these factors to the semantic-irrelevant information, which leads to the beat gestures.

Specifically, as shown in Fig. 3, we decouple the input that consists of audio amplitudes and audio onsets, which stand for volume and beat, respectively. For volume information, the audio data with large amplitude values possess large volumes. We defined the volume function as:

$$
\mathcal{A}(x_a, t) = \begin{cases}
1 & x_a(t) \geq \frac{1}{T} \sum_{t=1}^{T} x_a(t) \\
0 & x_a(t) < \frac{1}{T} \sum_{t=1}^{T} x_a(t)
\end{cases}
$$

(1)

where x_a is the amplitude of the audio data, t is the time step, and T is the overall length. We set $\mathcal{A}(x_a, t) = 1$ if the amplitude is larger than the average and vice versa. This is because the audio data contains noise and background sound. The amplitude larger than the average indicates that the speaker starts to speak apparently.

Moreover, it is difficult to capture the changing of intonation or speed of the speaker only using volume signals. We introduce the onset strength envelope [12, 13, 23] to represent the beat information. Onset [12, 13] refers to the start points of the sound. The strength envelope [5] can indicate the probabilities of the onset detected in the audio signal. This can represent the beat of the speech audio. We follow [5, 23] to extract the onset strength envelope and denote it as $O(x_a)$ in our work.

In DEM, two encoders E_s and E_b are proposed to mine the information for semantic and beat, respectively. In detail, for beat gestures, E_b utilizes $\mathcal{A}(x_a, t)$ and $O(x_a)$ as inputs. For semantic gestures, E_s is designed to learn from x_w and x_a. Besides, as the standard settings in [1, 34], we also add person ID x_i as inputs for encoders.

The procedure of DEM can be formulated as:

$$
\begin{align*}
\tilde{z}_s &= E_s(x_w, x_a, x_i), \\
\tilde{z}_b &= E_b(O(x_a), \mathcal{A}(x_a), x_i)
\end{align*}
$$

(2)

where \tilde{z}_s and \tilde{z}_b are the features for semantic and beat, respectively. Moreover, both encoders possess similar network structures. They all contain three fully-connected layers to handle the inputs. Then, two additional fully-connected layers and concatenation operations are utilized to merge three kinds of inputs. Next, a four-layer GRU network is designed to learn the sequential features produced from the above fully-connected layers. More details for the networks are displayed in the supplementary.

3.3. Semantic Energized Module

After mining information for semantic and beat gestures in DEM, we designed a Semantic Energized Module (SEM) to further energize semantic learning against the problem of misalignment. First, we introduce a semantic prompt gallery from the TED dataset [35]. Then, we propose a semantic prompter to learn the gallery individually. The prompter can formulate semantic representation for gestures. Through the prompter, we further leverage supervision to predictions. This encourages the network to pursue similar representations of semantics by prompter that avoids the network learning misaligned semantics directly.

Semantic Prompt Gallery: The semantic prompt gallery is a small text-gesture collection. It contains five general classes from [4, 8, 9, 15, 18]. We take three noticeable semantics (Listing, emphasize, deictics) conveyed from gestures and two classes
(negative, positive) to reflect the speakers’ feelings and attitudes. The gallery is denoted as $G = \{C_{Listing}, C_{Emphasize}, C_{Deictics}, C_{Negative}, C_{Positive}\}$, where C_s is a text-gesture set, and $C_s = \{[v_1, v_2, \ldots, v_M]; [g_1, g_2, \ldots, g_N]\}$. v_i and g_i denote a word and a gesture sequence, respectively. Moreover, we apply M words from $[4, 8, 9, 15, 18]$ to construct the text set for each class as v. Besides, [18] presents a versatile collection and collecting method for semantically-congruent gestures. Following [18], we collect N gesture sequences from the TED dataset [35] for every class to formulate g.

More details will be presented in supplementary.

Semantic Prompter: We propose a semantic prompter to learn the above gallery independently. As shown in Fig. 4, the semantic prompter P adopts gesture data as inputs and learns to classify gestures into five general semantic labels in the gallery. P consists of two fully connected layers and a four-layer GRU network, in which the fully-connected layers are utilized to process inputs and outputs. The GRU aims to model the sequential inter-connection of gestures. In all, the prompter can reflect the semantics of gestures and represent the gestures in the semantic view.

Semantic Energized Learning: As shown in Fig. 3, a gesture decoder D is proposed to aggregate both features from E_s and E_b and produce gestures as the final outputs, which can be described as $\hat{y} = D(z_s, z_b)$, where \hat{y} denotes the final predictions. D aims to decode gestures considering both information of beat and semantic. It is constructed by a single fully-connected network. Then, to energize semantic learning, SEM leverages two kinds of supervision for prediction \hat{y}: representational similarity and semantic similarity.

For representational similarity, we constrain P to be similar to the ground truth directly. The regression loss L_{reg} and adversarial loss L_{adv} are applied. L_{reg} [34] contains a smooth L1 loss to reduce the distances between y and \hat{y}. Meanwhile, the Kullback-Leibler (KL) divergence is included in L_{reg} to constrain the person ID. Besides, the same discriminator as [34] is added to perform adversarial learning for generated gestures. This also targets the representational similarity of predictions and the ground truth [34].

More important, for semantic similarity, we further propose the semantic aligned loss L_{align}. Considering the semantic misalignment, indicating or annotating semantics to particular words may not be proper. In our work, we propose to align semantics conveyed from the gestures. In other words, we encourage the generated results to perform similar semantic representations as ground truth gestures. To this end, we apply the prompter P to represent gestures of predictions and the ground truth and propose a semantic aligned loss L_{align} to regularize:

$$L_{align}(\hat{y}, y) = |P(\hat{y}) - P(y)|$$

Figure 4. Construction and training of the semantic prompter. The semantic prompter is learned from the semantic prompt gallery. FC, Concat, and GRU denotes the fully-connected layer, concatenate operation, and GRU network, respectively. t_s indicates the time step of gesture data. The semantic prompter learns from the semantic prompts and bridges general correspondences between gestures and semantics.

where $| \cdot |$ is the smooth L1 normalization. As P is fixed in training, to solve the above loss function, the output gestures \hat{y} should reveal similar semantic representations with the ground truth y under the view of P. L_{align} does not regulate the predictions to be identical with the ground truth or particular gestures, and it requires similar semantics.

In all, the final loss function L can be formulated as:

$$L = L_{reg} + L_{adv} + L_{align}$$

(4)

4. Experiments

In this section, we discuss the details of SEEG and evaluate SEEG with various metrics in different datasets.

Implementation Details: Our network designs follow the structures of the generator in [34] and only change some fully-connected layers to fit the inputs. To perform a fair comparison, all the other settings, like the optimizer, learning rate, etc., are the same with [34]. Besides, for training the prompter network, we utilize random clipping, random resizing, and cutmix [36] to augment the gestures in the gallery. We train the prompter network with 100 epochs with the SDG optimizer and learning rate 0.001.

In addition, we collect the semantic gallery with $M = 25$ and $N = 5$. To be noticed, there are two significant differences between our semantic gallery and word-pose dictionary in previous work [21]. 1) Only general classes for semantics are defined. No specific words map particular gestures. This property avoids the misalignment between words and gestures in the gallery. 2) The gallery is only applied to train P. It is not practical and not necessary to collect a comprehensive dictionary for training. The prompter network is not responsible for recognizing all possible semantics in gestures. It only needs to reflect some generally possible semantics in the gallery.

Datasets: We test our method based on the TED dataset [35], the current largest and standard dataset for
speech-driven gestures [34, 35]. As in [34], it is constructed based on TED videos and contains the 3D pose data extracted from the videos. The dataset also includes the speech audio and transcribed speech text [34].

Besides, some gestures in the TED dataset are not expressive and may not convey explicit semantics. Meanwhile, some introverted speakers may not tend to provide apparent movements in speech. To reflect the improvements in the semantic aspect, we provide a Semantic-aware test set (SatTED) based on the above dataset in [34]. Specifically, we re-rank the testing set of the TED dataset based on the confidences of P and collect about the top 50% data as SatTED. The original test set in [34] contains 25,930 samples. Our SatTED includes 12,000 samples and more than 7.5 hours. We compare methods in the SatTED and further discuss the superiority of our method in the semantic aspect.

Evaluation Metrics: We evaluate our method based on three metrics:

1) FGD: evaluating the distances between the features of predictions and the ground truth. It robustly reflects the similarity between gestures in appearances.

2) Diversity metrics [16]: the measurement of diversity and flexibility. As expressive speakers tend to provide various gestures to support their expressions [15,18], this metric can reflect the naturalness and semantic correlation to some degree.

3) Semantic-Aware Accuracy (SAA): we additionally propose a Semantic-Aware Accuracy (SAA) as the measurement for semantic expressiveness. With the semantic prompter, we can label the predicted gestures for semantic classes. Meanwhile, for the speech content, the semantic label can be assigned by voting. For every word in a sentence of the speech, we search the most similar description v in the gallery and assign the corresponding class C_s as the label of this word. After voting for every word, we select the class with the highest voting value as the label for the current sentence. Then, with the labels of gestures and sentences, we calculate the accuracy as SAA.

It is worth noting that L_{align} supervised the semantic expressions of predicted gestures and the ground truth gestures, which avoid the problem of misalignment. It does NOT supervise that the gestures should correspond to the text. Meanwhile, SAA describes the text-gesture correlation. This is a higher requirement since the ground truth may also not reflect the semantics closely. SAA measures the semantic expressions in an ideal condition that all gestures are semantic gestures.

Subjective Evaluation: We perform the user study through actual humans to evaluate the gestures. We random sample 20 pieces of speech audio, text, and the gestures of actual humans, Trimodal Context [34], and ours. Then, we publish these as the questionnaire for 50 different people to grade the gestures by three factors: naturalness, speech- gesture correlation, and gesture frequency. The factors are commonly used in gesture evaluation as in [31]. The range of grades is from 0 to 10. We collect all the questionnaires and calculate the average marks in experiments.

4.1. Quantitative Evaluation

Comparisons with state-of-the-art models: We first compare the values of FGD based on the TED dataset. We train the encoder E_s with decoder D individually, generating gestures based on semantic-irrelevant data without the prompter network. This corresponds to the generation of beat gestures. As shown in Table 1, With $E_s + D$ only, our result compares favorably to state-of-the-art methods in FGD, which utilizes comprehensive data from speech. This indicates that the network can achieve similar FGD to the recent method without mining any semantic cues. Only by mining the semantic-irrelevant data, the network can ‘pretend’ to produce meaningful gestures. Though we expect the network to learn semantics and produce expressive semantic gestures, the networks can also perform well without learning any semantics. This reveals two defeats in current research: 1). The beat gestures may dominate the dataset. Meanwhile, the semantic cues are hard to be mined with the comprehensive inputs. Thus, decoupled learning is valuable. DEM separately learn cues for beats and semantics, which guide the network not to be trapped in beat gestures. Besides, rather than the method side, a new sub-set with a larger ratio of semantic gestures is also required to uncover the semantic expressiveness of results. 2). FGD may be solvable in the current dataset by merely considering beat gestures. Merely measuring the distances between predictions and the ground truth is not enough. More semantic-aware measurements should be introduced. To solve the above defeats, the SatTED dataset and SAA are proposed in our work.

Meanwhile, our overall method in FGD also outperforms previous methods with large gaps. Though slightly lower than $E_s + D$, our overall method also achieves competitive results than the current state-of-the-art. Since SEEG

<table>
<thead>
<tr>
<th>Methods</th>
<th>FGD (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2Seq [35]</td>
<td>18.154</td>
</tr>
<tr>
<td>Trimodal Context [34]</td>
<td>3.729</td>
</tr>
<tr>
<td>Ours ($E_s + D$ only)</td>
<td>3.751</td>
</tr>
<tr>
<td>Overall SEEG</td>
<td>6.244</td>
</tr>
</tbody>
</table>

Table 1. The performance of different methods for co-speech gesture generation in the TED dataset. We adapt FGD as the evaluating metrics. The performances are comparable even only using encoder E_s and decoder D in our method. Note that FGD may NOT reflect the gesture semantics. The evaluations on gesture semantics are presented in other tables.
method is energized by SEM and tends to be more expressive and diverse, it may not completely follow the ground truth and focus on semantics.

Semantic-aware Evaluation: We compare all the metrics in two datasets as in Table 2. We also display all the semantic-aware accuracy in every class from the gallery. Results demonstrate that our method shows significant improvements in diversity and SAA than Trimodal Context [34], the current state-of-the-art in co-speech gesture generation.

Specifically, though the values of FGD are slightly lower, the diversity of our results is far better than [34]. With the SatTED dataset, the diversity of our method even approaches the real gestures of ground truth. Meanwhile, the semantics conveyed in our results are more recognizable and significant. Almost all values of SAA in every class and the average are better than Trimodal Context [34]. All these results show that SEEG is comparable in stimulating the gestures of actual humans and capable of understanding the semantics. Besides, SEEG achieves higher results than the ground truth in some categories of SAA since the ground truth may be beat gestures and do not respond to corresponding semantics.

In addition, the SatTED possesses a larger ratio of semantic gestures and is hard to be solved by the current method. As shown in Table 2, our method presents more significant improvements in this dataset. Results demonstrate that our method effectively boosts semantic learning for gestures and conducts a better semantic-aware generation.

Effect of Semantic Decouple: In our work, we decouple the semantics from inputs and enforce the networks to mine information for semantic and beat gestures separately. As in method design, we expect to achieve semantic gestures with $E_s + \text{SEM}$, beat gestures with $E_b + \text{D}$ only, and the total outputs considering both sides (Overall). In this section, we experiment and verify the three parts as in Table 3. Specifically, we train $E_b + \text{D}$ only with $L_r \text{eg}$ and $L_n dv$. $E_s + \text{SEM}$ is trained with $E_s + \text{D}$ with L. Then, to show the interactions between E_s and E_b in the overall pipeline, we take the overall SEEG training from scratch with all modules and separately test each module. As Table 3, for $E_b + \text{D}$ overall, we test the results by padding features z_b from E_b with zero. Similarly, $E_s + \text{D}$ in overall pads features z_s with zero.

As shown in Table 3, $E_b + \text{D}$ only achieves higher performances in FGD metrics but shows significant decreases in diversity and SAA since it is unavailable to learn semantics with semantic decoupled inputs. Meanwhile, the isolated training with E_s and D tends to learn semantics only and may not perform similarly to the ground truth. This leads the results to obtain significant improvements in SAA but becomes worse in FGD. Moreover, in the overall pipeline, similar regularities also occur compared with training individually. In comparison, the learning of two parts would not be too radical. As a part of the overall pipeline, both E_b and E_s acquire improvements.

Ablation Study for Semantic Prompter: SEM relies on the semantic prompter to learn semantics in gestures. The impact of the prompter network for semantic learning is explored in this section. We experiment with the SEM and overall pipeline with or without a semantic prompter, respectively. As shown in Table 4, without the semantic prompter, both semantic-aware performances like diversity and SAA degrade. Meanwhile, removing the prompter network leverages the improvements in FGD. The individual $E_s + \text{D}$ without a prompter network performs similarly to

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>FGD ($)</th>
<th>Diversity ($)</th>
<th>SAA ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TED</td>
<td>Real Gesture</td>
<td>-</td>
<td>1.405±0.005</td>
<td>52.135</td>
</tr>
<tr>
<td></td>
<td>Trimodal Context [34]</td>
<td>3.729</td>
<td>0.759±0.005</td>
<td>32.496</td>
</tr>
<tr>
<td></td>
<td>SEEG</td>
<td>6.244</td>
<td>1.059±0.005</td>
<td>40.438</td>
</tr>
<tr>
<td>SatTED</td>
<td>Real Gesture</td>
<td>-</td>
<td>1.271±0.005</td>
<td>54.709</td>
</tr>
<tr>
<td></td>
<td>Trimodal Context [34]</td>
<td>4.305</td>
<td>0.782±0.005</td>
<td>32.928</td>
</tr>
<tr>
<td></td>
<td>SEEG</td>
<td>7.451</td>
<td>1.118±0.005</td>
<td>44.518</td>
</tr>
</tbody>
</table>

Table 2. Comparison of all metrics in the TED dataset and SatTED dataset. Our method shows better performances significantly in some semantic-relevant metrics like diversity and SAA. Real Gestures indicate the gestures of real humans in the ground truth. ± means 95% confidence interval. ↑ indicates that higher values are better, and ↓ means lower values are better.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>FGD ($)</th>
<th>Diversity ($)</th>
<th>SAA ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TED</td>
<td>$E_b + \text{D}$ only</td>
<td>3.751</td>
<td>0.984±0.005</td>
<td>30.022</td>
</tr>
<tr>
<td></td>
<td>$E_s + \text{SEM}$</td>
<td>7.805</td>
<td>1.113±0.005</td>
<td>37.259</td>
</tr>
<tr>
<td></td>
<td>Overall $E_b + \text{D}$</td>
<td>5.472</td>
<td>0.901±0.005</td>
<td>30.597</td>
</tr>
<tr>
<td></td>
<td>$E_s + \text{SEM}$</td>
<td>7.320</td>
<td>1.127±0.005</td>
<td>39.981</td>
</tr>
<tr>
<td>SatTED</td>
<td>$E_b + \text{D}$ only</td>
<td>5.114</td>
<td>0.922±0.005</td>
<td>33.986</td>
</tr>
<tr>
<td></td>
<td>$E_s + \text{SEM}$</td>
<td>9.291</td>
<td>1.164±0.005</td>
<td>44.218</td>
</tr>
<tr>
<td></td>
<td>Overall $E_b + \text{D}$</td>
<td>5.490</td>
<td>0.990±0.005</td>
<td>34.344</td>
</tr>
<tr>
<td></td>
<td>$E_s + \text{SEM}$</td>
<td>6.797</td>
<td>1.128±0.005</td>
<td>46.533</td>
</tr>
</tbody>
</table>

Table 3. Comparison of different training manners. $E_b + \text{D}$ only indicates that training individually with E_b and D without P. $E_s + \text{SEM}$ denotes only training without encoder E_b. Overall means training with the complete method. Meanwhile, $E_b + \text{D}$ indicates inferring the overall method with padding features from E_b as 0. $E_s + \text{D}$ is inferring with padding features from E_s.

Table 4. Comparison of different training manners. $E_b + \text{D}$ only indicates that training individually with E_b and D without P. $E_s + \text{SEM}$ denotes only training without encoder E_b. Overall means training with the complete method. Meanwhile, $E_b + \text{D}$ indicates inferring the overall method with padding features from E_b as 0. $E_s + \text{D}$ is inferring with padding features from E_s.

10479
We clearly see that the method in [34] shows better semantic expressiveness and conspicuous and reasonable responses to corresponding words. We highlight the significant gestures for [34] and ours with the blue and orange shading, respectively.

Table 4. Ablation study for effect of the semantic prompter. Without the semantic prompter, the performances of diversity and SAA degrade.

<table>
<thead>
<tr>
<th>Method</th>
<th>FGD (↓)</th>
<th>Diversity (↑)</th>
<th>SAA (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall w/o T_s</td>
<td>4.937</td>
<td>1.004±0.037</td>
<td>30.920</td>
</tr>
<tr>
<td>$E_b + D$ w/o T_s</td>
<td>3.915</td>
<td>0.854±0.037</td>
<td>30.216</td>
</tr>
</tbody>
</table>

Figure 5. Examples of generated gestures. Our method shows better semantic expressiveness and conspicuous and reasonable responses to corresponding words. We highlight the significant gestures for [34] and ours with the blue and orange shading, respectively.

4.2. Qualitative Evaluation

Subjective Evaluation by User Study: We collect questionnaires from different volunteers and compute the average scores in different factors. The factors are all regular questionnaire items as in [31]. The statistical results are shown in Fig. 6. To investigate the performances of parts in our method, we train $E_b + D$ only as of the beat gestures of our method (Beat), $E_b + SEM$ as the semantic gestures of our method (Semantic), and the entire method (Overall), respectively. We compare our method with the current state-of-the-art and the ground truth. In comparison, our method shows significant improvements in all three factors. Moreover, the semantic gestures perform worse in naturalist and frequency but achieve remarkable advantages in speech-gesture correlation. This corresponds to the design of SEM, which focuses on semantic learning and may deviate from the ground truth.

Visualization: We showcase the results of our method and compare them with the current state-of-the-art [34]. In examples of generated gestures, as shown in Fig. 5, significant responses occur corresponding to some words (e.g., clearly, at the beginning, quit a, available, easy, first step). The visualizations prove that our method learns semantics better and generates vivid gestures with semantic expressiveness.

5. Conclusion

In this paper, a novel method for semantic-aware gesture generation is proposed. The proposed method contains two parts: DEcoupled Mining module (DEM) and Semantic Energized Module (SEM). DEM decouples semantics from inputs and forces the network to mine information for semantic and beat gestures. SEM contains a semantic prompter to leverage semantic-based supervision for the networks and produces semantic gestures. Experiments in various metrics, user study, and visualizations prove that the proposed method learns semantics better and produces semantic gestures corresponding to the speech content.
References

[34] Youngwoo Yoon, Bok Cha, Joo-Haeng Lee, Minsu Jang, Jaeyeon Lee, Jaehong Kim, and Geehyuk Lee. Speech gesture generation from the trimodal context of text, audio, and speaker identity. *ACM Transactions on Graphics*, 39(6), 2020. 1, 2, 3, 4, 5, 6, 7, 8
