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Abstract

The Event-based Synthetic Aperture Imaging (E-SAI)
has recently been proposed to see through extremely dense
occlusions. However, the performance of E-SAI is not con-
sistent under sparse occlusions due to the dramatic de-
crease of signal events. This paper addresses this problem
by leveraging the merits of both events and frames, leading
to a fusion-based SAI (EF-SAI) that performs consistently
under the different densities of occlusions. In particular, we
first extract the feature from events and frames via multi-
modal feature encoders and then apply a multi-stage fusion
network for cross-modal enhancement and density-aware
feature selection. Finally, a CNN decoder is employed to
generate occlusion-free visual images from selected fea-
tures. Extensive experiments show that our method effec-
tively tackles varying densities of occlusions and achieves
superior performance to the state-of-the-art SAI methods.
Codes and datasets are available at https://github.
com/smjsc/EF-SAI

1. Introduction
The Event-based Synthetic Aperture Imaging (E-SAI)

[34, 35] has been recently proposed for occlusion removal,
benefiting from the low latency and the high dynamic
range of events. It shows promising performance, espe-
cially when facing extremely dense occlusions, as shown
in Fig. 1. Unlike the frame-based SAI (F-SAI) collecting
the light information from conventional frame-based cam-
eras [8, 15, 16, 22, 33], the E-SAI collects the light infor-
mation with events asynchronously triggered by brightness
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Figure 1. Qualitative comparisons of F-SAI+CNN [27], E-
SAI+Hybrid [35] and our proposed EF-SAI under different den-
sities of occlusions. The EF-SAI can reconstruct high-quality
occlusion-free images under either sparse or dense occlusions by
exploiting the information from both events and frames.

contrast [34, 35] in almost continuous viewpoints. Existing
E-SAI approaches have shown the superiority of restoring
clear images from the occluded light field with extremely
dense occlusions. However, their performance degrades
dramatically when occlusions become sparse (see Fig. 1).

The principle of existing E-SAI is to predict the light
field of occluded targets via accumulating events triggered
by occlusion-to-target contrast, which is proportional to the
intensity of occluded targets [35]. Thus, E-SAI achieves
high performance in occluded scenes with dense occlu-
sions, where the signal events caused by target-to-occlusion
contrast is dominant. However, when occlusions become
sparse, the performance of existing E-SAI will inevitably
deteriorate as signal events decrease.
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To deal with the SAI problem under sparse occlusions,
one can alternatively employ the prior event-based imag-
ing models [2, 17, 25] to firstly recover intensity frames
from events triggered by targets and then utilize the F-
SAI pipeline for occlusion removal. However, event cam-
eras only respond to intensity contrasts theoretically until
the brightness change reaches the triggering threshold [20].
Thus, the collected events may only contain light infor-
mation from high contrast textures (mostly around sharp
edges), leading to the missing of low contrast textures in
the final SAI reconstructions if only based on events.

Motivated by the high performance of F-SAI in deal-
ing with sparse occlusions, we propose a novel fusion-
based SAI method (EF-SAI). The EF-SAI exploits inten-
sity frames to address above problems of E-SAI, achiev-
ing high-quality reconstruction performance invariant to the
density of occlusions. However, F-SAI may suffer from
performance deterioration when facing dense occlusions
[27, 34, 35]. Both E-SAI and F-SAI exhibit inconsistent
performance under varying occlusion densities in the real-
world scenarios. Thus, the main challenge of EF-SAI is
straightforward, i.e., how to take the merits of both events
and frames to bridge the gap between E-SAI and F-SAI, and
finally achieve the see-through effects with performance in-
variant to occlusion densities?

To this end, we propose a novel EF-SAI-Net for high-
quality reconstruction based on the fusion of events and
frames. The network is based on the Encoder-Decoder ar-
chitecture to encode and fuse the multi-modal signals and
then decode an intensity frame without occlusions. Specif-
ically, a two-stage fusion mechanism in our network is pro-
posed for feature enhancement and adaptive fusion, com-
posed of a cross-modal enhancement module and a density-
aware fusion module. The cross-modal enhancement mod-
ule aims to suppress event noises and occlusion distur-
bances by mutual compensations between features of dif-
ferent modalities, i.e., events and frames. And we employ a
cross-attention-based swin transformer to achieve this end.
On the other hand, events and frames have their advantages
under specific conditions, e.g., different occlusion densities
or lighting conditions. Thus, the density-aware fusion mod-
ule aims to adaptively select the features with high confi-
dence according to the occlusion densities. To this end, the
multi-modal inputs are directly fed into a channel attention
block to provide the information about occlusion densities,
serving as a guidance for the feature selection procedure.

The main contributions of this paper are three-fold.

• We propose a novel fusion-based SAI, i.e., EF-SAI,
which takes the merits of both E-SAI and F-SAI, to
achieve high-quality imaging performance invariant to
occlusion densities.

• We propose a deep neural network, i.e., EF-SAI-Net,
to reconstruct the image of targets from the occluded

events and frames, where a cross-attention module is
introduced to suppress noises and disturbances, and a
density-aware feature selection module is proposed for
adaptive fusions.

• We train our proposed EF-SAI-Net on a new EF-SAI
dataset which contains various targets under occlu-
sions with different densities. Extensive evaluations
show that our method is superior to existing SAI ap-
proaches and exhibits consistent performance with re-
spect to different occlusion densities.

2. Related Work
2.1. Event-based Image Reconstruction

Instead of capturing the whole frame at a fixed rate,
event cameras report asynchronous events which respond
to per-pixel brightness changes [1, 20]. This paradigm
shift in visual perception leads to many outstanding advan-
tages, e.g., high dynamic range (HDR) and extremely low
latency, showing great potential for practical applications
like HDR imaging [13, 18, 25] and high-frame-rate video-
ing [12, 17, 21].
Imaging with pure events: Restoring intensity images
from events is a challenging problem due to the lack of
absolute brightness information inside events. Previous at-
tempts tackle this issue by exploiting techniques like sparse
coding [29] and manifold regularisation [11], but their per-
formance often degrades in real-world scenarios due to the
heavy noises induced by false negatives or temporal insta-
bility [3]. To mitigate this, learning-based approaches have
been proposed to fit event distributions and directly synthe-
size intensity images from noisy event sequences [17, 26],
achieving better imaging performance. However, existing
event-driven imaging methods are generally designed for
occlusion-free scenes, limiting their performance under oc-
clusions.
Imaging with the fusion of events and frames: Due
to the extremely high temporal resolution, the event cam-
era is able to observe target scenes continuously. Several
works extract motion and texture information from events
and fuse them with intensity frames for motion deblurring
[6,9,13,32], video interpolation [12,21,25], and super reso-
lution [24]. However, the task of EF-SAI couples fusion and
de-occlusion together, posing more challenges compared to
previous works.

2.2. Synthetic Aperture Imaging

Synthetic aperture imaging tackles the disturbances of
occlusions via multi-view measurement and image synthe-
sis. The basic idea of SAI is to form the light field [5]
of occluded scenes from multi-view exposures and project
the lights onto a virtual focal plane, which is equivalent to
imaging with a large aperture and shallow depth of field [8].
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In this case, the objects on the focal plane remain sharp
while the others outside the plane appear blurry, leading
to the “seeing through” effect. The pioneering work [23]
proposes a plane+parallax framework to warp multi-view
images onto a focal plane for SAI, but the reconstructed im-
ages are often noisy and blurry due to the blending of lights
from the occlusions. Several techniques have been devel-
oped to improve the reconstruction quality, including mul-
tiple cost functions [22], background subtraction [16], and
occlusion labeling via energy minimization [15]. Recent
work of [27] approaches SAI with the learning-based meth-
ods and proposes DeOccNet, which can effectively remove
occlusions and reconstruct high-quality images. However,
frame-based methods often suffer from performance degra-
dation in densely occluded scenes due to the limited light
information and severe disturbances from occlusions.

With the extremely low latency of events, event camera
poses advantages in dealing with the SAI task under dense
occlusions. Exploiting the brightness contrast between tar-
get scenes and dense occlusions, event-based SAI (E-SAI)
methods [34, 35] are able to collect sufficient signal infor-
mation of the occluded scenes and produce occlusion-free
visual images from pure event data. However, their perfor-
mance is inconsistent when encountering sparse occlusions
due to the dramatic decrease of signal events, which often
results in failure reconstruction as shown in Fig. 1. Thus, it
is difficult for the existing F-SAI or E-SAI methods to deal
with different densities of occlusions, which motivates us to
take the merits of both events and frames and propose the
EF-SAI.

3. Problem Statement
Synthetic Aperture Imaging (SAI) aims to remove occlu-

sions by collecting the light information from multi-view
measurements, i.e.,

IA = SAI(IO
P (A),P),

where IO
P ≜ {LO

p }p∈P is a set of projected light informa-
tion LO

p (A) of the scene A captured at the camera pose
p ∈ P under occlusions O which is generally unknown
in practice, and IA denotes the reconstructed image of the
scene A via the SAI method. Generally, sufficient light in-
formation is required to ensure correct imaging results.
Frame-based SAI directly measures the projected intensi-
ties Ip(A) of A. If A is occluded by O, the captured light
information would be

LO
p (A) = {IOp (A) ≜ MO(Ip(A)) + Ip(O) + In},

where MO(·) returns the occlusion-free pixels of Ip(A) un-
der occlusions O, Ip(O) is the projected intensities from
occlusions O, and In denotes noises. The task of F-SAI
is to identify target regions MO(Ip(A)) from occluded ob-
servations and then remove disturbances from occlusions.

Generally, F-SAI can provide reliable SAI results when oc-
clusions O is sparse; on the contrary, when occlusions O be-
come denser, the performance of F-SAI deteriorates as the
light information from the target A becomes insufficient.
Event-based SAI is an approach that can tackle the prob-
lem of dense occlusion removal [35], where the light infor-
mation is captured in the form of brightness change through
an event camera. The collected light information are rep-
resented as a set of event points EO

p (A) triggered during
camera movement. Typically, EO

p (A) contains four differ-
ent subsets, i.e.,

LO
p (A) = {EO

p (A) ≜ EAA
p + EOA

p + EOO
p + En},

where EAA
p , EOA

p , and EOO
p are respectively induced by

brightness changes from target textures, occlusion-to-target
contrast, and occlusion textures, and En denotes event
noises. Since events triggered by occlusion-to-target con-
trast EOA

p is proportional to the brightness of the target
A [35], the task of E-SAI is to eliminate noisy events while
enhancing the signal information, i.e., EOA

p . Due to the
low latency and high dynamic range, E-SAI is able to col-
lect events from almost continuous viewpoint and thus can
provide sufficient light information under extremely dense
occlusions and poor lighting conditions [34, 35]. How-
ever, when facing sparse occlusions, EOA

p decreases sig-
nificantly, making it insufficient for correct reconstructions.

It is difficult for the existing E-SAI or F-SAI methods to
deal with different densities of occlusions, which motivates
us to utilize both frames and events as the input of SAI to
compensate such inconsistency.
EF-SAI leverages the merits of both E-SAI and F-SAI,
where the light information of targets A is extracted from
both events and frames, i.e.,

LO
p (A) = {EO

p (A), IOp (A)}. (1)

The target of the EF-SAI is to recover the occlusion-free
image of the target A from LO

p (A), p ∈ P , i.e.,

IA = EF-SAI({LO
p (A)}p∈P ,P). (2)

To fulfill this, two main obstacles exist for EF-SAI:
(1) Disturbances and Noises. The light information

from both events and frames are contaminated by noises
and disturbances of foreground occlusions, which should be
necessarily suppressed. Generally, IOp (A) is less noisy but
contains more disturbances than EO

p (A), since frame-based
cameras are of low frame rate and only a limited number
of observations are captured. By contrast, EO

p (A) contains
more structure information benefiting from the continuous
observation, but it suffers from heavy noises and lack of
low-contrast textures [3]. Both IOp (A) and EO

p (A) are col-
lected with the same target and thus share the common la-
tent structures embedded in the light information. Thus, it
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is straightforward to utilize latent consistency for the mu-
tual compensation between frames and events, promoting
the performance of EF-SAI.

(2) Performance Inconsistency to Occlusion Densi-
ties. The light information and disturbance in frames and
events varies with the density of occlusions. When fac-
ing dense occlusions, the information from frames becomes
a burden due to the increased disturbances of Ip(O) and
should be suppressed during the fusion process. On the
contrary, when encountering sparse occlusions, the num-
ber of EOA

p decreases and EAA
p becomes dominant. Thus,

EAA
p should be also utilized for fusion since it reflects the

light information from the target, especially for scenes un-
der extreme lighting conditions. Based on the above discus-
sion, how to adaptively select features according to occlu-
sion densities is another essential problem to the EF-SAI.

4. Method
4.1. Multi-modal Signals

Due to the multi-view observation, the parallax exists in
both intensity pixels and events from the target A. Thus we
need to first warp frames and events to refocus on the plane
where target A is located. Given the depth d of target A,
we implement the refocusing procedure similar as [35], and
the refocused frames and events are denoted respectively as
Iref ,Eref , i.e.,

Iref = Refocus(IOp (A)),

Eref = Refocus(EO
p (A)),

(3)

where Refocus(·) represents the refocusing operator de-
fined in [35]. Apart from Iref and Eref , EAA

p also con-
tains the light information from targets and plays an impor-
tant role in compensating the brightness information when
encountering poor lighting conditions, where Iref is often
severely disturbed. To make full use of EAA

p , we first recon-
struct the intensity frames from EO

p (A) via the pre-trained
E2VID [17] followed by the refocusing process, i.e.,

IrefE→F = Refocus(E2VID(EO
p (A))), (4)

and treat IrefE→F as another information source, which com-
plements brightness information by exploiting the pre-
learned event-to-image features in E2VID. In summary, we
call Iref ,Eref , and IrefE→F as a set of multi-modal signals,
i.e.,

IEF ≜ {Iref ,Eref , IrefE→F } (5)

And the effectiveness of each component of IEF varies with
respect to specific conditions, as shown in Tab. 1.

4.2. The EF-SAI Network

According to Tab. 1, it is crucial for EF-SAI to leverage
the merits of multi-modal signals under different densities

Table 1. Effectiveness of different signals for SAI performance.
✓denotes positive impact under specific conditions.

Signal Dense Sparse Poor Lighting
Iref - ✓ -
Eref ✓ - ✓
IrefE→F - ✓ ✓

of occlusions. To this end, we propose a novel EF-SAI-
Net to adaptively fuse the light information from events and
frames according to the occluded scenes, and achieve con-
sistent performance under occlusions or poor lighting con-
ditions. As shown in Fig. 2, our proposed EF-SAI-Net is
composed of a Multi-modal Feature (MF) encoder, a Cross-
modal Enhancement module (CME), a Density-Aware Fu-
sion module (DAF), and a Multi-modal Feature Decoder.
The EF-SAI-Net firstly transforms the multi-modal signals
into the feature domain by the MF encoder composed of
three sub-encoders. For intensity frames Iref and event
frames IrefE→F , two CNN-based sub-encoders are employed
to separately extract shallow features fAF,0 and fAA

E,0. For
events Eref , an SNN-based sub-encoder [35] is used to pro-
cess the events with leaky integrate-and-fire (LIF) [31] neu-
rons, which extract the features fOA

E,0 while filtering the event
noises scattered by the refocusing process. Then, the out-
puts of the MF encoder fEF

0 ≜ {fAF,0, f
OA
E,0 , f

AA
E,0} are fed to a

two-stage fusion network composed of a CME module and
a DAF module for multi-modal feature enhancement and
adaptive feature selection.
Cross-Modal Enhancement. Based on the assumption that
frames and events share the common structure, e.g., edges
and textures, of the same targets, we use a CME module to
learn the coarse latent structure and achieve cross-modal en-
hancement. In the CME module, N Cross-attention based
Swin Transformer Layers (Cross-STLs) [10] are firstly em-
ployed to mutually enhance the multi-modal features, as
shown in Fig. 2. In the i-th Cross-STL, the input multi-
modal features fEF

i−1 are firstly partitioned into K non-
overlapping windows, denoted as f1, f2, ..., fK . And for
every feature window fk(k = 1, . . . ,K), we estimate an
independent query qj , key kj and value matrices vj (j =
1, . . . , 3) for each feature branch in fk, and the self-attention
weight wj is calculated by wj = qjkj

T
/
√
d. Then, the

fused self-attention weight w can be obtained by

w = w1 +w2 +w3. (6)

In this manner, we can mutually compensate the com-
mon latent structures of occluded scenes and suppress the
noise in each feature branch, achieving cross-modal fea-
ture enhancement. Following that, we apply the fused self-
attention weight w separately to v1, v2, v3 and generate
the self-attentions by Attention

(
vj ; w

)
= softmax(w)vj .

We then connect the self-attentions with their inputs in fk

and generate the enhanced feature per window via an MLP
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Figure 2. Architecture of the proposed EF-SAI-Net. A multi-modal feature (MF) encoder firstly extracts features fEF
0 from multi-modal

signals IEF . Then, a two-stage fusion mechanism is employed to suppress noises and disturbances by a Cross-Modal Enhancement (CME)
module and a Density-Aware Fusion (DAF) module. Finally, an MF decoder is used to decode IA from the fused features fA.

layer. After traversing all the feature windows, the i-th
Cross-STL outputs the i-th enhanced feature fEF

i , which
will be fed to the next Cross-STL. Finally, the CME module
produces the enhanced features fEF by residually connect-
ing the original input fEF

0 with fEF
N output from the N -th

Cross-STL.
Density-Aware Feature Selection. The DAF module is de-
signed to predict the confidence of features and adaptively
select the signal information that varies with occlusion den-
sities. To facilitate the feature selection, we provide extra
information for DAF via concatenating the multi-modal fea-
tures fEF with the original input signals IEF since the input
information, e.g., Iref , is often closely related to the occlu-
sion density. After that, we employ a Channel Attention
Block (CAB) [30] to predict the importance of each feature
branch and produce the fused feature fA by

fA = wEF ∗ fEF , (7)

where wEF denotes the weighting vector output by DAF.
Finally, an MF decoder is used to reconstruct the occlusion-
free visual images from the multi-modal feature fA.

5. The EF-SAI Dataset
We construct an EF-SAI dataset using the same man-

ner as [35], where the events and frames are collected si-
multaneously by a DAVIS346 camera installed in a pro-
grammable sliding trail. The occlusion-free intensity
frames are also captured as the ground truth and camera
poses (translation) are determined by the constant velocity
of the slider. To validate the performance of SAI under dif-
ferent occluded scenes, we employ random thorn fences and
regular wooden grids to imitate the occlusions with differ-
ent densities ranging from extremely dense to very sparse,
as shown in Fig. 3. Considering the lighting variance, our

EF-SAI dataset also contains indoor and outdoor scenes
with different targets, including toys, desks, paintings for
indoor scenes and cars, motorcycles, buildings, play yards
for outdoor scenes.

Table 2. Overview of the proposed EF-SAI dataset.

Usage
Dense Occlusion Sparse Occlusion

Summary
Indoor Outdoor Indoor Outdoor

Train 220 138 495 27 880
Test 25 10 55 18 108
Total 245 148 550 45 988

Tab. 2 summarizes the proposed EF-SAI dataset. We to-
tally record 988 groups of paired dataset which contains 30
APS frames and the concurrent events collected with occlu-
sions, and 1 occlusion-free APS frame as the ground truth.
Our proposed EF-SAI dataset differs from [35] with respect
to both size and varieties, where the occlusion density is
varying from sparse to extremely dense. Thus the EF-SAI
dataset can be employed for training and evaluation of both
frame-based and event-based SAI algorithms under occlu-
sions with different densities. Our EF-SAI dataset is avail-
able at https://github.com/smjsc/EF-SAI.

6. Experiments and Analysis
The proposed EF-SAI-Net is implemented using Pytorch

[14] and trained on 2 NVIDIA TITAN RTX3090 GPUs with
a batch size of 4. For the training phase, we adopt the ℓ1
loss to supervise the pixel-wise low-level features (denoted
as Lpix), the perceptual loss Lper to encourage network to
learn the similarity between high-level visual features, and
the total variation loss Ltv for noise suppression. The total
loss function L can be formulated as

L = αLpix + βLper + γLtv, (8)
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(a) Indoor scenes (b) Outdoor scenes
Figure 3. Occluded views of indoor (left four) and outdoor (right four) scenes under occlusions with different densities.

GT F-SAI+ACC F-SAI+CNN F-SAI+Inpainting E-SAI+ACC E-SAI+Hybrid EF-SAI-Net
Figure 4. Qualitative comparisons on the indoor scenes under dense occlusions (1st row) and sparse occlusions (2nd to 3th rows).

with [α, β, γ] = [1, 32, 2 × 10−4] denoting the balancing
factors. We train the EF-SAI-Net for 500 epochs with the
Adam optimizer [7] and a cosine annealing strategy where
the learning rate decays from 6×10−4 to 10−7 for every 64
epochs. To enhance the robustness of our network, we aug-
ment the EF-SAI dataset by flipping (horizontal, vertical,
and horizontal-vertical) and rotating (random angles rang-
ing from -10 to 10 degree) and obtain 2355 pairs of data for
training. We adopt the pre-trained E2VID network [17] to
generate intensity frames from event sequences, i.e., IrefE→F ,
and implement the MF decoder with a U-net [19].
Evaluation. We compare our method against several
SAI methods, including F-SAI with accumulation (F-
SAI+ACC) [23], F-SAI with DeOccNet (F-SAI+CNN)
[27], F-SAI with inpainting (F-SAI+Inpainting [4]), E-
SAI with accumulation (E-SAI+ACC) [34], and E-SAI
with the hybrid network (E-SAI+Hybrid) [35]. We use 30
frames as the input of F-SAI methods, i.e., F-SAI+ACC,
F-SAI+CNN and F-SAI+Inpainting. The metrics Peak Sig-
nal to Noise Ratio (PSNR, higher is better) and Structural
SIMilarity (SSIM, higher is better) [28] are employed for
quantitative evaluation.

6.1. Qualitative Analysis

From Figs. 4 and 5, the results of F-SAI+ACC are of-
ten noisy and blurry under dense occlusions since it directly

accumulates all the information without distinguishing sig-
nals and noises. Exploiting the learning-based approaches,
F-SAI+CNN effectively alleviates the noise issue as shown
in Fig. 5, but the visual details are still heavily contaminated
by the disturbances from occlusions, see Fig. 4. For densely
occluded scenes, F-SAI+Inpainting cannot recover the tar-
gets due to the limited signal information. For sparsely oc-
cluded scenes, it also suffers from the blur due to the in-
consistent inpainted patches on different frames. For E-SAI
methods, it is difficult for E-SAI+ACC to generate satisfy-
ing visual results due to the heavy event noises. To miti-
gate this, E-SAI+Hybrid employs an SNN encoder to fil-
ter noises from the temporal dimension, achieving the most
competing results under dense occlusions. However, the
overwhelming performance of E-SAI+Hybrid is not con-
sistent in the case of spare occlusions as shown in Fig. 5,
where the SAI results suffer from severe artifacts and miss-
ing details. This is because events are only triggered when
the log-scale brightness change exceeds the event threshold,
thus often leading to the ignorance of low-contrast textures.
By compensating the full texture information from frames,
our EF-SAI method can reconstruct rich and natural details
under sparse occlusions. Meanwhile, our method does not
suffer from the disturbances of dense occlusions, showing
the best and consistent performance under different occlu-
sion densities.
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GT F-SAI+ACC F-SAI+CNN F-SAI+Inpainting E-SAI+ACC E-SAI+Hybrid EF-SAI-Net
Figure 5. Qualitative comparisons on the outdoor scenes under dense occlusions (1st row) and sparse occlusions (2nd to 3th rows).

Table 3. Quantitative comparisons of EF-SAI-Net to the state-of-the-art SAI methods on indoor and outdoor scenes under different
occlusion densities. The networks re-trained on our EF-SAI dataset are marked with the symbol ∗.

Method
Dense Occlusions Sparse Occlusions

Indoor Outdoor Indoor Outdoor
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

F-SAI+ACC [23] 13.3832 0.3379 11.7946 0.4056 16.8071 0.6262 12.0371 0.5695
F-SAI+CNN∗ [27] 24.7108 0.7805 18.1457 0.5985 22.5317 0.7991 13.3662 0.5906
F-SAI+Inpainting [4] 15.2886 0.4723 11.1015 0.2831 23.7813 0.7565 15.3313 0.5675
E-SAI+ACC [34] 14.4509 0.2202 10.4116 0.2702 15.6526 0.2438 4.4836 0.0756
E-SAI+Hybrid [35] 31.0715 0.8277 20.2579 0.6879 15.7629 0.5163 6.9290 0.2469
E-SAI+Hybrid∗ [35] 29.6905 0.8003 19.2968 0.6450 31.0529 0.8926 12.1227 0.4064
EF-SAI-Net (ours) 30.5387 0.8273 19.7834 0.6631 35.0089 0.9279 21.0394 0.7065

6.2. Quantitative Analysis

The quantitative results are summarized in Tab. 3. For
accumulation methods, F-SAI+ACC suffers from the distur-
bances of occlusions while E-SAI+ACC often meets bright-
ness inconsistency with the ground truth images, leading
to poor PSNR and SSIM results. Employing the learning-
based techniques, F-SAI+CNN gains a general improve-
ment under both dense and sparse occlusions, but its perfor-
mance is often limited by the number of observations. For
inpainting methods, the performance of F-SAI+Inpainting
is better than F-SAI+CNN when occlusions are sparse but
significantly drops as the occlusion information becomes
dominant. Despite E-SAI+Hybrid achieves the best PSNR
and SSIM results in densely occluded scenes, its perfor-
mance drops dramatically when facing sparse occlusions
since the signal events EOA

p becomes minority. After re-
training on the EF-SAI dataset, E-SAI+Hybrid can learn to
approach occlusion removal under sparse occlusions, but it
also pays performance losses to balance the different dis-

tributions of varying occlusion densities. Compared to the
above F-SAI and E-SAI methods, the proposed EF-SAI
shows the most robust performance by taking the comple-
mentary advantage of events and frames, achieving remark-
able performance under either sparsely or densely occluded
scenes.

6.3. Ablation study

In this section, we study the contributions of the network
modules CME and DAF, and the importance of multi-modal
signals, i.e., Iref ,Eref , IrefE→F in our EF-SAI-Net. From
Tab. 4 and Fig. 6, we can draw the following conclusions:
Importance of CME and DAF. As demonstrated in Tab. 4,
the CME module gains a general performance improve-
ment under both sparse and dense occlusions via enhanc-
ing cross-modal signals while suppressing noises. For the
DAF module, it plays an important role in dealing with
varying occlusion densities or even extreme lighting con-
ditions. In Fig. 6, the network without DAF module suffers
from brightness inconsistency in the over-exposure scene
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Table 4. Ablation study of our EF-SAI-Net w/o the network modules CME, DAF, and the multi-modal signals Iref ,Eref , and IrefE→F .

Method
Dense Occlusions Sparse Occlusions

Indoor Outdoor Indoor Outdoor
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o all 29.7052 0.8046 19.2030 0.6443 34.0899 0.9237 19.5192 0.6542
w/o CME 29.9534 0.8216 19.2921 0.6557 34.4912 0.9251 20.4002 0.7138
w/o DAF 29.9625 0.8150 19.4271 0.6615 34.9402 0.9266 19.4667 0.6641
w Iref 27.9170 0.7739 18.5470 0.6081 33.0011 0.9111 20.5511 0.7034
w Eref 29.1839 0.7974 18.8486 0.5949 29.6165 0.8676 12.8511 0.3715
w IrefE→F 23.9406 0.7032 14.5684 0.3660 25.1331 0.7589 12.9840 0.3558
w/o Iref 29.7329 0.8114 19.4327 0.5289 29.8331 0.8751 14.2442 0.3708
w/o Eref 29.5823 0.8167 19.7604 0.6483 34.8559 0.9268 20.7289 0.7012
w/o IrefE→F 30.2764 0.8240 19.2886 0.6561 34.9962 0.9208 21.3782 0.7057
w/ all 30.5387 0.8273 19.7834 0.6631 35.0089 0.9279 21.0394 0.7065

GT w/o all w/o CME w/o DAF w Iref w Eref w IrefE→F w/o Iref w/o Eref w/o IrefE→F
w/ all

Figure 6. Qualitative ablation study under extreme lighting conditions (1st row) and sparse occlusions (2nd row).

and can barely reconstruct the target in the under-exposure
case. This is because the network mistakenly treats the
severely disturbed frames Iref as signal information, show-
ing the importance of DAF in our EF-SAI-Net.
Complementarity of Multi-Modal Signals. From the re-
sults of Tab. 4, the frame Iref is essential for the SAI under
sparse occlusions as it directly provides the brightness infor-
mation of target scenes. Under dense occlusions, the infor-
mation from events Eref is dominant since it collects abun-
dant signal information from the rich occlusion-to-target
contrast. As for the event frames IrefE→F , it is helpful in
dealing with extremely lighting conditions under sparse or
occlusion-free scenes because it provides intensity informa-
tion when the frames Iref is not reliable, as shown in Fig. 6.
Thus, by taking the merits of the above multi-modal sig-
nals, our EF-SAI-Net achieves consistent performance un-
der varying densities of occlusions and does not suffer from
the over- or under-exposure problems.

6.4. Computational Complexity

Tab. 5 shows the comparisons of learning-based SAI
methods when inferring 256 × 256 images. Although F-
SAI+Inpainting requires minimal computational resources,
its performance in SAI is not satisfying according to Tab. 3.
Compared to F-SAI+CNN and E-SAI+Hybrid, the pro-
posed EF-SAI-Net can cope with varying densities of occlu-
sions while maintaining overall efficiency with the smallest
model size and the comparable computational costs. How-

ever, due to a large amount of the element-wise operations
and the storage of intermediate variables in transformer-
based CME module, the EF-SAI-Net requires a longer in-
ference time, and we leave optimization for future work.

Table 5. Comparisons of computational complexity with learning-
based SAI methods.

Method FLOPs #Param. Infer. time
F-SAI+CNN [27] 188.71G 39.04M 29.89ms

F-SAI+Inpainting [4] 17.67G 52.15M 28.35ms
E-SAI+Hybrid [35] 167.82G 18.59M 34.74ms

EF-SAI 173.44G 12.04M 123.12ms

7. Conclusions
This paper introduces a novel EF-SAI method that

utilizes events and frames to reconstruct high-quality
occlusion-free images under various densities of occlusions.
Specifically, we propose a cross-modal enhancement trans-
former CME to enhance the signal information while sup-
pressing noises according to the learned latent structure of
occluded targets. Following that, a density-aware feature
selection DAF module is employed to judge the signal con-
fidence and guarantee the performance consistency under
different occluded scenes. To evaluate our method, we con-
struct an EF-SAI dataset composed of both indoor and out-
door scenes under various occlusion densities. Experiments
show that our method is effective in dealing with multi-
modal signals and achieves robust performance under dif-
ferent occluded situations and extreme lighting conditions.
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