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Abstract

The task of Human-Object Interaction (HOI) detection
could be divided into two core problems, i.e., human-object
association and interaction understanding. In this paper,
we reveal and address the disadvantages of the conventional
query-driven HOI detectors from the two aspects. For the
association, previous two-branch methods suffer from com-
plex and costly post-matching, while single-branch methods
ignore the features distinction in different tasks. We pro-
pose Guided-Embedding Network (GEN) to attain a two-
branch pipeline without post-matching. In GEN, we de-
sign an instance decoder to detect humans and objects with
two independent query sets and a position Guided Embed-
ding (p-GE) to mark the human and object in the same
position as a pair. Besides, we design an interaction de-
coder to classify interactions, where the interaction queries
are made of instance Guided Embeddings (i-GE) gener-
ated from the outputs of each instance decoder layer. For
the interaction understanding, previous methods suffer from
long-tailed distribution and zero-shot discovery. This pa-
per proposes Visual-Linguistic Knowledge Transfer (VLKT)
training strategy to enhance interaction understanding by
transferring knowledge from a visual-linguistic pre-trained
model CLIP. In specific, we extract text embeddings for all
labels with CLIP to initialize the classifier and adopt a
mimic loss to minimize the visual feature distance between
GEN and CLIP. As a result, GEN-VLKT outperforms the
state of the art by large margins on multiple datasets, e.g.,
+5.05 mAP on HICO-Det. The source codes are available
at https://github.com/YueLiao/gen-vlkt.

1. Introduction
Human-Object Interaction (HOI) detection is a signifi-

cant task to make a machine understand human activities in
a static image at a fine-grained level. In this task, human ac-
tivities are represented as a series of HOI triplets <Human,
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Figure 1. Our GEN-VLKT pipeline. We propose GEN, a query-
based HOI detector with two-branch decoders, where we design
a guided embedding association mechanism to replace the tra-
ditional post-matching process for simplifying the association.
Moreover, we devise a training strategy VLKT, where we transfer
knowledge from the large-scale visual-linguistic pre-trained model
CLIP to enhance interaction understanding.

Object, Verb>, so an HOI detector is required to localize
human and object pairs and recognize their interactions.
The core problems of HOI detection are to explore how to
associate the interactive human and object pairs and under-
stand their interactions. Thus, we consider improving the
HOI detector from the two aspects and design a unified and
superior HOI detection framework. We first revisit the ef-
forts conducted by traditional methods in such two aspects.

For the association problem, it can be mainly divided
into two paradigms, i.e., bottom-up and top-down. Bottom-
up methods [6, 7, 21] detect humans and objects first
and then associate humans and objects through a classi-
fier or a graph model. Top-down methods usually de-
sign an anchor to denote the interaction, e.g., interaction
point [23] and queries [4, 31, 46], and then find the cor-
responding human and object through pre-defined associa-
tive rules. Benefiting from the development of visual trans-
former, query-based methods are leading the performance
of HOI detection, which are mainly two streams, i.e., two-
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branch prediction-then-matching manner [4] and single-
branch directly-detection manner [31, 46]. The two-branch
manner predicts interaction then matches with human and
object, struggling with designing effective matching rules
and complicated post-processing. The single-branch man-
ner proposes to detect the human, object and the corre-
sponding interaction based on a single query with multiple
heads in an end-to-end manner. However, we argue that the
three tasks, i.e., human detection, object detection and inter-
action understanding, exist significant differences in feature
representation, where human and object detection mainly
focus on the features in their corresponding regions, while
interaction understanding attends human posture or context.

To improve this, as shown in Figure 1a, we propose to
keep the two-branch architecture while removing the com-
plicated post-matching. To this end, we propose Guided
Embedding Network (GEN), where we adopt an architec-
ture of a visual encoder followed by two-branch decoders,
i.e., instance decoder and interaction decoder, and design a
guided embedding mechanism to guide the association be-
forehand. The two branches are both with a query-based
transformer decoder architecture. For the instance decoder,
we design two independent query sets for human and object
detection. Further, we develop a position Guided Embed-
ding (p-GE) to distinguish different human-object pairs by
assigning the human query and object query at the same
position as a pair. For the interaction decoder, we devise
an instance Guided Embedding (i-GE), where we generate
each interaction query guided by specific human and object
queries to predict its HOIs. Hence, GEN can allow different
features for different tasks and guide the association during
network forward while without post-matching.

For the interaction understanding problem, most con-
ventional methods directly apply a multi-label classifier fit-
ted from the dataset to recognize the HOIs. However, such
paradigms suffer from the long-tailed distribution and zero-
shot discovery due to the complicated human activities with
various interactive objects in realistic scenes. Though re-
cent methods propose to alleviate such problems with data-
augmentation [14] or carefully designed loss [44], the per-
formance gain and extension ability are restricted to the
limited training scale due to the expensive HOI annotation.
We might as well set our sights on image-text data, which
can be easily obtained from the internet, while HOI triplets
can be naturally converted into text descriptions. Thanks
to the development of visual-linguistic pre-trained mod-
els [26, 29, 40], especially, CLIP [29] establishes a strong
visual-linguistic model trained on about 400 million image-
text pairs and shows its powerful generalization ability on
about 30 tasks. Thus, CLIP can cover most HOI scenes in
real life and bring a new idea to understand HOIs.

To improve this, as shown in Figure 1b, we design
a Visual-Linguistic Knowledge Transfer (VLKT) training

strategy to transfer the knowledge from CLIP to the HOI
detector to enhance interaction understanding without addi-
tional computation cost. We consider two main problems in
our VLKT. On the one hand, we design a text-driven classi-
fier for prior knowledge integration and zero-shot HOI dis-
covery. In detail, we first covert each HOI triplet label into a
phrase description, then extract their text embeddings based
on the text encoder of CLIP. Finally, we apply the text em-
beddings of all HOI labels to initialize the weight of the
classifier. In this manner, we can easily extend a novel HOI
category only by adding its text embedding into the matrix.
Meanwhile, we also adopt the CLIP-initialized object clas-
sifier for novel object extension. On the other hand, for text-
driven classifier and visual feature alignment, we present a
knowledge distillation method to guide the visual features
of HOI detection to mimic the CLIP features. Therefore,
based on VLKT, the model can well capture information
from CLIP and easily extend to novel HOI categories with-
out extra cost during inference.

Finally, we propose a novel unified HOI detection frame-
work GEN-VLKT based on the above two designs. We have
verified the effectiveness of our GEN-VLKT on two repre-
sentative HOI detection benchmarks, i.e., HICO-Det [28]
and V-COCO [9]. Our GEN-VLKT has significantly im-
proved the existing methods on both two benchmarks and
the zero-shot settings of the HICO-Det dataset. Specifi-
cally, our GEN-VLKT has achieved a 5.05 mAP gain on
HICO-Det and a 5.28 AP promotion on V-COCO compared
with the previous state-of-the-art method QPIC [31]. It also
promotes performance impressively by a 108.12% relative
mAP gain for unseen object zero-shot setting compared to
the previous state-of-the-art method ATL [14].

2. Related Works
HOI detection. Conventional HOI detectors are mainly di-
vided into two folds, bottom-up and top-down. The bottom-
up pipelines [3, 6, 7, 10, 18, 19, 21, 24, 34, 37, 45] first detect
all humans and objects and then associate the human-object
pairs and infer their HOI types through an additional clas-
sifier. These methods are usually organized as a two-stage
paradigm and worked on improving the second stage. Re-
cently, some graph-based methods [28, 33, 35, 39, 45] have
achieved satisfactory performance. However, bottom-up
methods suffer from expensive computation consume due
to its serial architecture for handling a large number of
human-object pairs. To alleviate this issue, top-down meth-
ods become popular in recent works [4,16,17,23,31,36,46].
Top-down methods mainly design an additional anchor to
associate humans and objects, and predict their interac-
tions. The interaction anchor is from the early interac-
tion point [23, 36] and union box [16] to recent interaction
query [4,17,22,31,46] with the development of visual trans-
formers. Recently, CDN [41] proposed a one-stage method
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Figure 2. The framework of our GEN. The GEN is organized as a visual encoder equipped with two-branch decoders architecture. Given
an image, the visual encoder is first applied to extract the visual features. Then, two branches, i.e., instance decoder and interaction decoder,
are used to localize human-object pairs and classify HOI triplets based on learnable queries, respectively. Besides, we design a position
Guided Embedding (p-GE) to associate the interactive human and object and an instance Guided Embedding (i-GE) to make the interaction
query predict the corresponding HOI categories under the guidance of specific human and object queries.

with a cascade decoder to mine the benefits of the above two
folds. Our GEN is different from CDN in the three aspects.
1) Organization of the decoder: GEN is with a two-branch
pipeline and the instance and interaction decoder forward
together, while CDN disentangles the HOI detection into
two serial decoders. 2) Instance query design: GEN adopts
two isolated human and object queries with positional em-
bedding, while CDN entangles human and object into a uni-
fied instance query. 3) motivation: GEN aims to replace the
complex post-process with a guided learning manner, while
CDN aims to mine the benefits of the two folds.
Zero-shot HOI detection. Zero-shot HOI detection [30]
tends to detect unseen HOIs in the training data. Many
methods [1, 11, 13–15, 25, 27, 30, 32, 38] are investigated to
handle zero-shot HOI detection. In detail, [1,11,30,32] fac-
torized the human and object features by disentangled rea-
soning on verbs and objects and then produced novel HOI
triplets during inference. VCL [13] composed novel HOI
samples by combining decomposed object and verb features
with pair-wise images and within images. FCL [15] pre-
sented an object fabricator to generate fake object represen-
tations for rare and unseen HOIs. ATL [14] explored object
affordances from additional object images to discover novel
HOI categories. ConsNet [25] explicitly encoded the rela-
tions among objects, actions and interactions into an undi-
rected graph to propagate knowledge among HOI categories
as well as their constituents. The visual-linguistic mod-
els [27, 38] transferred the seen visual phrase embeddings
with prior language knowledge to unseen HOIs.

3. Methods
In this section, we aim to explore the solutions for the

two problems of HOI detection, i.e., association and in-

teraction understanding. We first present a detailed intro-
duction of our one-stage two-branch HOI detector with a
simple association mechanism, namely Guided Embedding
Network (GEN), in Sec 3.1. We then introduce a Visual-
Linguistic Knowledge Transfer (VLKT) training strategy
with the large-scale visual-linguistic pre-trained model
CLIP to enhance interaction understanding in Sec 3.2. Fi-
nally, we show the training and inference pipelines.

3.1. Guided Embedding Network
In this subsection, we introduce the architecture of our

Guided Embedding Network (GEN). As shown in Figure 2,
the GEN is organized as an encoder followed by two-branch
decoders architecture. We first adopt a CNN equipped with
a transformer encoder architecture as the visual encoder to
extract sequenced visual features Ve. Then, we apply two-
branch decoders, i.e., instance decoder and interaction de-
coder, to detect HOI triplets. In the instance decoder, based
on Ve, we detect humans and objects through the human
query set Qh and the object query set Qo individually. Ad-
ditionally, we design a position Guided Embedding (p-GE)
P q to assign the human and object queries at the same po-
sition as a pair. In the interaction decoder, we first dynam-
ically generate the interaction queries Qa

i for each interac-
tion decoder layer by computing the mean of the outputs of
human and object queries in the corresponding instance de-
coder layer. Therefore, the interaction decoder can predict
the corresponding HOI categories under the guidance of hu-
man and object queries. Finally, the HOI prediction results
are generated by the output of decoders.

Visual Encoder. We follow the query-based transformer
detectors [2, 31, 46] to adopt a CNN-transformer combined
architecture for the visual encoder. Taking an image I as
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Figure 3. VLKT for the interaction decoder. We first covert
each HOI label into a phrase description and extract its text embed-
ding based on CLIP text encoder, then apply the text embeddings
of all HOI labels to initialize the classifier. Finally, we adopt the
CLIP image encoder to extract visual features to guide the interac-
tion visual feature learning. The dotted arrow denotes no gradient.

input, a CNN is first utilized to extract low-resolution vi-
sual features Vcnn ∈ RH′×W ′×C′

. Then, we reduce the
channels of visual features to Ce and flatten the size of
the features to (H ′ ×W ′)× Ce. Finally, we feed the re-
duced features adding a cosine positional embedding into a
transformer encoder, and extract sequenced visual features
Ve ∈ R(H′×W ′)×Ce for the following tasks.

Decoders. The decoders in the two branches share the
same architecture, where we follow the transformer-based
detectors [2, 4] to adopt the query-based transformer de-
coder framework. First, we feed a set of learnable queries
Q ∈ RNq×Cq , the output of last layer, the visual features Ve

and the positional embedding to N transformer decoder lay-
ers, and output the updated queries after the self-attention
and co-attention operations. Then with separate FFN heads,
the queries are transformed to embeddings for its dedicated
task, i.e., instance and interaction representations by the first
and second decoder branch, respectively.

For the instance decoder, we first initialize two sets of
queries to detect human and object [5] where we denote
human and object query sets as Qh ∈ RNq×Cq and Qo ∈
RNq×Cq separately. Then, we design an additional learn-
able position Guided Embedding (p-GE) P q ∈ RNq×Cq

for the two query sets to assign the human query and object
query at the same position as a pair, where we add the P q to

Qh and Qo, respectively. Finally, we generate the query set
for the instance decoder by concatenating the added queries:

Qins = [Qh + P q,Qo + P q], (1)

where Qins ∈ R2Nq×Cq . We feed Qins forward the in-
stance decoder to predict the human-object bounding-box
pairs (bhi , b

o
i , s

o
i ), where bhi ∈ Bh, boi ∈ Bo and soi ∈ So

denote human bounding-box, object bounding-box and ob-
ject category scores. And we extract the middle features
decoded by each decoder layer as Vins = [Vh,Vo] for the
following interaction decoder, where Vins ∈ RN×2Nq×Cq .

The goal of the interaction decoder is to predict the HOI
categories for the corresponding human-object pair. There-
fore, this branch is required to associate interaction query
with the human-object query pairs and classify interaction.
Here, we introduce an instance Guided Embedding (i-GE)
method for the association, and the new interaction classi-
fication manner will be introduced in the next subsection.
Instead of conventional learnable embedding with random
initialization, we dynamically generate i-GE as the interac-
tion queries to guide the interaction query to match the hu-
man and object queries. In this manner, we generate i-GE
under the guidance of the middle visual features [Vh,Vo].
Specifically, for the input of k-th layer interaction decoder,
the interaction queries Qa

k is computed by the outputs of
k-th layer instances decoder:

Qa
k = (V h

k + V o
k )/2. (2)

In this way, the k-th layer interaction decoder takes the in-
teraction queries Qa

k as input, and return the immediate de-
coded features V a

k and HOI categories.

3.2. Visual-Linguistic Knowledge Transfer
In this subsection, we detailedly introduce the training

pipeline of the instance decoder and the interaction de-
coder transferring knowledge from the large-scale visual-
linguistic pre-trained model CLIP [29], namely Visual-
Linguistic Knowledge Transfer (VLKT). In VLKT, we first
introduce the process of adopting the CLIP text embeddings
to classify interactions and objects. We then introduce how
to transfer the visual knowledge from CLIP image embed-
ding to the interaction decoder. We present the pipeline of
interaction decoder training with VLKT in Figure 3.
Text Embedding for Classifier Initialization. To generate
the CLIP text embedding, we first convert HOI triplet la-
bels and object labels into text descriptions. For example,
given an HOI triplet <Human, Object, Verb>, we gener-
ate the corresponding description following such format ‘A
photo of a person [Verb-ing] a/an [Object]’. In addition, the
‘no-interaction’ type is represented as ‘A photo of a person
and a/an [Object]’. As for an object label, we transform it
into the phrase ‘A photo of a/an [Object]’. Then, we gen-
erate the text embedding for each HOI and object text label
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through the pre-trained CLIP text-encoder offline. Finally,
the text embedding set of HOI labels Ea ∈ Rct×Na and
object labels Eo ∈ Rct×No are obtained, where Na and No

denote the number of HOI triplet categories and object cate-
gories, respectively, and ct represents the dimension of text
embedding from CLIP text encoder.

After obtaining the text embeddings, we aim to classify
the interaction and object under the guidance of the prior
knowledge from such text embeddings. The intuitive idea
is to adopt such embeddings to initialize the weight of the
learnable classifier and fine-tune the classifier with a small
learning rate to fit a specific dataset. In this way, each output
query feature is computed cosine similarity with all fine-
tuned text embeddings and returned a similarity score vector
during the classification process. Specifically, we denote
the interaction classifier and object classifier as Ca ← Ea

and Co ← Eo, respectively. Taking interaction classifier
Ca = [wa

1 ,w
a
2 , ...,w

a
Na

] as an example, given an output
interaction query va

i , we compute the similarity score by:

sai = θ [sim (va
i ,w

a
1) , sim (va

i ,w
a
2) , · · · , sim (va

i ,w
a
Na

)] (3)

where sim denotes the cosine similarity operation, for ex-
ample sim (va

i ,w
a
1) = (va

i · wa
1)/(∥va

i ∥∥wa
1∥), and θ is a

logit scale factor following CLIP [29]. The object classifi-
cation scores can be got in the same way. Otherwise, we
follow [31] to apply the focal loss and cross-entropy loss to
train the interaction and object classifier, respectively.
Visual Embedding Mimic. CLIP is trained on image-text
pair data, and it aligns visual embedding and text embed-
ding into a unified space. We design a Visual Embedding
Mimicking mechanism to pull the interaction feature into
such unified space by pulling the distance between the in-
teraction feature and CLIP visual embedding. Here, CLIP
serves as the teacher, and the interaction decoder plays the
student’s role. We design the knowledge distillation strat-
egy from the global image level, because CLIP image en-
coder is built upon a whole image. We first feed the resized
and cropped image into the pre-trained CLIP visual encoder
and extract the visual embedding v̂clip for the teacher super-
vision. The global student visual embedding is generated by
conducting an average pooling among all output interaction
query features. L1 loss is utilized to pull the distance be-
tween the student and the teacher. We formulate the global
knowledge distillation as:

Lglo = |v̂clip − 1

Nq

Nq∑
i=1

va
i |, (4)

where Nq denotes the number of queries.

3.3. Training and Inference
Here, we show the processes of training and inference.

Training. During the training stage, we follow the query-
based methods [2,31,46] to assign a bipartite matching pre-

diction with each ground-truth using the Hungarian algo-
rithm. The matching process combines the predictions from
the FFN heads of the two-branch decoders since the queries
of human, object and interaction are one-to-one correspond-
ing. The matching cost for the matching process and the
targeting cost for the training back-propagation share the
same strategy, where is composed by the box regression
loss Lb, the intersection-over-union loss Lu and the clas-
sification loss Lc. The cost is formulated as:

Lcost = λb

∑
i∈(h,o)

Li
b + λu

∑
j∈(h,o)

Lj
u +

∑
k∈(o,a)

λk
cLk

c , (5)

where λb, λu and λk
c are the hyper-parameters for adjusting

the weights of each loss. Then, considering the mimic loss,
the final training loss is given as:

L = Lcost + λmimicLglo, (6)

where λmimic is the hyper-parameter weight for distilling
the image embeddings. Additionally, we apply an interme-
diate supervision for the output of each decoder layer.
Inference. The visual embedding mimic only contributes
the training stage, and we remove it during inference. For
each human-object bounding-box pair (bhi , boi ) with the ob-
ject score soi from instance decoder branch, the interaction
score is predicted as sai from the interaction decoder. Then,
we extend soi from No-dim to Na-dim, where the score for
specific object category will be copy-paste several times
for its all corresponding HOI categories. The HOI triplet
score is given as sai + soi (Na)s

o
i (Na) instead of sai s

o
i (No)

for balancing the weights of interaction score and object
score. The HOI triplets with top K confidence scores are
preserved as the final predictions.

4. Experiments
In this section, we demonstrate the effectiveness of our

designed GEN-VLKT with comprehensive experiments.

4.1. Experimental Setting
Datasets. We evaluate our model on two public bench-
marks, HICO-Det [3] and V-COCO [9]. HICO-Det has
47, 776 images (38, 118 for training and 9, 658 for testing).
It contains 600 classes of HOI triplets constructed by 80
object categories and 117 action categories. V-COCO is a
subset of COCO dataset and has 10, 396 images (5, 400 for
training and 4, 964 for testing). It has 29 action categories
which includes 4 body motions without interaction to any
objects. It has the same 80 object categories. Its actions and
objects form 263 classes of HOI triplets.
Data Structure for Zero-Shot. For zero-shot HOI detec-
tion, we conduct experiments on HICO-Det following the
setting in [1]: 1) Unseen Composition (UC) and 2) Unseen
Object (UO). Specifically, the UC setting indicates the train-
ing data contains all categories of object and verb but misses
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Default Know Object
Method Detector Backbone Anchor Full Rare Non-Rare Full Rare Non-Rare

Bottom-up Methods:
InteractNet [8] COCO ResNet-50-FPN ✗ 9.94 7.16 10.77 - - -

GPNN [28] COCO Res-DCN-152 ✗ 13.11 9.34 14.23 - - -
iCAN [7] COCO ResNet-50 ✗ 14.84 10.45 16.15 16.26 11.33 17.73

No-Frills [10] COCO ResNet-152 ✗ 17.18 12.17 18.68 - - -
PMFNet [34] COCO ResNet-50-FPN ✗ 17.46 15.65 18.00 20.34 17.47 21.20

DRG [6] COCO ResNet-50-FPN ✗ 19.26 17.74 19.71 23.40 21.75 23.89
VCL [13] COCO ResNet-50 ✗ 19.43 16.55 20.29 22.00 19.09 22.87

VSGNet [33] COCO ResNet-152 ✗ 19.80 16.05 20.91 - - -
FCMNet [24] COCO ResNet-50 ✗ 20.41 17.34 21.56 22.04 18.97 23.12

ACP [18] COCO ResNet-152 ✗ 20.59 15.92 21.98 - - -
PD-Net [43] COCO ResNet-152-FPN ✗ 20.81 15.90 22.28 24.78 18.88 26.54
SG2HOI [12] COCO ResNet-50 ✗ 20.93 18.24 21.78 24.83 20.52 25.32
DJ-RN [19] COCO ResNet-50 ✗ 21.34 18.53 22.18 23.69 20.64 24.60
SCG [42] COCO ResNet-50-FPN ✗ 21.85 18.11 22.97 - - -
IDN [20] COCO ResNet-50 ✗ 23.36 22.47 23.63 26.43 25.01 26.85
ATL [14] HICO-Det ResNet-50 ✗ 23.81 17.43 25.72 27.38 22.09 28.96

Top-down Methods:
UnionDet [16] COCO ResNet-50-FPN B 17.58 11.72 19.33 19.76 14.68 21.27

IP-Net [36] COCO Hourglass-104 P 19.56 12.79 21.58 22.05 15.77 23.92
PPDM-Hourglass [23] HICO-Det Hourglass-104 P 21.94 13.97 24.32 24.81 17.09 27.12

HOI-Trans [46] HICO-Det ResNet-50 Q 23.46 16.91 25.41 26.15 19.24 28.22
GG-Net [44] HICO-Det Hourglass-104 P 23.47 16.48 25.60 27.36 20.23 29.48

PST [5] - ResNet-50 Q 23.93 14.98 26.60 26.42 17.61 29.05
HOTR [17] HICO-Det ResNet-50 Q 25.10 17.34 27.42 - - -
AS-Net [4] HICO-Det ResNet-50 Q 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [31] HICO-Det ResNet-50 Q 29.07 21.85 31.23 31.68 24.14 33.93

GEN-VLKTs HICO-Det ResNet-50 Q 33.75 29.25 35.10 36.78 32.75 37.99
GEN-VLKTm HICO-Det ResNet-101 Q 34.78 31.50 35.77 38.07 34.94 39.01
GEN-VLKTl HICO-Det ResNet-101 Q 34.95 31.18 36.08 38.22 34.36 39.37

Table 1. Performance comparison on the HICO-Det test set. We present an additional tag ‘Anchor’ to disgust the interaction anchor
types for top-down methods, where the ‘B’, ‘P’ and ‘Q’ denote bounding-box, point and query, respectively.

some HOI triplet categories, while the UO setting means the
objects in the unseen triplets also do not appear in the train-
ing data. We evaluate the 120 unseen, 480 seen, and 600
full categories for the UC setting. Similar to [13], the Rare
First UC (RF-UC) selects unseen categories from tail HOIs
preferentially, while the Non-rare First UC (NF-UC) prefers
the head categories. For the UO setting, we use the unseen
HOIs with 12 objects unseen among the total 80 objects and
form 100 unseen and 500 seen HOIs. Besides, for a more
comprehensive demonstration of our method to investigate
the novel HOIs, we propose an Unseen Verb (UV) setting,
where we randomly select 20 verbs from all total 117 verbs
to form 84 unseen and 516 seen HOIs.

Evaluation Metric. We follow the settings in [3] to use the
mean Average Precision (mAP) for evaluation. We define a
HOI triplet prediction as a true positive if 1) both predicted
human and object bounding-boxes have IoU larger than 0.5
w.r.t. the GT boxes; and 2) both predicted HOI categories
are accurate. For HICO-Det, we evaluate the three different

category sets: all 600 HOI categories (Full), 138 HOI cat-
egories with less than 10 training instances (Rare) and the
other 462 HOI categories (Non-Rare). For V-COCO, we re-
port the role mAPs for two scenarios: S1 for the 29 action
categories including the 4 body motions and S2 for the 25
action categories without the no-object HOI categories.

Implementation Details. We implement three versions of
GEN-VLKT. The backbone is ResNet-50 for GEN-VLKTs

and ResNet-101 for GEN-VLKTm and GEN-VLKTl. N
for each decoder of the two branches is 3 for GEN-VLKTs

and GEN-VLKTm and 6 for GEN-VLKTl. The number
of HOI categories Na is 600 for HICO-Det and 263 for
V-COCO. We set the number of queries Nq to 64 and the
number of channels Ce and Cq to 256. We optimize our
network with AdamW with a weight decay of 10−4. We
train the model for 90 epochs with an initial learning rate of
10−4 decreased by 10 times at the 60th epoch. The train-
ing is initialized with the parameters of MS-COCO trained
DETR [2]. For regular HOI training, we fine-tune the CLIP
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Method Anchor APS1
role APS2

role

Bottom-up Methods:
InteractNet [8] ✗ 40.0 -

GPNN [28] ✗ 44.0 -
iCAN [7] ✗ 45.3 52.4
TIN [21] ✗ 47.8 54.2
VCL [13] ✗ 48.3 -
DRG [6] ✗ 51.0 -

IP-Net [36] ✗ 51.0 -
VSGNet [33] ✗ 51.8 57.0
PMFNet [34] ✗ 52.0 -
PD-Net [43] ✗ 52.6 -

FCMNet [24] ✗ 53.1 -
ACP [18] ✗ 53.23 -
IDN [20] ✗ 53.3 60.3

Top-down Methods:
UnionDet [16] B 47.5 56.2
HOI-Trans [46] Q 52.9 -

AS-Net [4] Q 53.9 -
GG-Net [44] P 54.7 -
HOTR [17] Q 55.2 64.4
QPIC [31] Q 58.8 61.0

GEN-VLKTs Q 62.41 64.46
GEN-VLKTm Q 63.28 65.58
GEN-VLKTl Q 63.58 65.93

Table 2. Performance comparison on the V-COCO. The ‘B’,
‘P’ and ‘Q’ denote bounding-box, point and query, respectively.

text embeddings initialized interaction classifier and object
classifier with a small learning rate of 10−5. We implement
the zero-shot HOI experiments on HICO-Det. For better
novel HOI categories extension, we freeze the CLIP ini-
tialized weights for both interaction and object classifiers.
We set the output dimension of the interaction classifier to
the number of ‘seen’ categories during training, while we
update this output dimension to the ‘full’ 600 categories
during inference. We set the cost weights λb, λu, λo

c and
λa
c to 2.5, 1, 1 and 1, respectively, following QPIC [31].

We follow the official CLIP data pre-processing for visual
embedding mimic to resize and center-crop the real-timely
augmented image to 224 and feed the processed image to
the CLIP visual encoder. We set the loss weight λmimic to
20. We conduct all the experiments with a batch size of 16
on 8 Tesla V100 GPUs and CUDA10.2.

4.2. Effectiveness for Regular HOI Detection
We use the official evaluation code to compute the mAPs

for both HICO-Det and V-COCO. Table 1 and Table 2 show
the performance comparisons of GEN-VLKT with the re-
cent bottom-up and top-down HOI detection methods.

For HICO-Det as shown in Table 1, GEN-VLKTs out-
performs the all existing bottom-up and top-down methods
with a large margin. In specific, compared to the state-of-
the-art top-down method QPIC [31], GEN-VLKTs achieves
a relative 16.10% mAP gain with a margin of mAP 4.68.

Method Type Unseen Seen Full

Shen et al. [30] UC 5.62 - 6.26
FG [1] UC 10.93 12.60 12.26

ConsNet [25] UC 16.99 20.51 19.81
VCL [13] RF-UC 10.06 24.28 21.43
ATL [14] RF-UC 9.18 24.67 21.57
FCL [15] RF-UC 13.16 24.23 22.01
baseline RF-UC 12.52 32.70 28.66

GEN-VLKTs RF-UC 21.36 32.91 30.56
VCL [13] NF-UC 16.22 18.52 18.06
ATL [14] NF-UC 18.25 18.78 18.67
FCL [15] NF-UC 18.66 19.55 19.37
baseline NF-UC 18.71 22.53 21.76

GEN-VLKTs NF-UC 25.05 23.38 23.71
FCL∗ [15] UO 0.00 13.71 11.43
ATL∗ [14] UO 5.05 14.69 13.08
baseline UO 2.92 28.56 23.99

GEN-VLKTs UO 10.51 28.92 25.63
baseline UV 13.52 29.25 27.04

GEN-VLKTs UV 20.96 30.23 28.74

Table 3. Performance comparison for Zero-Shot HOI detec-
tion. RF is short for rare first, NF is short for non-rare first, and
UC, UO, UV indicate unseen composition, unseen object and un-
seen verb settings, respectively. The baseline is the model of ‘s’
architecture without VLKT. ∗ means only the detected boxes are
used without object identity information from the detector.

Especially for the rare categories, GEN-VLKTs achieves
mAP 29.25, which significantly outperforms AS-Net [4] by
a margin of mAP 5.00, even outperforming the ‘Full’ set-
ting of all existing methods. This is ascribable to the guided
embedding design of the GEN architecture and the power-
ful VLKT for the long-tail categories. From an efficiency
perspective, GEN-VLKTs contains in total 6 decoder lay-
ers considering the two branches. Thus it has almost the
same number of parameters and flops compared to QPIC,
and fewer parameters and flops compared to AS-Net [4]
with 12 decoder layers in total. And GEN-VLKTl achieves
a new state-of-the-art performance of mAP 34.95.

For V-COCO, as shown in Table 2, GEN-VLKTs

achieves role AP 62.41 on Scenario 1 and role AP 64.46
on Scenario 2, which also outperform the previous state-of-
the-art method QPIC-R50 [31] with margins of mAP 3.61
and 3.46, respectively. The promotion is not as significant
as that on HICO-Det, since the training samples of V-COCO
is insufficient compared to HICO-Det to train such a large
number of 263 categories classification.

4.3. Effectiveness for Zero-Shot HOI Detection
We conduct all the experiments with the ‘s’ model. We

train the model without VLKT strategy as the baseline. As
shown in Table 3, GEN-VLKTs outperforms the baseline
and previous methods for all the Unseen Composition (UC),
Unseen Object (UO) and Unseen Verb (UV) settings.
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Setting Full Rare Non-Rare
Base-triplet 30.96 22.28 33.55
Base-verb 31.88 26.24 33.57

- p-GE 31.23 25.38 32.98
- i-GE 30.83 23.86 32.91

(a) Network Architecture Setting: Train-
ing ‘s’ model without VLKT.

Strategy Full Rare Non-Rare
Base-triplet 30.96 22.28 33.55

+ interaction text 31.71 26.08 33.39
+ object text 32.09 26.68 33.71

+ mimic 33.75 29.25 35.10

(b) Training Strategies of VLKT. : Ablations
for the training strategies of VLKT.

L1 L2 Full Rare Non-Rare
- - 32.09 26.68 33.71
✓ - 33.75 29.25 35.10
- ✓ 32.41 26.66 34.14
✓ ✓ 33.10 29.24 34.25

(c) Mimic Loss Setting: The choice of
losses for mimic.

Table 4. Ablations. We conduct experiments on HICO-Det dataset based on ‘s’ model. The mAP in default setting is reported.

Unseen Composition. For UC, compared with FCL [15],
GEN-VLKTs achieves 38.85% and 22.41% relative mAP
gains on full categories for rare first and non-rare first
selections, respectively. Specifically, benefiting from the
VLKT mechanism, GEN-VLKTs still significantly pro-
motes the performance for the unseen categories without the
feature factorization and composition among images like
VCL [13], FCL [15] and ATL [14]. The improvements
mainly come from the utilization of CLIP, as indicated by
comparing GEN-VLKTs to the baseline. For example, for
the rare first UC setting, GEN-VLKTs promotes mAP from
13.16 to 21.36 compared to FCL and promotes mAP by a
significant margin of mAP 8.84 compared to the baseline.
Unseen Object. We further evaluate GEN-VLKTs with
unseen object, which reflects the ability to investigate hu-
man interactions with novel objects. For full and unseen
categories, GEN-VLKTs outperforms ATL [14] by relative
95.95% and 108.12% mAP gains, respectively. Again, the
comparison to the baseline indicates VLKT promotes the
performance for the unseen categories significantly.
Unseen Verb. Finally we propose the UV setting to discov-
ery novel categories of actions, and we argue this reflects
the specific characteristic of zero-shot HOI detection. We
compare GEN-VLKTs with the baseline and obtain a sig-
nificant 55.03% relative promotion for unseen categories.

4.4. Ablation Study
In this subsection, we conduct a series of experiments

to analyse the effectiveness of our proposed modules and
strategies. All experiments are conducted in HICO-Det
dataset based on the ‘s’ model.
Network Architecture Setting. In this part, we aim to
prove the superiority of our designed framework. Thus, we
implement two base models with regular training strategies
without VLKT. Firstly, we follow the previous query-based
methods to adopt a verb classifier with 117 categories for
GEN, namely ‘Base-verb’ in Table 4a. It shows that our
‘Base-verb’ has achieved 31.88 mAP outperforming all ex-
isting HOI detectors. Secondly, we replace the verb clas-
sifier with an HOI triplet classifier with 600 categories,
namely ‘Base-triplet’. Due to the serious long-tailed distri-
bution, it drops a bit mAP compared with ‘Base-Verb’, es-
pecially for ‘Rare’ HOIs. Additionally, we explore the im-
portance of components in our GEN. On the one hand, we

remove p-GE and replace the independent human and object
queries with a unified query for two tasks in ‘Base-verb’,
and the result has dropped a 0.65 mAP. On the other hand,
we remove i-GE and use a learnable embedding with ran-
dom initialization added by the p-GE for interaction queries
in ‘Base-verb’. It has lost 1.05 mAP compared with ‘Base-
verb’, but still superior to previous single-branch methods.
Training Strategies of VLKT. Here, we verify the effec-
tiveness of the proposed components in VLKT and the re-
sults are presented in Table 4b. We take the ‘Base-triplet’
as the baseline model. We first replace the interaction clas-
sifier with the text embedding initialization, and the results
are reported as ‘+interaction text’, which shows the mAP
of ‘Rare’ HOIs has improved a lot. Thus, the prior knowl-
edge from linguistic prior can alleviate the long-tail dis-
tribution. We then further equip this model with the text
embedding driven object classifier, causing 0.38 mAP im-
provement. Finally, we add the mimic loss to transfer visual
knowledge from CLIP. All performances have boosted a lot,
which proves aligning features is essential.
Mimic Loss Setting. We discuss the choice of the mimic
loss with two loss types, i.e., L1 and L2 losses. As shown
in Table 4c, if only equipped with L1 loss, our model has
achieved the best performance and a 1.66 mAP gain, and
the performance is much better than only equipped with L2

loss. If we apply L1 and L2 losses at the same time by
summation, the performance is also worse than only with
L1. Thus, L1 is more suitable for the mimic loss.

5. Conclusion
We propose a novel framework GEN-VLKT to im-

prove the query-based HOI detectors from two aspects, as-
sociation and interaction understanding. For association,
we design a two-branch framework while removing post-
matching by a guided embedding mechanism. For inter-
action understanding, we design a training strategy VLKT,
adopting CLIP to enhance interaction understanding. GEN-
VLKT has achieved leading performances on regular and
zero-shot settings on HICO-Det and V-COCO datasets.
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